4,144 research outputs found

    Character-Level Models versus Morphology in Semantic Role Labeling

    Get PDF
    Character-level models have become a popular approach specially for their accessibility and ability to handle unseen data. However, little is known on their ability to reveal the underlying morphological structure of a word, which is a crucial skill for high-level semantic analysis tasks, such as semantic role labeling (SRL). In this work, we train various types of SRL models that use word, character and morphology level information and analyze how performance of characters compare to words and morphology for several languages. We conduct an in-depth error analysis for each morphological typology and analyze the strengths and limitations of character-level models that relate to out-of-domain data, training data size, long range dependencies and model complexity. Our exhaustive analyses shed light on important characteristics of character-level models and their semantic capability.Comment: Accepted for publication at the 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018

    Narrative Language as an Expression of Individual and Group Identity

    Get PDF
    Scientific Narrative Psychology integrates quantitative methodologies into the study of identity. Its methodology, Narrative Categorical Analysis, and its toolkit, NarrCat, were both originally developed by the Hungarian Narrative Psychology Group. NarrCat is for machine-made transformation of sentences in self-narratives into psychologically relevant, statistically processable narrative categories. The main body of this flexible and comprehensive system is formed by Psycho-Thematic modules, such as Agency, Evaluation, Emotion, Cognition, Spatiality, and Temporality. The Relational Modules include Social References, Semantic Role Labeling (SRL), and Negation. Certain elements can be combined into Hypermodules, such as Psychological Perspective and Spatio-Temporal Perspective, which allow for even more complex, higher level exploration of composite psychological processes. Using up-to-date developments of corpus linguistics and Natural Language Processing (NLP), a unique feature of NarrCat is its capacity of SRL. The structure of NarrCat, as well as the empirical results in group identity research, is discussed

    An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification

    Full text link
    While deep learning methods are increasingly being applied to tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability hinders them from being fully understood by target users such as radiologists. In this paper, we present a novel interpretable deep hierarchical semantic convolutional neural network (HSCNN) to predict whether a given pulmonary nodule observed on a computed tomography (CT) scan is malignant. Our network provides two levels of output: 1) low-level radiologist semantic features, and 2) a high-level malignancy prediction score. The low-level semantic outputs quantify the diagnostic features used by radiologists and serve to explain how the model interprets the images in an expert-driven manner. The information from these low-level tasks, along with the representations learned by the convolutional layers, are then combined and used to infer the high-level task of predicting nodule malignancy. This unified architecture is trained by optimizing a global loss function including both low- and high-level tasks, thereby learning all the parameters within a joint framework. Our experimental results using the Lung Image Database Consortium (LIDC) show that the proposed method not only produces interpretable lung cancer predictions but also achieves significantly better results compared to common 3D CNN approaches

    What do Neural Machine Translation Models Learn about Morphology?

    Full text link
    Neural machine translation (MT) models obtain state-of-the-art performance while maintaining a simple, end-to-end architecture. However, little is known about what these models learn about source and target languages during the training process. In this work, we analyze the representations learned by neural MT models at various levels of granularity and empirically evaluate the quality of the representations for learning morphology through extrinsic part-of-speech and morphological tagging tasks. We conduct a thorough investigation along several parameters: word-based vs. character-based representations, depth of the encoding layer, the identity of the target language, and encoder vs. decoder representations. Our data-driven, quantitative evaluation sheds light on important aspects in the neural MT system and its ability to capture word structure.Comment: Updated decoder experiment

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project
    • 

    corecore