
ar
X

iv
:2

10
9.

01
82

8v
1 

 [
m

at
h.

N
T

] 
 4

 S
ep

 2
02

1

ROTATION ON THE DIGITAL PLANE

CAROLIN HANNUSCH AND ATTILA PETHŐ

Abstract. Let Aϕ denote the matrix of rotation with angle ϕ of the
Euclidean plane, FLOOR the function, which rounds a real point to
the nearest lattice point down on the left and ROUND the function for
rounding off a vector to the nearest node of the lattice. We prove under
the natural assumption ϕ 6= k π

2
that the functions FLOOR ◦ Aϕ and

ROUND ◦ Aϕ are neither surjective nor injective. More precisely we
prove lower and upper estimates for the size of the sets of lattice points,
which are the image of two lattice points as well as of lattice points,
which have no preimages. It turns out that the density of that sets are
positive except when sinϕ 6= ± cosϕ+ r, r ∈ Q.

1. Introduction

The digital plane is a lattice whose elements are points with integer coordi-
nates, the so called lattice points. The values of continuous functions can be
represented only approximatively, rounding its computed value to a lattice
point. Rounding is a mapping q : R2 7→ Z2. The discrete variant of the
function f : R2 7→ R2 is q ◦ f . Of course there are plenty discrete variants
of f . One of the most studied function of the plane is the rotation, which
is a 2 × 2 real matrix with eigenvalues cosϕ + i sinϕ and cosϕ − i sinϕ.
Let us denote it by Qϕ. There exists an invertible real matrix Q such that
Qϕ = QAϕQ

−1 with

Aϕ =

(

cosϕ − sinϕ
sinϕ cosϕ

)

.

For (x, y) ∈ R2 the sequence of points {fn(x, y)}∞n=0 is called an orbit1 of f
generated by (x, y). The orbits of Qϕ generated by any non-zero points lie on
an ellipse, those of Aϕ on the unit circle. Plainly Qϕ is a bijective mapping
on R2, but usually not bijective on Z2. Combining it with a rounding, which
results the function q ◦ Qϕ we obtain a mapping of Z2 7→ Z2, which is a
discrete rotation in wide sense. Many interesting and hard questions appear:
is a discrete rotation injective, surjective or bijective? How are its orbits?
All orbits of Qϕ are bounded, but this is not at all clear for its discrete
variants. The investigation of such questions have long tradition, see the
early example [6].

1Some author calls this sequence trajectory.
1
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FLOOR2, ROUND3 and TRUNC 4 are eminent examples of rounding func-
tions. Discretizing the rotation with them the resulted mappings Z2 7→ Z2

are more or less different. Kozyakin et al [9] gave a good overview on the
results concerning discretized rotations, especially on ROUND ◦ Aϕ and
TRUNC ◦ Aϕ. Diamond et al [7] proved that if ϕ 6= k π

2 , k ∈ Z then all
orbits of TRUNC ◦Aϕ eventually gets into the zero point. The situation is
very different with ROUND ◦ Aϕ. Kozyakin et al [9] proved among others
that if the rotation angle ϕ is such that the rows of all the nonnegative pow-
ers of the matrix Aϕ are rationally independent then the density of lattice
points with empty full preimages is positive. They used measure theoretic
approach, which allow to prove much more general results too. For other
probabilistic results on discrete rotations we refer to [6, 13, 14, 8].
In former investigations of the second author with different coauthors [1, 2, 3,
4] a kind of discrete rotation appears as a natural generalization of positional
number systems. It was FLOOR ◦Bϕ with

Bϕ =

(

0 1
−1 −λ

)

, λ = −2 cosϕ.

We come back to this function later, but before we discuss some properties of
the FLOOR function. It commutes with the additive group of translations of
Z2 and the full preimage of zero is [0, 1[×[0, 1[, which is Jordan measurable,
thus FLOOR, like ROUND, is a quantizer in the sense of [9]. Hence the
discretized rotation FLOOR◦Aϕ has similar properties as ROUND◦Aϕ. This
holds, among others, for the above mentioned property of preimages.

In this note we prove under the natural assumption ϕ 6= k π
2 that the function

FLOOR ◦ Aϕ is neither surjective nor injective. More precisely we prove
lower density estimates for the sets of lattice points, which are the image of
two lattice points as well as of lattice points, which have no preimages. It
turns out, see Theorems 3.1 and 4.2, that these densities are positive except
when sinϕ 6= ± cosϕ+ r, r ∈ Q. This means that the number of such lattice
points lying in a box symmetric to the origin and of side length 2M + 1
is O(M2). In contrast in the exceptional case this number is only O(M).
In Section 6 we indicate that the same results hold to ROUND ◦ Aϕ too.
We use in the proof elementary results of uniform distribution theory and
properties of primitive Pythagorean triplets. Our results are more precise
than those in [9].
There are discrete rotations which are bijective. Trivial examples are FLOOR◦
Aϕ with ϕ = k π

2 , k ∈ Z. More interesting are the functions FLOOR◦Bϕ, 0 ≤
ϕ < 2π. Reeve-Black and Vivaldi [12] claim that a generic discrete rotation

2Rounds a real point to the nearest lattice point down on the left.
3Stands for rounding off a vector to the nearest node of the lattice.
4Denotes the coordinate-wise truncation of the fractional part of a vector towards the

zero point.



