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Abstract. Rigid motions are fundamental operations in image processing. While
they are bijective and isometric in R2, they lose these properties when digitized
in Z2. To investigate these defects, we first extend a combinatorial model of the
local behavior of rigid motions on Z2, initially proposed by Nouvel and Rémila
for rotations on Z2. This allows us to study bijective rigid motions on Z2, and to
propose two algorithms for verifying whether a given rigid motion restricted to a
given finite subset of Z2 is bijective.

1 Introduction

Rigid motions (i.e., rotations, translations and their compositions) defined on Z2 are
simple yet crucial operations in many image processing applications involving 2D data.
One way to design rigid motions on Z2 is to combine continuous rigid motions defined
on R2 with a digitization operator that maps the results back into Z2. However, the
digitized rigid motion, though uniformly “close” to its continuous origin, often no longer
satisfies the same properties. In particular, bijectivity is lost in general. In this context,
it is useful to understand the combinatorial, geometrical and topological alterations
associated with digitized rigid motions. More precisely, we observe the impact of rigid
motions on the structure of Z2 at a local scale. Few efforts were already devoted to such
topic, in particular for digitized rotations. Especially, pioneering works by Nouvel and
Rémila [6] led to an approach for characterizing bijective digitized rotations [7], and
more generally studying non-bijective ones [8].

Our contribution is threefold. We first show the usefulness of a combinatorial model
of the local behavior of rigid motions on Z2, proposed initially for rotations on Z2 [6],
[8], called neighborhood motion maps. By using this model, we characterize bijective
rigid motions on Z2, similarly to the characterization of bijective digitized rotations [7].
As such characterization is made locally, we also show that the local bijectivity of rigid
motions on Z2, i.e. bijectivity of rigid motions of finite sets on Z2, can be verified by
using neighborhood motion maps.

This article is organized as follows. In Section 2 we recall basic definitions and
generalize to digitized rigid motions on Z2 the combinatorial model proposed previously
by Nouvel and Rémila for rotations on Z2 [6], [8]. Section 3 provides a characterization
of bijective rigid motions on Z2; this characterization is an extension of the one proposed
in [7]. In Section 4 we provide new algorithms for the verification whether a given rigid
motion is bijective or not when restricted to a finite subset of Z2. Finally, in Section 5
we conclude this article and provide some perspectives.



2 Basic notions

2.1 Digitized rigid motions

Rigid motions on R2 are bijective isometric maps defined as∣∣∣∣∣∣U : R2 → R2

x 7→ Rx + t (1)

where t = (tx, ty)t ∈ R2 is a translation vector and R is a rotation matrix with θ ∈ [0, 2π) its
rotation angle. This leads to the representation of rigid motions by a triple of parameters
(θ, tx, ty) ∈ [0, 2π) × R2.

According to Equation (1), we generally haveU(Z2) * Z2. As a consequence, in
order to define digitized rigid motions as maps from Z2 to Z2, we commonly apply rigid
motions on Z2 as a part of R2, and then combine the real results with a digitization
operator ∣∣∣∣∣∣D : R2 → Z2

(x, y) 7→
(⌊

x + 1
2

⌋
,
⌊
y + 1

2

⌋) (2)

where bzc denotes the largest integer not greater than z. Digitized rigid motions are then
defined as U = D◦U|Z2 . Due to the behavior ofD that maps R2 onto Z2, digitized rigid
motions are, most of the time, non-bijective. This leads us to define a notion of point
status with respect to digitized rigid motions [5].

Definition 1. Let y ∈ Z2 be an integer point. The set of preimages of y with respect to
U is defined as S U(y) = {x ∈ Z2 | U(x) = y}, and y is referred to as a s-point, where
s = |S U(y)| is called the status of y.

Remark 1. In Z2, |S U(y)| ∈ {0, 1, 2} and only points p and q such that |p − q| = 1 can
be preimages of a 2-point [3].

The non-injective and non-surjective behaviors of a digitized rigid motion result in the
existence of 2- and 0-points.

2.2 Neighborhood motion map

Let us consider the notion of neighborhood in Z2.

Definition 2. The neighborhood of p ∈ Z2 (of squared radius r ∈ R+), denoted Nr(p),
is defined as Nr(p) =

{
p + d ∈ Z2 | ‖d‖2 ≤ r

}
.

Remark 2. N1 andN2 correspond to the 4- and 8-neighborhoods, widely used in digital
geometry [4].

