1,085 research outputs found

    Hierarchical Classification and its Application in University Search

    Get PDF
    Web search engines have been adopted by most universities for searching webpages in their own domains. Basically, a user sends keywords to the search engine and the search engine returns a flat ranked list of webpages. However, in university search, user queries are usually related to topics. Simple keyword queries are often insufficient to express topics as keywords. On the other hand, most E-commerce sites allow users to browse and search products in various hierarchies. It would be ideal if hierarchical browsing and keyword search can be seamlessly combined for university search engines. The main difficulty is to automatically classify and rank a massive number of webpages into the topic hierarchies for universities. In this thesis, we use machine learning and data mining techniques to build a novel hybrid search engine with integrated hierarchies for universities, called SEEU (Search Engine with hiErarchy for Universities). Firstly, we study the problem of effective hierarchical webpage classification. We develop a parallel webpage classification system based on Support Vector Machines. With extensive experiments on the well-known ODP (Open Directory Project) dataset, we empirically demonstrate that our hierarchical classification system is very effective and outperforms the traditional flat classification approaches significantly. Secondly, we study the problem of integrating hierarchical classification into the ranking system of keywords-based search engines. We propose a novel ranking framework, called ERIC (Enhanced Ranking by hIerarchical Classification), for search engines with hierarchies. Experimental results on four large-scale TREC (Text REtrieval Conference) web search datasets show that our ranking system with hierarchical classification outperforms the traditional flat keywords-based search methods significantly. Thirdly, we propose a novel active learning framework to improve the performance of hierarchical classification, which is important for ranking webpages in hierarchies. From our experiments on the benchmark text datasets, we find that our active learning framework can achieve good classification performance yet save a considerable number of labeling effort compared with the state-of-the-art active learning methods for hierarchical text classification. Fourthly, based on the proposed classification and ranking methods, we present a novel hierarchical classification framework for mining academic topics from university webpages. We build an academic topic hierarchy based on the commonly accepted Wikipedia academic disciplines. Based on this hierarchy, we train a hierarchical classifier and apply it to mine academic topics. According to our comprehensive analysis, the academic topics mined by our method are reasonable and consistent with the real-world topic distribution in universities. Finally, we combine all the proposed techniques together and implement the SEEU search engine. According to two usability studies conducted in the ECE and the CS departments at our university, SEEU is favored by the majority of participants. To conclude, the main contribution of this thesis is a novel search engine, called SEEU, for universities. We discuss the challenges toward building SEEU and propose effective machine learning and data mining methods to tackle them. With extensive experiments on well-known benchmark datasets and real-world university webpage datasets, we demonstrate that our system is very effective. In addition, two usability studies of SEEU in our university show that SEEU has a great promise for university search

    Web Page Classification and Hierarchy Adaptation

    Get PDF

    Open Directory Project based universal taxonomy for Personalization of Online (Re)sources

    Get PDF
    Content personalization reflects the ability of content classification into (predefined) thematic units or information domains. Content nodes in a single thematic unit are related to a greater or lesser extent. An existing connection between two available content nodes assumes that the user will be interested in both resources (but not necessarily to the same extent). Such a connection (and its value) can be established through the process of automatic content classification and labeling. One approach for the classification of content nodes is the use of a predefined classification taxonomy. With the help of such classification taxonomy it is possible to automatically classify and label existing content nodes as well as create additional descriptors for future use in content personalization and recommendation systems. For these purposes existing web directories can be used in creating a universal, purely content based, classification taxonomy. This work analyzes Open Directory Project (ODP) web directory and proposes a novel use of its structure and content as the basis for such a classification taxonomy. The goal of a unified classification taxonomy is to allow for content personalization from heterogeneous sources. In this work we focus on the overall quality of ODP as the basis for such a classification taxonomy and the use of its hierarchical structure for automatic labeling. Due to the structure of data in ODP different grouping schemes are devised and tested to find the optimal content and structure combination for a proposed classification taxonomy as well as automatic labeling processes. The results provide an in-depth analysis of ODP and ODP based content classification and automatic labeling models. Although the use of ODP is well documented, this question has not been answered to date

    A New Web Search Engine with Learning Hierarchy

    Get PDF
    Most of the existing web search engines (such as Google and Bing) are in the form of keyword-based search. Typically, after the user issues a query with the keywords, the search engine will return a flat list of results. When the query issued by the user is related to a topic, only the keyword matching may not accurately retrieve the whole set of webpages in that topic. On the other hand, there exists another type of search system, particularly in e-Commerce web- sites, where the user can search in the categories of different faceted hierarchies (e.g., product types and price ranges). Is it possible to integrate the two types of search systems and build a web search engine with a topic hierarchy? The main diffculty is how to classify the vast number of webpages on the Internet into the topic hierarchy. In this thesis, we will leverage machine learning techniques to automatically classify webpages into the categories in our hierarchy, and then utilize the classification results to build the new search engine SEE. The experimental results demonstrate that SEE can achieve better search results than the traditional keyword-based search engine in most of the queries, particularly when the query is related to a topic. We also conduct a small-scale usability study which further verifies that SEE is a promising search engine. To further improve SEE, we also propose a new active learning framework with several novel strategies for hierarchical classification

    A lexical approach for taxonomy mapping

    Get PDF
    Obtaining a useful complete overview of Web-based product information has become difficult nowadays due to the ever-growing amount of information available on online shops. Findings from previous studies suggest that better search capabilities, such as the exploitation of annotated data, are needed to keep online shopping transparent for the user. Annotations can, for example, help present information from multiple sources in a uniform manner. In order to support the product data integration process, we propose an algorithm that can autonomously map heterogeneous product taxonomies from different online shops. The proposed approach uses word sense disambiguation techniques, approximate lexical matching, and a mechanism that deals with composite categories. Our algorithm’s performance compared favorably against two other state-of-the-art taxonomy mapping algorithms on three real-life datasets. The results show that the F1-measure for our algorithm is on average 60% higher than a state-of-the-art product taxonomy mapping algorithm

    Supporting Multiple Paths to Objects in Information Hierarchies: Faceted Classification, Faceted Search, and Symbolic Links

    Get PDF
    We present three fundamental, interrelated approaches to support multiple access paths to each terminal object in information hierarchies: faceted classification, faceted search, and web directories with embedded symbolic links. This survey aims to demonstrate how each approach supports users who seek information from multiple perspectives. We achieve this by exploring each approach, the relationships between these approaches, including tradeoffs, and how they can be used in concert, while focusing on a core set of hypermedia elements common to all. This approach provides a foundation from which to study, understand, and synthesize applications which employ these techniques. This survey does not aim to be comprehensive, but rather focuses on thematic issues

    Methods

    No full text
    Information assembled in this chapter will help the reader understand the basis for the preliminary conclusions of the Expedition 302 Scientists and will also enable the interested investigator to select samples for further analyses. This information concerns offshore and onshore operations and analyses described in the "Sites M0001–M0004" chapter. Methods used by various investigators for shore-based analyses of Expedition 302 samples will be described in the individual contributions published in the Expedition Research Results and in various professional journals
    • …
    corecore