ROTATION ON THE DIGITAL PLANE 3

is neither injective nor surjective. Our results justify this claim for the func-
tion FLOOR ◦Aϕ. To prove similar characterization for FLOOR ◦Qϕ is a
challenging problem. We expect that apart the previous examples only the
transpose of Bϕ lie in the exceptional set.

Despite many efforts and interesting results, we have deterministic knowledge
only on the orbits of FLOOR ◦ Bϕ. For the eleven values 2 cosϕ = λ =

0,±1, (±1±
√
5)/2,±

√
2,±

√
3 all orbits are periodic, see [10, 2, 3]. Generally

it was proved by Akiyama and Pethő [4] that for any ϕ there are infinitely
many periodic orbits. This is still far from the conjecture that all orbits are
periodic see [2].
The matrix Aϕ through Aϕ · (a, b), (a, b) ∈ R2 5 induces a linear mapping on
R2, which we will denote by Aϕ too.
FLOOR and integer part ⌊.⌋ are the same functions, in the sequel we will
use the later. To simplify our notation we define rϕ : Z2 7→ Z2 by

rϕ(a, b) = ⌊Aϕ(a, b)⌋
= (⌊a cosϕ− b sinϕ⌋, ⌊a sinϕ+ b cosϕ⌋).

We computed the orbits of rϕ for many choice of the angle and the starting
point and found always periodicity. For the angle ϕ = π

4 we found infinitely
many starting points which generate short periodic orbit, see Theorem 5.2.
Based on our numerical and theoretical results we propose the following
conjecture

Conjecture 1.1. Every orbit of rϕ is periodic.

We also use the fractional part function, i.e, {x} = x− ⌊x⌋. Both functions
will be applied coordinate wise to the points of the real vector spaces. We
use the same notation to these extended functions. Let U = [0, 1[×[0, 1[
and Ū = [0, 1] × [0, 1], then obviously rϕ(a, b) = (x, y) ∈ Z2 if and only if
Aϕ · (a, b) = (x, y) + u for some u ∈ U . The third equivalent expression is
{Aϕ · (a, b)} = Aϕ · (a, b)− rϕ(a, b).

2. Preliminary results

In order to prove our main results we need some tools from uniform dis-
tribution theory. Let a = (a1, . . . , an),b = (b1, . . . , bn) ∈ Rn be such that
0 ≤ aj < bj ≤ 1, j = 1, . . . , n then we set Ba,b = [a1, b1[× . . . × [an, bn[.
This is a box with side lengths b1 − a1, . . . , bn − an, whose volume is plainly
∏n

j=1(bj − aj). For a sequence of n-dimensional real vectors X = (xm) set

A(X,Ba,b, N) = |{m : 0 ≤ m ≤ N, {xm} ∈ Ba,b}|,
where |S| denotes the cardinality of the set S.

5To be precise we had to write Aϕ · (a, b)T instead of Aϕ · (a, b), where (a, b)T denote
the transpose of the vector (a, b), i.e., a column vector. As in the article we should do this
often, and from the context it will be clear whether the actual vector is a row or a column
vector, we avoid this extra notation.
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The sequence X is called uniformly distributed modulo 1, shortly uniformly

distributed if

lim
N→∞

A(X,Ba,b, N)

N
=

n
∏

j=1

(bj − aj)

holds for all a,b ∈ Rn with the above property. Notice that if X is uniformly
distributed then there exist for any Ba,b a constant c = ca,b > 0 such that

(2.1) A(X,Ba,b, N) > cN

holds for all large enough N . Indeed, one may set c =
∏n

j=1(bj − aj)− ε for
some ε > 0.
The following theorem is a bit modified version of Theorem I, p.64. of Cassels
[5] and it plays a crucial role in this paper.

Theorem 2.1. Let Lj(x) for 1 ≤ j ≤ m be homogeneous linear forms in the

n variables x = (x1, . . . , xn). Suppose that the only set of integers u1, . . . , um
such that

u1L1(x) + · · ·+ umLm(x)

has integer coefficients in x1, . . . , xn is u1 = · · · = um = 0. Then the set

of vectors z
(x) = (L1(x), . . . , Lm(x)) for integral x is uniformly distributed

modulo 1.

Now we formulate the main lemma of this paper.

Lemma 2.2. Let 0 < t1, t2 ≤ 1 and set L1(x1, x2) = x1 cosϕ − x2 sinϕ,

L2(x1, x2) = x1 sinϕ + x2 cosϕ. If ϕ 6= k π
2 , k ∈ Z then there exist con-

stants c1, c2 > 0 depending only on ϕ, t1, t2 such that the number of solutions

(x1, x2) ∈ Z2, |x1|, |x2| ≤ M of the system of inequalities

0 ≤ {L1(x1, x2)} < t1(2.2)

0 ≤ {L2(x1, x2)} < t2(2.3)

lie between c1M
2 and c2M

2 except when cosϕ = ± sinϕ+ r, r ∈ Q in which

case it lies between c1M and c2M .

The same statement holds for the number of solutions in pairs of odd integers.

Proof. There are only (2M + 1)2 integer pairs with |x1|, |x2| ≤ M , thus the
upper estimate c2M

2 is obvious. Hence in the sequel we have to deal with
the upper bound in the exceptional case and with the lower bound.
In the proof we have to distinguish three cases according the arithmetic
nature of cosϕ and sinϕ.

