5 research outputs found

    Low-discrepancy Sampling in the Expanded Dimensional Space: An Acceleration Technique for Particle Swarm Optimization

    Full text link
    Compared with random sampling, low-discrepancy sampling is more effective in covering the search space. However, the existing research cannot definitely state whether the impact of a low-discrepancy sample on particle swarm optimization (PSO) is positive or negative. Using Niderreiter's theorem, this study completes an error analysis of PSO, which reveals that the error bound of PSO at each iteration depends on the dispersion of the sample set in an expanded dimensional space. Based on this error analysis, an acceleration technique for PSO-type algorithms is proposed with low-discrepancy sampling in the expanded dimensional space. The acceleration technique can generate a low-discrepancy sample set with a smaller dispersion, compared with a random sampling, in the expanded dimensional space; it also reduces the error at each iteration, and hence improves the convergence speed. The acceleration technique is combined with the standard PSO and the comprehensive learning particle swarm optimization, and the performance of the improved algorithm is compared with the original algorithm. The experimental results show that the two improved algorithms have significantly faster convergence speed under the same accuracy requirement.Comment: 29 pages, 0 figure

    Hybrid approaches to optimization and machine learning methods: a systematic literature review

    Get PDF
    Notably, real problems are increasingly complex and require sophisticated models and algorithms capable of quickly dealing with large data sets and finding optimal solutions. However, there is no perfect method or algorithm; all of them have some limitations that can be mitigated or eliminated by combining the skills of different methodologies. In this way, it is expected to develop hybrid algorithms that can take advantage of the potential and particularities of each method (optimization and machine learning) to integrate methodologies and make them more efficient. This paper presents an extensive systematic and bibliometric literature review on hybrid methods involving optimization and machine learning techniques for clustering and classification. It aims to identify the potential of methods and algorithms to overcome the difficulties of one or both methodologies when combined. After the description of optimization and machine learning methods, a numerical overview of the works published since 1970 is presented. Moreover, an in-depth state-of-art review over the last three years is presented. Furthermore, a SWOT analysis of the ten most cited algorithms of the collected database is performed, investigating the strengths and weaknesses of the pure algorithms and detaching the opportunities and threats that have been explored with hybrid methods. Thus, with this investigation, it was possible to highlight the most notable works and discoveries involving hybrid methods in terms of clustering and classification and also point out the difficulties of the pure methods and algorithms that can be strengthened through the inspirations of other methodologies; they are hybrid methods.Open access funding provided by FCT|FCCN (b-on). This work has been supported by FCT— Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/00319/2020. Beatriz Flamia Azevedo is supported by FCT Grant Reference SFRH/BD/07427/2021 The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/ MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).info:eu-repo/semantics/publishedVersio

    Suitability analysis of machine learning algorithms for crack growth prediction based on dynamic response data

    Get PDF
    Machine learning has the potential to enhance damage detection and prediction in materials science. Machine learning also has the ability to produce highly reliable and accurate representations, which can improve the detection and prediction of damage compared to the traditional knowledge-based approaches. These approaches can be used for a wide range of applications, including material design; predicting material properties; identifying hidden relationships; and classifying microstructures, defects, and damage. However, researchers must carefully consider the appropriateness of various machine learning algorithms, based on the available data, material being studied, and desired knowledge outcomes. In addition, the interpretability of certain machine learning models can be a limitation in materials science, as it may be difficult to understand the reasoning behind predictions. This paper aims to make novel contributions to the field of material engineering by analyzing the compatibility of dynamic response data from various material structures with prominent machine learning approaches. The purpose of this is to help researchers choose models that are both effective and understandable, while also enhancing their understanding of the model’s predictions. To achieve this, this paper analyzed the requirements and characteristics of commonly used machine learning algorithms for crack propagation in materials. This analysis assisted the authors in selecting machine learning algorithms (K nearest neighbor, Ridge, and Lasso regression) to evaluate the dynamic response of aluminum and ABS materials, using experimental data from previous studies to train the models. The results showed that natural frequency was the most significant predictor for ABS material, while temperature, natural frequency, and amplitude were the most important predictors for aluminum. Crack location along samples had no significant impact on either material. Future work could involve applying the discussed techniques to a wider range of materials under dynamic loading conditions

    Developing artificial intelligence models for classification of brain disorder diseases based on statistical techniques

    Get PDF
    The Abstract is currently unavailable, due to the thesis being under Embargo
    corecore