410 research outputs found

    Incremental and Transitive Discrete Rotations

    Get PDF
    A discrete rotation algorithm can be apprehended as a parametric application f_αf\_\alpha from \ZZ[i] to \ZZ[i], whose resulting permutation ``looks like'' the map induced by an Euclidean rotation. For this kind of algorithm, to be incremental means to compute successively all the intermediate rotate d copies of an image for angles in-between 0 and a destination angle. The di scretized rotation consists in the composition of an Euclidean rotation with a discretization; the aim of this article is to describe an algorithm whic h computes incrementally a discretized rotation. The suggested method uses o nly integer arithmetic and does not compute any sine nor any cosine. More pr ecisely, its design relies on the analysis of the discretized rotation as a step function: the precise description of the discontinuities turns to be th e key ingredient that will make the resulting procedure optimally fast and e xact. A complete description of the incremental rotation process is provided, also this result may be useful in the specification of a consistent set of defin itions for discrete geometry

    Bijective rigid motions of the 2D Cartesian grid

    Get PDF
    International audienceRigid motions are fundamental operations in image processing. While they are bijective and isometric in R^2, they lose these properties when digitized in Z^2. To investigate these defects, we first extend a combinatorial model of the local behavior of rigid motions on Z^2, initially proposed by Nouvel and Rémila for rotations on Z^2. This allows us to study bijective rigid motions on Z^2, and to propose two algorithms for verifying whether a given rigid motion restricted to a given finite subset of Z^2 is bijective

    Criteria of measure-preserving for pp-adic dynamical systems in terms of the van der Put basis

    Get PDF
    This paper is devoted to (discrete) pp-adic dynamical systems, an important domain of algebraic and arithmetic dynamics. We consider the following open problem from theory of pp-adic dynamical systems. Given continuous function f:Zp>Zp.f:Z_p > Z_p. Let us represent it via special convergent series, namely van der Put series. How can one specify whether this function is measure-preserving or not for an arbitrary pp? In this paper, for any prime pp we present a complete description of all compatible measure-preserving functions in the additive form representation. In addition we prove the criterion in terms of coefficients with respect to the van der Put basis determining whether a compatible function f:Zp>Zpf:Z_p > Z_p preserves the Haar measure

    Shift Radix Systems - A Survey

    Full text link
    Let d1d\ge 1 be an integer and r=(r0,,rd1)Rd{\bf r}=(r_0,\dots,r_{d-1}) \in \mathbf{R}^d. The {\em shift radix system} τr:ZdZd\tau_\mathbf{r}: \mathbb{Z}^d \to \mathbb{Z}^d is defined by τr(z)=(z1,,zd1,rz)t(z=(z0,,zd1)t). \tau_{{\bf r}}({\bf z})=(z_1,\dots,z_{d-1},-\lfloor {\bf r} {\bf z}\rfloor)^t \qquad ({\bf z}=(z_0,\dots,z_{d-1})^t). τr\tau_\mathbf{r} has the {\em finiteness property} if each zZd{\bf z} \in \mathbb{Z}^d is eventually mapped to 0{\bf 0} under iterations of τr\tau_\mathbf{r}. In the present survey we summarize results on these nearly linear mappings. We discuss how these mappings are related to well-known numeration systems, to rotations with round-offs, and to a conjecture on periodic expansions w.r.t.\ Salem numbers. Moreover, we review the behavior of the orbits of points under iterations of τr\tau_\mathbf{r} with special emphasis on ultimately periodic orbits and on the finiteness property. We also describe a geometric theory related to shift radix systems.Comment: 45 pages, 16 figure

    Ergodicity criteria for non-expanding transformations of 2-adic spheres

    Full text link
    In the paper, we obtain necessary and sufficient conditions for ergodicity (with respect to the normalized Haar measure) of discrete dynamical systems on 2-adic spheres S2r(a)\mathbf S_{2^{-r}}(a) of radius 2r2^{-r}, r1r\ge 1, centered at some point aa from the ultrametric space of 2-adic integers Z2\mathbb Z_2. The map f ⁣:Z2Z2f\colon\mathbb Z_2\to\mathbb Z_2 is assumed to be non-expanding and measure-preserving; that is, ff satisfies a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and ff preserves a natural probability measure on Z2\mathbb Z_2, the Haar measure μ2\mu_2 on Z2\mathbb Z_2 which is normalized so that μ2(Z2)=1\mu_2(\mathbb Z_2)=1

    Rotation on the digital plane

    Get PDF
    Let Aϕ denote the matrix of rotation with angle ϕ of the Euclidean plane, FLOOR the function, which rounds a real point to the nearest lattice point down on the left and ROUND the function for rounding off a vector to the nearest node of the lattice. We prove under the natural assumption ϕ 6= k π 2 that the functions F LOOR ◦ Aϕ and ROUND ◦ Aϕ are neither surjective nor injective. More precisely we prove lower and upper estimates for the size of the sets of lattice points, which are the image of two lattice points as well as of lattice points, which have no preimages. It turns out that the density of that sets are positive except when sin ϕ 6= ± cos ϕ + r, r ∈ Q

    Lie Group Algebra Convolutional Filters

    Full text link
    In this paper we propose a framework to leverage Lie group symmetries on arbitrary spaces exploiting \textit{algebraic signal processing} (ASP). We show that traditional group convolutions are one particular instantiation of a more general Lie group algebra homomorphism associated to an algebraic signal model rooted in the Lie group algebra L1(G)L^{1}(G) for given Lie group GG. Exploiting this fact, we decouple the discretization of the Lie group convolution elucidating two separate sampling instances: the filter and the signal. To discretize the filters, we exploit the exponential map that links a Lie group with its associated Lie algebra. We show that the discrete Lie group filter learned from the data determines a unique filter in L1(G)L^{1}(G), and we show how this uniqueness of representation is defined by the bandwidth of the filter given a spectral representation. We also derive error bounds for the approximations of the filters in L1(G)L^{1}(G) with respect to its learned discrete representations. The proposed framework allows the processing of signals on spaces of arbitrary dimension and where the actions of some elements of the group are not necessarily well defined. Finally, we show that multigraph convolutional signal models come as the natural discrete realization of Lie group signal processing models, and we use this connection to establish stability results for Lie group algebra filters. To evaluate numerically our results, we build neural networks with these filters and we apply them in multiple datasets, including a knot classification problem
    corecore