Case 1. 1, sinϕ, cosϕ are Q-linearly independent. Then the linear forms
L1(x1, x2), L2(x1, x2) satisfy the assumptions of Theorem 2.1, thus the points

({L1(a, b)}, {L2(a, b)}) for a, b ∈ Z is uniformly distributed in [0, 1[2 .
There are (2M + 1)2 points (a, b) ∈ Z2 with |a|, |b| ≤ M , thus setting
B = [0, t1[×[0, t2[ and N = (2M + 1)2 in (2.1) we obtain the statement
immediately.
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If ({L1(a, b)}, {L2(a, b)}) for a, b ∈ Z is uniformly distributed in [0, 1[2 then
the same holds if (a, b) runs through a sublattice of Z2, which proves the
second assertion. In Case 2 we use the uniformly distributed property of some
sequence, hence for them the second assertion holds by the above remark.

Case 2. cosϕ = r1 sinϕ+r2, where r1, r2 ∈ Q, r1 6= 0, and sinϕ /∈ Q. There
exist integers p1, p2, q with q > 0, such that r1 = p1

q
and r2 = p2

q
. For any

(a, b) ∈ Z2 there exist u, v, s, t ∈ Z, 0 ≤ s, t < q such that a = uq + s and
b = vq + t. With these notations we obtain

L1(a, b) =

(

a
p1
q

− b

)

sinϕ+
ap2
q

= (up1 − vq) sinϕ+

(

sp1
q

− t

)

sinϕ+
ap2
q

and similarly

L2(a, b) = (uq + vp1) sinϕ+

(

s+
tp1
q

)

sinϕ+ b
p2
q
.

Fix s, t and set f1 =
{(

sp1
q

− t
)

sinϕ+ ap2
q

}

and f2 =
{(

s+ tp1
q

)

sinϕ+ bp2
q

}

.

We have 0 ≤ f1, f2 < 1. With these notations we have to count the number
of solutions of the system of inequalities

0 ≤ {(up1 − vq) sinϕ+ f1} < t1

0 ≤ {(uq + vp1) sinϕ+ f2} < t2

in the integers u, v with |u|, |v| ≤ M
q
−1. We have to distinguish two subcases

Case 2.1. p1 = ±q. We have up1 − vq = p1(u ∓ v) = ±q(u ∓ v) =
±(uq + vp1), thus the coefficients of sinϕ in the last inequalities are up to
sign equal and may assume at most O(M) different values. As sinϕ /∈ Q the
sequence ({n sinϕ}) is by Theorem 2.1 uniformly distributed in [0, 1[, thus
each inequality, hence the system too, has at most O(M) solutions.
Choosing s = t = 0 the integers a and b are divisible by q, hence f1 = f2 =
0. If, for example, p1 = q then we may assume without loss of generality
0 < t1 ≤ t2. Our first inequality has at least (t1/2)(M/q) solutions in
u, v ∈ Z, |u|, |v| ≤ M

q
− 1 < M

q
provided M is large enough.

Case 2.2. p1 6= ±q. Setting D = q2 − p21 this is equivalent to D 6= 0. As
sinϕ /∈ Q and D ∈ Z we have D sinϕ /∈ Q, hence the sequence ({nD sinϕ})
is uniformly distributed in [0, 1[. Thus the inequality

0 ≤ uD sinϕ+ f ≤ t

has for any fixed 0 ≤ f < 1, 0 < t < 1 at least O(M ′) solutions in
u ∈ Z, |u| ≤ M ′, where the positive constant indicated by the O nota-
tion depends only on sinϕ and on t. Hence the system of the (independent)
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inequalities

0 ≤ {u1D sinϕ+ f1} < t1

0 ≤ {u2D sinϕ+ f2} < t2

has at least O(M ′2) solutions in (u1, u2) ∈ Z2, |u1|, |u2| ≤ M ′.
For all such pairs the system of linear equations

up1 − vq = u1(q
2 − p21)

uq + vp1 = u2(q
2 − p21)

has unique solution in u, v ∈ Z, i.e. (u, v) solves our original system of
equations. Using Cramer’s rule we obtain

u =
(u1p1 + u2q)(q

2 − p21)

p21 + q2
and v =

(u2p1 − u1q)(q
2 − p21)

p21 + q2
.

Thus |u|, |v| ≤ 2qM ′. Hence choosing M ′ = M
2q2

we can produce at least

O(M2) integer solutions of (2.2) and (2.3).

Case 3. sinϕ, cosϕ ∈ Q. Although the statement is the same as in the
other cases, we have to use different tools in the proof, because Theorem
2.1 does not hold. We have a kind of discrete uniform distribution treated
systematically in Narkiewicz [11]. First we set sinϕ = p1

q
, cosϕ = p2

q
, where

p1, p2, q ∈ Z, p1, p2, q 6= 0. Then

1 = sin2 ϕ+ cos2 ϕ =
p21
q2

+
p22
q2

,

which implies p21 + p22 = q2, i.e. p1, p2, q is a Pithagorean triple, and we may
assume that it is primitive, i.e. gcd(p1, q) = gcd(p2, q) = 1. Then there are
u, v ∈ Z, u 6≡ v (mod 2), gcd(u, v) = 1 such that p1 = u2 − v2, p2 = 2uv or
p1 = 2uv, p2 = u2 − v2 and q = u2 + v2. We work out in the sequel only the
first possibility, because the alternative case can be handled analogously.
With these notations and (a, b) ∈ Z2 we have

L1(a, b) = a
2uv

u2 + v2
− b

u2 − v2

u2 + v2

L1(a, b) = a
u2 − v2

u2 + v2
+ b

2uv

u2 + v2
.