In order to track local alterations of a neighborhood during rigid motions, we intro-
duce the notion of a neighborhood motion map.

Definition 3. Given a digitized rigid motion U, the neighborhood motion map of p ∈ Z2

for r ∈ R+ is the function GU
r (p) : Nr(0)→ Nr′ (0) (with r′ ≥ r) defined as GU

r (p) : d 7→
U(p + d) − U(p).
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Fig. 1. Visual representation of neighborhood motion maps GU
r (p) with colors: reference neighbor-

hoods N1(p) (a) and N2(p) (c), and examples of GU
1 (p) (b) and GU

2 (p) (d).

In other words, GU
r (p) associates to each relative position of an integer point p + d in

the neighborhood of p, the relative position of the image U(p + d) in the neighborhood
of U(p). The squared radius r′ of Nr′(U(p)) is slightly larger than r. For instance, we
have r′ = 2 (resp. 5) for r = 1 (resp. 2). Figure 1 presents a visual presentation of GU

r (p),
where r = 1, 2. Note that a similar notion for digitized rotations was previously proposed
by Nouvel and Rémila [6].

2.3 Remainder range partitioning

Digitized rigid motions U = D ◦ U are piecewise constant, which is a consequence
of the nature ofD. In other words, the neighborhood motion map GU

r (p) evolves non-
continuously according to the parameters ofU that underlies U. Our purpose is now to
express how GU

r (p) evolves.
Let us consider an integer point p + d in the neighborhood Nr(p) of p. From Equa-

tion (1), we have
U(p + d) = Rd +U(p). (3)

We know that U(p) lies in the unit square centered at the integer point U(p), which
implies that there exists a value ρ(p) = U(p)−U(p) ∈

[
− 1

2 ,
1
2
)2. The coordinates of ρ(p),

called the remainder of p underU, are the fractional parts of the coordinates ofU(p);
and ρ is called the remainder map under U. As ρ(p) ∈

[
− 1

2 ,
1
2
)2, this range, denoted by

P =
[
− 1

2 ,
1
2
)2, is called the remainder range. Using ρ, we can rewrite Equation (3) by

U(p + d) = Rd + ρ(p) + U(p).

Without loss of generality, we can consider that U(p) is the origin of a local coordi-
nate frame of the image space, i.e.U(p) ∈ P. In such local coordinate frame, the former
equation rewrites as

U(p + d) = Rd + ρ(p). (4)

Still under this assumption, studying the non-continuous evolution of the neighbor-
hood motion mapGU

r (p) is equivalent to studying the behavior of U(p+d) = D◦U(p+d)
for d ∈ Nr(0) and p ∈ Z2, with respect to the rotation parameter θ defining R and the
translation parameters embedded in ρ(p), that deterministically depend on (tx, ty, θ). The
discontinuities of U(p + d) occur whenU(p + d) is on the boundary of a digitization



cell. Setting ρ(p) = (x, y)t ∈ P and d = (u, v)t ∈ Nr(0), this is formulated by one of the
following two formulas

x + u cos θ − v sin θ = kx + 1/2 (5)
y + u sin θ + v cos θ = ky + 1/2 (6)

where kx, ky ∈ Z. For a given d = (u, v)t and kx (resp. ky), Equation (5) (resp. (6))
defines a vertical (resp. horizontal) line in the remainder range P, called a vertical
(resp. horizontal) critical line. These critical lines with different d, kx and ky, divide the
remainder range P into rectangular regions called frames. Note that for r = 1 (resp.
r = 2) there are 4 (resp. 8) vertical and horizontal critical lines, respectively. As long as
coordinates of ρ(p) belong to a same frame, the associated neighborhood motion map
GU

r (p) remains constant.

Proposition 4. For any p,q ∈ Z2, GU
r (p) = GU

r (q) iff ρ(p) and ρ(q) are in the same
frame.

A similar proposition was already shown in [6] for the case r = 1 and digitized rotations.
The above result is then an extension for general cases, such that r ≥ 1 and digitized
rigid motions. An example of the remainder range partitioning is presented in Figure 2.

Remark 3. Equations (5) and (6) of critical lines are similar to those for digitized
rotations, since the translation part is embedded only in ρ(p) = (x, y)t, as seen in
Equation (4).

2.4 Non-surjective and non-injective frames

Some frames correspond to neighborhood motion maps that exhibit 0- or 2-points,
implying non-surjectivity or non-injectivity [7].

