1,571 research outputs found

    Characterization and Applications of Temporal Random Walks on Opportunistic Networks

    Get PDF
    Opportunistic networks are a special case of DTN that exploit systematically the mobility of nodes. When nodes contacts occur, routing protocols can exploit them to forward messages. In the absence of stable end-to-end paths, spatio-temporal paths are created spontaneously. Opportunistic networks are suitable for communications in pervasive environments that are saturated by other devices. The ability to self-organize using the local interactions among nodes, added to mobility, leads to a shift from legacy packet-based communications towards a message-based communication paradigm. Usually, routing is done by means of message replication in order to increase the probability of message delivery. Instead, we study the useof Temporal Random Walks (TRW) on opportunistic networks as a simple method to deliver messages. TRW can adapt itself to the self-organizing evolution of opportunistic networks. A TRW can be seen as the passing of a token among nodes on the spatio-temporal paths. Since the token passing is an atomic operation, we can see it as forwarding one simple message among nodes. We study the drop ratio for message forwarding considering finite buffers. We then explore the idea of token-sharing as a routing mechanism. Instead of using contacts as mere opportunities to transfer messages, we use them to forward the token over time. The evolution of the token is ruled by the TRW process. Finally, we use the TRW to monitor opportunistic networks. We present the limits and convergence of monitoring the interact time between participating nodes

    SPoT: Representing the Social, Spatial, and Temporal Dimensions of Human Mobility with a Unifying Framework

    Get PDF
    Modeling human mobility is crucial in the analysis and simulation of opportunistic networks, where contacts are exploited as opportunities for peer-topeer message forwarding. The current approach with human mobility modeling has been based on continuously modifying models, trying to embed in them the mobility properties (e.g., visiting patterns to locations or specific distributions of inter-contact times) as they came up from trace analysis. As a consequence, with these models it is difficult, if not impossible, to modify the features of mobility or to control the exact shape of mobility metrics (e.g., modifying the distribution of inter-contact times). For these reasons, in this paper we propose a mobility framework rather than a mobility model, with the explicit goal of providing a exible and controllable tool for modeling mathematically and generating simulatively different possible features of human mobility. Our framework, named SPoT, is able to incorporate the three dimensions - spatial, social, and temporal - of human mobility. The way SPoT does it is by mapping the different social communities of the network into different locations, whose members visit with a configurable temporal pattern. In order to characterize the temporal patterns of user visits to locations and the relative positioning of locations based on their shared users, we analyze the traces of real user movements extracted from three location-based online social networks (Gowalla, Foursquare, and Altergeo). We observe that a Bernoulli process effectively approximates user visits to locations in the majority of cases and that locations that share many common users visiting them frequently tend to be located close to each other. In addition, we use these traces to test the exibility of the framework, and we show that SPoT is able to accurately reproduce the mobility behavior observed in traces. Finally, relying on the Bernoulli assumption for arrival processes, we provide a throughout mathematical analysis of the controllability of the framework, deriving the conditions under which heavy-tailed and exponentially-tailed aggregate inter-contact times (often observed in real traces) emerge

    Optimal Content Downloading in Vehicular Networks

    Get PDF
    We consider a system where users aboard communication-enabled vehicles are interested in downloading different contents from Internet-based servers. This scenario captures many of the infotainment services that vehicular communication is envisioned to enable, including news reporting, navigation maps and software updating, or multimedia file downloading. In this paper, we outline the performance limits of such a vehicular content downloading system by modelling the downloading process as an optimization problem, and maximizing the overall system throughput. Our approach allows us to investigate the impact of different factors, such as the roadside infrastructure deployment, the vehicle-to-vehicle relaying, and the penetration rate of the communication technology, even in presence of large instances of the problem. Results highlight the existence of two operational regimes at different penetration rates and the importance of an efficient, yet 2-hop constrained, vehicle-to-vehicle relaying

    Extracting a Mobility Model from Real User Traces

    Get PDF
    Understanding user mobility is critical for simulations of mobile devices in a wireless network, but current mobility models often do not reflect real user movements. In this paper, we provide a foundation for such work by exploring mobility characteristics in traces of mobile users. We present a method to estimate the physical location of users from a large trace of mobile devices associating with access points in a wireless network. Using this method, we extracted tracks of always-on Wi-Fi devices from a 13-month trace. We discovered that the speed and pause time each follow a log-normal distribution and that the direction of movements closely reflects the direction of roads and walkways. Based on the extracted mobility characteristics, we developed a mobility model, focusing on movements among popular regions. Our validation shows that synthetic tracks match real tracks with a median relative error of 17%

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work
    corecore