Because gcd(2uv, u2 + v2) = 1 there exists an integer 0 < h < u2 + v2 = q
such that

(2.4) 2uvh ≡ u2 − v2 (mod u2 + v2).

For fixed a, b ∈ Z there exist d, d1 ∈ Z such that a− hb = d(u2 + v2) + d1,
where 0 ≤ d1 < u2 + v2. Then

a(u2 − v2) + 2buv = bh(u2 − v2) + d(u4 − v4) + d1(u
2 − v2) + 2buv.
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Multiplying this by 2uv and taking (2.4) into account we obtain

2uv(a(u2 − v2) + 2buv) ≡ 2uvhb(u2 − v2) + 2uvd1(u
2 − v2) + b(2uv)2

≡ b((u2 − v2)2 + 4u2v2) + 2uvd1(u
2 − v2)

≡ b(u2 + v2)2 + 2uvd1(u
2 − v2)

≡ 2uvd1(u
2 − v2) (mod u2 + v2).

Since gcd(2uv, u2 + v2) = 1, we obtain

(2.5) a(u2 − v2) + 2buv ≡ d1(u
2 − v2) (mod u2 + v2).

On the other hand by (2.4) we get

2uva− (u2 − v2)b ≡ b(2uvh− (u2 − v2)) + 2uvd1

≡ 2uvd1 (mod u2 + v2).

Hence

{L1(a, b)} =

{

2uvd1
u2 + v2

}

and

{L2(a, b)} =

{

(u2 − v2)d1
u2 + v2

}

.

Choosing d1 = 0, which implies a = hb+ d(u2 − v2) we obtain that the pair
(a, b) ∈ Z2 solves the system of inequalities (2.2), (2.3).
Finally choosing b, d ∈ Z such that |b| ≤ M

2q < M
2h and |d| ≤ M

2|p1| =
M

2|u2−v2|
we obtain |a| ≤ M , hence such (a, b) ∈ Z2 pairs not only solves the system
of inequalities (2.2),(2.3), but satisfies |a|, |b| ≤ M too. Plainly the number
of such pairs is at least O(M2) and the lemma is completely proved.
Choosing b odd a is odd too for all odd or even d depending on the parities
of h and u2 − v2. The argument of the last paragraph proves the second
assertion in this case.

�

3. Injectivity of digital rotation

Before stating the main result of this section we introduce a notation: Tϕ(M)
denotes the number of (x, y) ∈ Z2 such that |x|, |y| ≤ M and (x, y) is the
image by rϕ of two different grid points. If ϕ = k π

2 , k ∈ Z then rϕ = Aϕ,
thus it is bijective, thus Tϕ(M) = 0. Otherwise, we prove that Tϕ(M) tends
to infinity.

Theorem 3.1. If ϕ 6= k π
2 , k ∈ Z then there exist constants c3, c4 > 0 de-

pending only on ϕ such that c3M
2 ≤ Tϕ(M) ≤ c4M

2 except when cosϕ =
± sinϕ+ r, r ∈ Q, in which case c3M ≤ Tϕ(M) ≤ c4M hold.

Proof. Let (a1, b1), (a2, b2) ∈ Z2 such that rϕ(a1, b1) = rϕ(a2, b2). Then

⌊a1 cosϕ− b1 sinϕ⌋ = ⌊a2 cosϕ− b2 sinϕ⌋
⌊a1 sinϕ+ b1 cosϕ⌋ = ⌊a2 sinϕ+ b2 cosϕ⌋,
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which implies

(a1 − a2) cosϕ− (b1 − b2) sinϕ = u1

(a1 − a2) sinϕ+ (b1 − b2) cosϕ = u2

for some −1 < u1, u2 < 1. After squaring and adding these equations we
obtain

(a1 − a2)
2 + (b1 − b2)

2 = u21 + u22 < 2.

As a1− a2 and b1− b2 are integers the right hand side can be either zero ore
one. The first case is excluded because either a1 − a2 or b1 − b2 is nonzero.
Thus we have the following four possibilities:

a1 − a2 −1 0 0 1
b1 − b2 0 −1 1 0

This implies that if two grid points have the same image by rϕ, then they
are neighbors.
Now, we show that for each ϕ there exist infinitely many neighbors such that
rϕ(a1, b1) = rϕ(a2, b2).
First, we assume a1 = a2 and b2 = b1 + 1. Inserting them into the starting
equations we obtain

(3.1) ⌊a1 cosϕ− b1 sinϕ⌋ = ⌊a1 cosϕ− b1 sinϕ− sinϕ⌋
and

(3.2) ⌊a1 sinϕ+ b1 cosϕ⌋ = ⌊a1 sinϕ+ b1 cosϕ+ cosϕ⌋
If ϕ ∈

]

3π
2 , 2π

[

, then sinϕ < 0 and cosϕ > 0 and the system of equations
(3.1) and (3.2) holds if and only if

(3.3) 0 ≤ {L1(a1, b1)} = {a1 cosϕ− b1 sinϕ} < 1 + sinϕ

and

(3.4) 0 ≤ {L2(a1, b1)} = {a1 sinϕ+ b1 cosϕ} < 1− cosϕ.