Lemma 5. U(p) + d∗ is a 0-point if and only if ρ(p) is in one of the zones f 0
∗ (union of

frames themselves) defined as follows:

f 0
↑

= (1/2 − cos θ, sin θ − 1/2) × (3/2 − cos θ − sin θ, 1/2),

f 0
→ = (3/2 − cos θ − sin θ, 1/2) × (1/2 − sin θ, cos θ − 1/2),

f 0
↓

= (1/2 − sin θ, cos θ − 1/2) × (−1/2, cos θ + sin θ − 3/2),

f 0
← = (−1/2, cos θ + sin θ − 3/2) × (1/2 − cos θ, sin θ − 1/2),

where ∗ ∈ {↑,→, ↓,←} and d↑ = (0, 1)t,d→ = (1, 0)t,d↓ = (0,−1)t,d← = (−1, 0)t.

Lemma 6. U(p) is a 2-point whose preimages are p and p + d∗ if and only if ρ(p) is in
one of the zones f 2

∗ defined as follows:

f 2
↑ = (sin θ − 1/2, 1/2) × (−1/2, 1/2 − cos θ),

f 2
→ = (−1/2, 1/2 − cos θ) × (−1/2, 1/2 − sin θ),

f 2
↓ = (−1/2, 1/2 − sin θ) × (cos θ − 1/2, 1/2),

f 2
← = (cos θ − 1/2, 1/2) × (sin θ − 1/2, 1/2).
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Fig. 2. Examples of remainder range partitioning for: r = 1 (a), and r = 2 (b). Non-injective zones
f 2
∗ and non-surjective zones f 0

∗ are illustrated by red and brown rectangles, respectively.

We can characterize the non-surjectivity and non-injectivity of a digitized rigid
motion by the presence of ρ(p) in these specific zones. Both types of the zones are
presented in Figure 2.

3 Globally bijective digitized rigid motions

A digitized rigid motion is bijective if and only if there is no ρ(p), for all p ∈ Z2, in
non-surjective and non-injective zones of P. In this section, we characterize bijective
rigid motions on Z2 while investigating such local conditions.

Let us start with the rotational part of the motion. We know from [7] that rotations
with any angle of irrational sine or cosine are non-bijective; indeed such rotations have
a dense image by ρ (there exists p ∈ Z2 such that ρ(p) lies in a non-surjective or/and
non-injective zone of P). This result is also applied to U, whatever translation part is
added.

Therefore, we focus on rigid motions for which both cosine and sine of the angle θ
are rational. Such angles are called Pythagorean angles [7] and are defined by primitive
Pythagorean triples (a, b, c) = (p2 − q2, 2pq, p2 + q2) with p, q ∈ Z, p > q and p − q is
odd, such that (a, b, c) are pairwise coprime, and cosine and sine of such angles are a

c and
b
c , respectively. The image of Z2 by ρ when U is a digitized rational rotation corresponds
to a cyclic group G on the remainder range P, which is generated by ψψψ =

(
p
c ,

q
c

)
and

ωωω =
(
−

q
c ,

p
c

)
and whose order is equal to c = p2 + q2 [7]. When U contains a translation

part, the image of ρ in P, which we will denote by G′, is obtained by translating G

(modulo Z2) and |G′| is equal to the order of G, its underlying group. Note also that
a digitized rational rotation is bijective (the intersection of G with non-injective and
non-surjective regions is empty) iff its angle comes from a twin Pythagorean triple—a



primitive Pythagorean triple with the additional condition p = q + 1—see Nouvel and
Rémila [7] and, more recently, Roussillon and Cœurjolly [9].

Our question is then whether a digitized rigid motion can be bijective, even when
the corresponding rotation is not. In order to answer this question, we use the following
equivalence property: digitized rational rotations are bijective if they are surjective or
injective [7]. Indeed, this allows us to focus only on non-surjective zones.

Proposition 7. A digitized rigid motion whose rotational part is given by a non-twin
Pythagorean primitive triple is always non-surjective.

Proof. We show that no translation factor can prevent the existence of an element of G′

in a non-surjective zone. We consider the length of a side of f 0
∗ , given by L1 =

2q(p−q)
c ,

and the side of the bounding box of a fundamental square in G, given by L2 =
p+q

c . Note
that any non-surjective zone f 0

∗ also forms a square. As p > q + 1, L2 < L1, and thus
G′ ∩ f 0

∗ , ∅ (see Figure 3(a)). ut

If, on the contrary, the rotational part is given by a twin Pythagorean triple, i.e. is
bijective, the rigid motion is also bijective, under the following condition.