Observe that L1, L2 are the linear forms introduced in Lemma 2.2, further
setting t1 = 1 + sinϕ, t2 = 1 − cosϕ the lemma implies our statement in
this case.
The other cases can be handled similarly we give only the important data
for repeating the argument.
If a2 = a1+1 and b2 = b1, then (3.1), (3.2) reads [L1(a1, b1)] = [L1(a1, b1)+
cosϕ] and [L2(a1, b1)] = [L2(a1, b1)+sinϕ]. If ϕ ∈]0, π2 [ then sinϕ, cosϕ > 0
and setting t1 = 1− cosϕ, t2 = 1− sinϕ we can apply Lemma 2.2.
If a2 = a1 and b2 = b1− 1, then (3.1), (3.2) reads [L1(a1, b1)] = [L1(a1, b1)+
sinϕ] and [L2(a1, b1)] = [L2(a1, b1)− cosϕ]. If ϕ ∈]π2 , π[ then sinϕ > 0 and
cosϕ < 0 and setting t1 = 1 − sinϕ, t2 = 1 + cosϕ we are done by Lemma
2.2.
Finally if a2 = a1 − 1 and b2 = b1, then (3.1), (3.2) reads [L1(a1, b1)] =
[L1(a1, b1)− cosϕ] and [L2(a1, b1)] = [L2(a1, b1)− sinϕ]. If ϕ ∈]π, 3π

2 [ then
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sinϕ, cosϕ < 0 and setting t1 = 1 + cosϕ, t2 = 1 + sinϕ finishes the proof
by Lemma 2.2. �

4. Surjectivity of digital rotation

In the last section we proved that the digital rotation is usually not injective.
Now we prove that usually it is not surjective either. To achieve our goal we
need an elementary geometric lemma. To state and prove it we introduce
some notation. For a point (a, b) ∈ R2 put T(a,b) = (a, b) + U and T̄(a,b) =

(a, b)+Ū , where + means here translation. The squares T(a,b), (a, b) ∈ Z2 are

disjoint and their union cover R2. As Aϕ is a rotation the sets Aϕ(T(a,b)) are

squares too with the same properties. Thus there exists for any (n,m) ∈ Z2

unique (a, b) ∈ Z2 such that (n,m) ∈ Aϕ(T(a,b)).

Lemma 4.1. Let (n,m) ∈ Z2. Then (n,m) 6= rϕ(a, b) for each (a, b) ∈ Z2

if and only if (n,m) ∈ Aϕ(T(a,b)) and Aϕ(a + εa, b + εb) /∈ T(n,m) for each

εa, εb ∈ {0, 1}. Moreover in this case the points Aϕ(a + εa, b + εb), εa, εb ∈
{0, 1} belong in some order to the horizontal and vertical neighbour squres to

T(n,m).

Proof. Necessity: If Aϕ(a+ εa, b+ εb) ∈ T(n,m) for some εa, εb ∈ {0, 1}, then
rϕ(a+ εa, b+ εb) = (n,m), thus (n,m) is the image of some point.

Sufficiency: We have T(a,b) = (a, b)+T(0,0), therefore Aϕ(T(a,b)) = Aϕ(a, b)+
Aϕ(T(0,0)), since Aϕ is linear. The same holds for the closure of T(a,b), denoted

by T(a,b). In Figure 1 we show the four main situations of the rotated unitgrid.

x

y

Aϕ(0, 1)

Aϕ(1, 1)
Aϕ(1, 0)

0 < ϕ < π
2

x

y

Aϕ(0, 1)

Aϕ(1, 1)

Aϕ(1, 0)
π
2 < ϕ < π

x

y

Aϕ(0, 1)

Aϕ(1, 1)

Aϕ(1, 0)

π < ϕ < 3π
2

x

y

Aϕ(0, 1)

Aϕ(1, 1)

Aϕ(1, 0)

3π
2 < ϕ < 2π

Figure 1. The situation of Aϕ(T(0,0))
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We give the proof of the lemma in detail only for the case 3π
2 < ϕ < 2π, the

other cases can be handled similarly. Assume that (n,m) ∈ Aϕ(T(a,b)), but
Aϕ(a+ εa, b+ εb) /∈ T(n,m) for each εa, εb ∈ {0, 1}. Then we have

Aϕ(a, b+ 1)y < m, Aϕ(a+ 1, b)y ≥ m+ 1,

Aϕ(a, b)x < n, Aϕ(a+ 1, b+ 1)x ≥ n+ 1.

Here and in the sequel, Aϕ(., .)x, Aϕ(., .)y denote the x (respectively y) co-
ordinate of the corresponding point. Notice that the two strong inequalities
are due to the assumption Aϕ(a+ εa, b+ εb) /∈ T(n,m) for each εa, εb ∈ {0, 1}.
We show that T(n,m) \ Aϕ(T(a,b)) is the union of three disjoint triangles
H1,H2,H3. The triangle H1 is bordered by the lines x = n, y = m + 1
and by the line sequent between the points Aϕ(a, b) and Aϕ(a+ 1, b). Simi-
larly H2 is bordered by the lines x = n+1, y = m+1 and by the line sequent
between the points Aϕ(a+1, b) and Aϕ(a+ 1, b+1). Finally the borders of
H3 are the lines x = n, y = m+ 1 and the line segment between the points
Aϕ(a, b+ 1) and Aϕ(a+ 1, b+ 1).
That are proper triangles. For example, look at H1. The triangle with
vertices Aϕ(a + 1, b), Aϕ(a + 1, b + 1) and the intersection of the lines
x = Aϕ(a+1, b)x and y = Aϕ(a+1, b+1)y is rectangular and the legth of its
hypotenuse is 1, thus Aϕ(a+ 1, b + 1)x − Aϕ(a+ 1, b)x < 1, which together
with the above inequalities implies Aϕ(a + 1, b)x > n. As Aϕ(a, b)x < n
the line x = n has an intersection with the line segment between Aϕ(a, b)
and Aϕ(a + 1, b), which is different from the end points. Similarly we have
Aϕ(a, b)y−Aϕ(a+1, b)y < 1, i.e. Aϕ(a, b)y < m+1, hence the line y = m+1
intersects the line segment between Aϕ(a, b) and Aϕ(a+1, b). In this case it
may happen that the intersection point is Aϕ(a+ 1, b).
As a byproduct we proved Aϕ(a+1, b) ∈ T(n,m+1), i.e rϕ(a+1, b) = (n,m+1).
Performing similar arguments for H2 and H3 we obtain that Aϕ(a+1, b+1) ∈
T(n+1,m), i.e rϕ(a + 1, b + 1) = (n + 1,m) and Aϕ(a, b + 1) ∈ T(n,m−1), i.e
rϕ(a, b + 1) = (n,m − 1) respectively. Finally, one can prove Aϕ(a, b) ∈
T(n−1,m), i.e rϕ(a, b) = (n− 1,m) too, hence the second assertion is proved.

No we finalize the proof of the first assertion. We assume that there exists
(c, d) ∈ Z2, such that rϕ(c, d) = (n,m). Then Aϕ(c, d) ∈ T(n,m) and (c, d) /∈
T(a,b), i.e. Aϕ(c, d) ∈ T(n,m) \ Aϕ(T(a,b)), hence Aϕ(c, d) is contained in one
of the triangles H1,H2,H3. We have H1 ⊆ Aϕ(T(a,b−1)), which contains
only the grid point Aϕ(a, b − 1), therefore (c, d) = (a, b − 1). In contrast,
Aϕ(a, b−1)x < Aϕ(a, b) < n, i.e. ⌊Aϕ(a, b−1)x⌋ < n = ⌊Aϕ(c, d)x⌋, which is
a contradiction. We have H2 ⊆ Aϕ(T(a+1,b)) and H3 ⊆ Aϕ(T(a,b+1)), which
implies (c, d) = (a + 1, b) and (c, d) = (a, b + 1) respectively. The proof of
the case 3π

2 < ϕ < 2π is finished. As we mentioned above the three other
cases can be handled similarly. �

Similarly to Section 3 we introduce the function Nϕ(M), which is the number
of grid points (n,m), such that |n|, |m| ≤ M and which are images of no grid
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points under the mapping rϕ. If ϕ = k π
2 , k ∈ Z then rϕ is bijective, hence

Nϕ(M) = 0. By the next theorem this cannot happen otherwise.

Theorem 4.2. If ϕ 6= k π
2 , k ∈ Z then there exist constants c5, c6 > 0 de-

pending only on ϕ such that c5M
2 ≤ Tϕ(M) ≤ c6M

2 except when cosϕ =
± sinϕ+ r, r ∈ Q, in which case c5M ≤ Tϕ(M) ≤ c6M hold.

An immediate consequence is

Corollary 4.3. If ϕ 6= k π
2 then rϕ has infinitely many different orbits.

Proof of Theorem 4.2.

Let (n,m) ∈ Z2, which is the image of no grid points under rϕ. Then,
by Lemma 4.1, there exists (a, b) ∈ Z2 such that (n,m) ∈ Aϕ(T(a,b)) and
Aϕ(a + εa, b + εb) /∈ T(n,m) for all εa, εb ∈ {0, 1}. In the same lemma we
proved that Aϕ(a, b), Aϕ(a, b + 1), Aϕ(a + 1, b), Aϕ(a + 1, b + 1) belong in
some order to the four unit squares left, right, top and down to the unit
square T(n,m). Depending on the size of ϕ we distinguish four cases.

Case 1. 0 ≤ ϕ < π
2 . Then by Lemma 4.1 Aϕ(a, b) ∈ T(n,m−1), Aϕ(a, b+1) ∈

T(n−1,m), Aϕ(a+ 1, b) ∈ T(n+1,m), Aϕ(a+ 1, b+ 1) ∈ T(n,m+1), which means

0 ≤ a cosϕ− b sinϕ− n < 1

0 ≤ a cosϕ− (b+ 1) sinϕ− (n− 1) < 1

0 ≤ (a+ 1) cosϕ− b sinϕ− (n+ 1) < 1

0 ≤ (a+ 1) cosϕ− (b+ 1) sinϕ− n < 1.

Rearranging we obtain the system of inequalities

0 ≤ a cosϕ− b sinϕ− n < 1(4.1)

sinϕ− 1 ≤ a cosϕ− b sinϕ− n < sinϕ(4.2)

1− cosϕ ≤ a cosϕ− b sinϕ− n < 2− cosϕ(4.3)

sinϕ− cosϕ ≤ a cosϕ− b sinϕ− n < 1 + sinϕ− cosϕ.(4.4)

As 0 ≤ ϕ < π
2 we have sinϕ, cosϕ > 0. Under this assumption we have

sinϕ − 1 < sinϕ − cosϕ < 1 − cosϕ and 0 < 1 − cosϕ holds too. Hence
max{sinϕ− 1, sinϕ− cosϕ, 1− cosϕ, 0} = 1− cosϕ.