Proposition 8. A digitized rigid motion is bijective if and only if it is composed of
a rotation by an angle defined by a twin Pythagorean triple and a translation t =

t′ + Zψψψ + Zωωω, where t′ ∈
(
− 1

2c ,
1
2c

)2
.

Proof. Let us first consider the case t = 0. Since L2 > L1, there exists a fundamental
square in G, i.e. whose vertices are (nωωω,mψψψ), ((n+1)ωωω,mψψψ), ((n+1)ωωω, (m+1)ψψψ), (nψψψ, (m+

1)ψψψ), where n,m ∈ Z, and the vertices lie outside of f 0
↓

, at N∞ distance 1/2c (see
Figure 3(b)). Now let us consider the case t , 0. The above four vertices are the elements
of G closest to f 0

↓
, therefore if N∞({t}) < 1/2c, where {.} stands for the fractional part

function, then G′ ∩ f 0
↓

= ∅. Moreover, if N∞({t}) is slightly above 1/2c, then it is plain
that some point of G′ will enter the frame f 0

↓
. But G is periodic with periods ωωω and

ψψψ, so that the set of admissible vectors t has the same periods. Then we see that the
admissible vectors form a square (i.e. a N∞ ball of radius 1/2c) modulo Zψψψ + Zωωω (see
Figure 3(c)). ut

4 Locally bijective digitized rigid motions

As seen above, the bijective digitized rigid motions, though numerous, are not dense
in the set of all digitized rigid motions. We may thus generally expect defects such as
2-points. However, in practical applications, the bijectivity of a given U on the whole Z2

is not the main issue; rather, one usually works on a finite subset of the plane (e.g., a
rectangular digital image). The relevant question is then: “given a finite subset S ⊂ Z2,
is U restricted to S bijective?”. Actually, the notion of bijectivity in this question can be
replaced by the notion of injectivity since the surjectivity is trivial, due to the definition
of U that maps S to U(S ).

The basic idea for such local bijectivity verification is quite natural. Because of its
quasi-isometric property, a digitized rigid motion U can send at most two 4-neighbors to
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Fig. 3. Examples of remainder range partitioning together with G obtained for rotations by Pytha-
gorean angles. (a) The non-bijective digitized rotation defined by the primitive Pythagorean triple
(12, 35, 37) and (b) the bijective digitized rotation defined by the twin Pythagorean triple (7, 24, 25).
The non-surjective and non-injective zones are illustrated by brown and red rectangles, respec-
tively. (c) A fundamental square in G whose vertices are (nωωω,mψψψ), ((n + 1)ωωω,mψψψ), ((n + 1)ωωω, (m +

1)ψψψ), (nψψψ, (m + 1)ψψψ), represented by black circles, and f 0
↓

in brown. The union of the areas filled
with a line pattern form a square (i.e. a N∞ ball of radius 1

2c ) of the admissible translation vectors
modulo Zψψψ + Zωωω.

a same point (Remark 1). Thus, the lack of injectivity is a purely local matter, suitably
handled by the neighborhood motion maps via the remainder map. Indeed, in accordance
with Lemma 6, U is non-injective, with respect to S iff there exists p ∈ S such that ρ(p)
lies in the union F = f 2

↓
∪ f 2
↑
∪ f 2
← ∪ f 2

→ of all non-injective zones. We propose two
algorithms making use of the remainder map information, as an alternative to a brute
force verification.

The first—forward—algorithm, verifies for each point p ∈ S the inclusion of ρ(p)
in one of the non-injective regions of F . The second—backward—algorithm first finds
all points w in G′ ∩ F , called the non-injective remainder set, and then verifies if their
preimages ρ−1(w) are in S .



Both algorithms apply to rational motions, i.e., with a Pythagorean angle given
by a primitive Pythagorean triple (a, b, c) = (p2 − q2, 2pq, p2 + q2) and a rational
translation vector t = (tx, ty)t. We capture essentially the behavior for all angles and
translation vectors, since rational motions are dense. Methods for angle approximation
by Pythagorean triples up to a given precision may be found in [1]. These assumptions
guarantee the exact computations of the algorithms, which are based on integer numbers.

4.1 Forward algorithm

The strategy consists of checking whether the remainder map ρ(p) of each p ∈ S belongs
to one of non-injective zones f 2

∗ defined in Lemma 6; if this is the case, we check
additionally whether p + d∗ ∈ N1(p) belongs to S ; otherwise, there is no 2-point with p
under U|S .