Similarly, sinϕ < 1 < 2−cosϕ and sinϕ < 1+sinϕ−cosϕ, thus min{sinϕ, 1, 2−
cosϕ, 1 + sinϕ − cosϕ} = sinϕ. Hence the inequalities (4.1)-(4.4) hold if
and only if

1− cosϕ ≤ a cosϕ− b sinϕ− n < sinϕ.

After multiplying by 2 and adding cosϕ− sinϕ− 1 we obtain
(4.5)
1− cosϕ− sinϕ ≤ (2a+1) cos ϕ− (2b+1) sin ϕ− 2n− 3 < sinϕ+cosϕ− 1.

Performing the analogous computation for m we get that a, b,m ∈ Z satisfy
the requirements if and only if
(4.6)
1− cosϕ− sinϕ ≤ (2a+1) sinϕ+(2b+1) cos ϕ−2m−1 < sinϕ+cosϕ−1.
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As sinϕ+cosϕ−1 > 0, hence 1− sinϕ− cosϕ < 0 we can apply Lemma 2.2
tothe system of inequalities (4.5) and (4.5) with x1 = 2a+1 and x2 = 2b+1,
which proves the theorem in this case.

Case 2. π
2 ≤ ϕ < π. Then by Lemma 4.1 Aϕ(a, b) ∈ T(n+1,m), Aϕ(a, b +

1) ∈ T(n,m−1), Aϕ(a+ 1, b) ∈ T(n,m+1), Aϕ(a+ 1, b+ 1) ∈ T(n−1,m). Then

0 ≤ a cosϕ− b sinϕ− (n+ 1) < 1

0 ≤ a cosϕ− (b+ 1) sinϕ− n < 1

0 ≤ (a+ 1) cosϕ− b sinϕ− n < 1

0 ≤ (a+ 1) cosϕ− (b+ 1) sinϕ− (n− 1) < 1.

Rearranging the inequalities we obtain

1 ≤ a cosϕ− b sinϕ− n < 2(4.7)

sinϕ ≤ a cosϕ− b sinϕ− n < 1 + sinϕ(4.8)

− cosϕ ≤ a cosϕ− b sinϕ− n < 1− cosϕ(4.9)

sinϕ− cosϕ− 1 ≤ a cosϕ− b sinϕ− n < sinϕ− cosϕ.(4.10)

We have sinϕ > 0, cosϕ < 0, because π
2 < ϕ < π.

Thus max{sinϕ, 1,− cosϕ, sinϕ − cosϕ − 1} = 1. Similarly, min{2, 1 +
sinϕ, 1 − cosϕ, sinϕ − cosϕ} = sinϕ − cosϕ. Hence the inequalities (4.7)-
(4.10) hold if and only if

1 ≤ a cosϕ− b sinϕ− n < sinϕ− cosϕ.

Multiplying by 2 and adding − sinϕ+ cosϕ− 1 we obtain

1+cosϕ− sinϕ ≤ (2a+1) cos ϕ− (2b+1) sin ϕ− 2n− 1 < sinϕ− cosϕ− 1.

Performing the analogous computation for m we get that a, b,m ∈ Z satisfy
the requirements if and only if

1+cosϕ− sinϕ ≤ (2a+1) sinϕ− (2b+1) cos ϕ−2m−1 < sinϕ− cosϕ−1.

As sinϕ > 0 and cosϕ < 0 we have sinϕ− cosϕ− 1 > 0, hence 1− sinϕ+
cosϕ < 0, thus we may apply Lemma 2.2 to the last system of inequalities,
which completes the proof in the second case,

Case 3. π < ϕ < 3π
2 . Then by Lemma 4.1 Aϕ(a, b) ∈ T(n,m+1), Aϕ(a, b+1) ∈

T(n+1,m), Aϕ(a + 1, b) ∈ T(n−1,m), Aϕ(a + 1, b + 1) ∈ T(n,m−1). The same
computation as in Cases 1. and 2. lead to the system of inequalities

1 + sinϕ+ cosϕ ≤ (2a+ 1) cosϕ− (2b+ 1) sinϕ− 2n− 1 < − sinϕ− cosϕ− 1

1 + sinϕ+ cosϕ ≤ (2a+ 1) cosϕ+ (2b+ 1) sinϕ− 2m− 1 < − sinϕ− cosϕ− 1

As sinϕ, cosϕ, 1 + sinϕ+ cosϕ < 0 we have − sinϕ− cosϕ− 1 > 0 and can
apply Lemma 2.2 again.



ROTATION ON THE DIGITAL PLANE 13

Case 4. 3π
2 < ϕ < 2π. Then by Lemma 4.1 Aϕ(a, b) ∈ T(n−1,m), Aϕ(a, b +

1) ∈ T(n,m+1), Aϕ(a+1, b) ∈ T(n,m−1), Aϕ(a+1, b+1) ∈ T(n+1,m). The same
computation as in Cases 1. and 2. lead to the system of inequalities

1 + sinϕ− cosϕ ≤ (2a+ 1) cosϕ− (2b+ 1) sinϕ− 2n− 1 < − sinϕ+ cosϕ− 1

1 + sinϕ− cosϕ ≤ (2a+ 1) cosϕ+ (2b+ 1) sinϕ− 2m− 1 < sinϕ− cosϕ− 1

As sinϕ,− cosϕ, 1 + sinϕ − cosϕ < 0 we have − sinϕ + cosϕ − 1 > 0 and
can apply Lemma 2.2 again, which completes the proof of the theorem. �

5. Orbits with short periodicity

Our first goal was to study the periodicity of the orbits of rϕ, which seems
to be very difficult. As a first step we examined some other properties of
rϕ, but did not forget the ultimate goal. In this section we present a small
finding, which corresponds to ϕ = π

4 . We show that there are infinitely many
a ∈ Z, such that the orbit of rϕ generated by (a, 0) is periodic of length 8,
i.e.

r8ϕ(a, 0) = (a, 0).

Nevertheless we could present other examples, but this already shows that
we do not have yet the necessary technique to prove much more general
results.
In the next lemma we collected those identities, which are necessary to prove
our periodicity result. Their proofs are one step direct computation. We
denote, as usual in these notes, the fractional part of x by {x}.

Lemma 5.1. Let a ∈ Z and set ω = ⌊ 1√
2
a⌋. Suppose ⌊

√
2ω⌋ = a− 1. Then

(5.1)

⌊

− 1√
2
a+

1√
2

⌋

= −ω

(5.2)

⌊

1√
2
a− 1√

2

⌋

=

{

ω, if a = 1

ω − 1, otherwise

(5.3)

⌊

1√
2
a+

1√
2

⌋

=

{

ω, if { 1√
2
a} < 1− 1√

2

ω + 1, if { 1√
2
a} ≥ 1− 1√

2

(5.4)

⌊

− 1√
2
a+

√
2

⌋

=

{

−ω, if { 1√
2
a} >

√
2− 1

−ω + 1, if { 1√
2
a} ≤

√
2− 1

(5.5)
⌊√

2ω +
√
2
⌋

=

{

a, if {
√
2ω}+ {

√
2} < 1

a+ 1, if {
√
2ω}+ {

√
2} ≥ 1
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(5.6)

⌊

−
√
2ω +

1√
2

⌋

=

{

−a, if {
√
2ω} > 1√

2

−a+ 1, if {
√
2ω} ≤ 1√

2

Theorem 5.2. Let a ∈ Z, ω = ⌊ 1√
2
a⌋ and suppose ⌊

√
2ω⌋ = a − 1. If

{ 1√
2
a} ∈

[

1− 1√
2
, 1√

2

]

, then r8ϕ(a, 0) = (a, 0). There exist infinitely many

a ∈ Z satisfying the assumptions.

Proof. First we prove that the assumptions imply {
√
2ω} ∈

[

1− 1√
2
, 1√

2

]

.

Indeed, [
√
2ω] = a− 1 means a − 1 ≤

√
2ω < a (equality is only possible if

a = 1), hence 0 < a√
2
−ω < 1√

2
. Further { 1√

2
a} ∈

[

1− 1√
2
, 1√

2

]

is equivalent

to the sequence of inequalities

1− 1√
2

<
a√
2
− ω <

1√
2

− 1√
2

<
√
2ω − a < −1 +

1√
2

1− 1√
2

<
√
2ω − (a− 1) <

1√
2
,

which proves the claim.

Now we prove the second assertion. As
√
2 is irrational, the sequence

{

a√
2

}

is by Theorem 2.1 uniformly distributed, thus there are infinitely many a ∈ Z

satisfying { 1√
2
a} ∈

[

1− 1√
2
, 1√

2

]

.

Now we turn to prove the first assertion. It is obvious that rϕ(a, 0) = (ω, ω).

Further by the assumption ⌊
√
2ω⌋ = a − 1 we have r2ϕ(a, 0) = (0, a − 1).

Further we have r3ϕ(a, 0) = rϕ(0, a− 1) = (⌊− 1√
2
a+ 1√

2
⌋, ⌊ 1√

2
a− 1√

2
⌋). Thus

by equations (5.1) and (5.2) we get r3ϕ = (−ω, ω−1). Further, by equation 5.6

we have r4ϕ(a, 0) = (−a+1,−1). After that we get r5ϕ(a, 0) = (−ω+1,−ω−1)

by equation (5.4). Then r6ϕ(a, 0) = (1,−a). Further we get by equations (5.1)

and (5.3) r7ϕ(a, 0) = (ω + 1,−ω − 1). Finally, using equation (5.5) we have

r8ϕ(a, 0) = rϕ(ω + 1,−ω − 1) = (⌊
√
2ω +

√
2⌋, 0) = (a, 0). �

Remark 5.3. There exist infinitely many natural numbers a, which fulfill

the conditions in Theorem 5.2, therefore there are infinitely many orbits with

short periodicity.

We only give one class of starting points for the rotation by 45◦ in order to
achieve periodicity of 8. There may exist many other starting points with
the same periodicity.

6. Remarks on ROUND ◦ Aϕ

Following the proofs of Theorems 3.1 and 4.2 one can prove similar state-
ments for the function ROUND ◦ Aϕ. To perform such a project one has
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to adjust Lemma 2.2 according the new rounding function. This is straight
forward if one of cosϕ and sinϕ is irrational, but needs some computation
otherwise. To save space we leave this to the interested reader.
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