This leads to the forward algorithm, which returns the set B of all pairs of points
having the same image. We can then conclude that U|S is bijective iff B = ∅; in other
words, U is injective on S \B. The break statement on line 7 comes from the fact that
there is no 3-point. Also from Remark 1, we restrict the internal loop to the set {→, ↓}.

Forward algorithm: A point-wise injectivity verification of U|S .
Data: A finite set S ⊂ Z2; a digitized rigid motion U.
Result: The subset B ⊆ S whose points are not injective under U.

1 B← ∅
2 foreach p ∈ S do
3 foreach ∗ ∈ {→, ↓} do
4 if p + d∗ ∈ S and ρ(p) ∈ f 2

∗ then
5 B← B ∪ {{p,p + d∗}}
6 S ← S \ {p,p + d∗}
7 break

8 return B

The main advantage of the forward algorithm lies in its simplicity. In particular, we
can directly check which neighbor p + d∗ of p constitutes a 2-point with p. Because
rational rigid motions are exactly represented by integers, it can be verified without
numerical error and in a constant time if ρ(p) ∈ F . The time complexity of this algorithm
is O(|S |). Figure 4 illustrates the forward algorithm.

Remark 4. The forward algorithm can be used with non-rational rotations, at the cost
of a numerical error.

4.2 Backward algorithm

In this section, we consider a rectangular finite set S as the input; this setting is not
abnormal as we can find a bounding box for any finite set. The strategy of the proposed



(a) (b)

Fig. 4. (a) An initial finite set S ⊂ Z2, colored in black. (b) The remainder map image of S , i.e.
ρ(p) for all p ∈ S , under U— given by parameters

(
arccos 6

37 , 0,
2
25

)
. Since no point ρ(p) lies

within the non-injective zone F , we have a visual proof that U restricted to S is injective.

backward algorithm consists of: Step 1: for a given U, i.e. a Pythagorean triple and
rational translation vector, listing all the points w in the non-injective remainder set; Step
2: finding all their preimages ρ−1(w); Step 3: finding among them those in S .

Step 1. As explained in Section 3, the cyclic group G is generated by ψψψ =
(

p
c ,

q
c

)
and

ωωω =
(
−

q
c ,

p
c

)
, and G′ is its translation (modulo Z2). Therefore, all the points in G′ can

be expressed as Zψψψ + Zωωω + {t}. To find these points of G′ in the non-injective zones,
let us focus on f 2

↓
given in Lemma 6. Note that the similar discussion is valid for other

non-injective zones given by Lemma 6. The set of remainder points Zψψψ + Zωωω + {t} lying
in f 2

↓
is then formulated by the following four linear inequalities, and we define the

non-injective remainder index set C↓ such that

C↓ =

(i, j) ∈ Z2

∣∣∣∣∣∣∣∣
− 1

2 <
p
c i − q

c j + {tx} <
1
2 −

2pq
p2+q2 ,

p2−q2

p2+q2 −
1
2 <

q
c i +

p
c j + {ty} < 1

2

 . (7)

Solving the system of inequalities in (7) consists of finding all pairs (i, j) ∈ Z2 inside the
given rectangle. This is carried out by mapping Zψψψ + Zωωω + {t} to Z2 using a similarity;
denoting by f̂ 2

↓
the image of f 2

↓
under this transformation (Figure 5).

To list all the integer points in (i, j) ∈ C↓, we first find the upper and lower corners of
the rectangular region f̂ 2

↓
given by Equation (7):

(
p−3q

2 , p−q
2

)
and

(
q−p

2 , p+q
2

)
. We then find

all the horizontal lines j = k where k ∈ Z ∩
(

p−q
2 , p+q

2

)
. For each line j = k, we obtain

the two intersections with the boundary of f̂ 2
↓

as the maximal and minimal integers for i.
The complexity of this step depends on the number of integer lines crossing f̂ 2

↓
,

which is q, and thus it is O(q). This completes Step 1.

Step 2. We seek for the set of all preimages of iψψψ + jωωω + {t} for each (i, j) ∈ C↓, or
equivalently, preimages of iψψψ + jωωω by the translationless remainder map. (The fact that



i
−2−3 1−1

2

1

4

5
j

(a) (b)

Fig. 5. (a) Geometrical interpretation of the system of linear inequalities in Equation (7), in the
(i, j)-plane for (p, q) = (7, 2). The region surrounded by the four lines is f̂ 2

↓
, and the integer points

within are marked by black circles. (b) The remainder range, G′ and f 2
↓

illustrated by a red square,
which corresponds to f̂ 2

↓
in (a).

this point is in f 2
↓

plays no role in this step.) This is a Diophantine system (modulo Z2)
and the set of preimages of a point iψψψ + jωωω + {t} is given by a sublattice of Z2:

T(i, j) = p
µ − v

2

(
i
j

)
+ Z

(
a
−b

)
+ Z

(
cσ
cτ

)
(8)

where µ, v and σ, τ are the Bézout coefficients satisfying µp2 + vq2 = 1, and σa + τb = 1,
respectively.

To find these Bézout coefficients, we use the extended Euclidean Algorithm. The
time complexity of finding µ and v (resp. σ and τ) is O(log q) (resp. O(log min(a, b))
[2]. As the Bézout coefficients are computed once for all (i, j) ∈ C↓, the time complexity
of Step 2 is O(log q) + O(log min(a, b)) = O(log min(a, b)).

Step 3. We now consider the union of lattices T(i, j) for all couples (i, j) in C↓ obtained
in Step 1. To find their intersection with S , we apply to each an algorithm similar to Step
1, with an affine transformation mapping the basis ( a

−b ), ( cσ
cτ ) to ( 1

0 ), ( 0
1 ) and p µ−v

2 ( i
j ) to

( 0
0 ). Thus, a rectangular S maps to a quadrangular Ŝ after such an affine transformation,

and we find the set of integer points in Ŝ . Note that the involved transformation is the
same for all the lattices, up to a translation.

The complexity of listing all the preimages is given by |C↓| times the number of
horizontal lines j = k, k ∈ Z, passing Ŝ , denoted by K. The cardinality of C↓ is related
to the area of f 2

↓
given by 2q2(p−q)2

(p2+q2)2 which cannot be larger than 3
2 −
√

2. As |G′| = c and

|C↓| = |G′ ∩ f 2
↓
|, |C↓| ≤ ( 3

2 −
√

2)c. On the other hand, K is bounded by dS /c, where
dS stands for the diagonal of S . As the complexity of dS is given by O(

√
|S |), the final

complexity of Step 3 is O(
√
|S |).

Remark 5. A possible refinement consists of ruling out false positives at border points p
of S , by checking whether p + d∗ belongs to S , where d∗ is given by the above procedure



Fig. 6. Non-injective pixels obtained for a computer tomography image of a human chest by the
backward algorithm (preimages of points in G′ ∩ f 2

↓
). Each non-injective pixel is marked by a

circle. Pixels of the same color are positioned periodically and are preimages of the same point in
G′ ∩ f 2

↓
. The result was obtained for θ = arcsin 591

19409 ≈ 1.7◦ and t = 0. Note that from the point of
view of backward algorithm the content of the image does not matter.

(thus avoiding the case when p and p + d∗ are mapped to the same point but p + d∗ is
not in S ). This can be achieved during Step 3.

All the steps together allow us to state that the backward algorithm, whose time com-
plexity is O(q + log min(a, b) +

√
|S |), identifies non-injective points in finite rectangular

sets. Figure 6 presents an experimental result of the backward algorithm applied to a
computer tomography image.

Remark 6. Even though the backward algorithm works with rectangles, one can ap-
proximate any set S by a union of rectangles and run the backward algorithm on each of
them.

5 Conclusion

In this article, we have extended the neighborhood motion maps—which was previously
proposed by Nouvel and Rémila [7] for digitized rotations—and we have shown that
they are useful to characterize the bijectivity of rigid motions on Z2.

We first proved some necessary and sufficient conditions of bijective rigid motions
on Z2; i.e., rigid motions such that no point p ∈ Z2 has the image ρ(p) in either non-
injective zones or non-surjective zones. Then, from a more practical point of view, we
focused on finite sets of Z2 rather than the whole Z2. In particular, we proposed two
efficient algorithms for verifying whether a given digitized rigid motion is bijective when
restricted to a finite set S . The forward algorithm consists of checking if points of S
have preimages in non-injective zones. On the other hand, we used the reverse strategy



to propose the backward algorithm consisting of the identification of points in G′ ∩ F

and their preimages in S . The complexities of the forward and backward algorithms are
O(|S |) and O(q + log min(a, b) +

√
|S |), respectively.

One of our perspectives is to extend the proposed framework to 3D digitized rigid
motions.
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