130 research outputs found

    Progress in Classical and Quantum Variational Principles

    Full text link
    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics, in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis Principle is the classical limit of Schr\"{o}dinger's variational principle of wave mechanics, and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems

    Investigations on Dynamical Stability in 3D Quadrupole Ion Traps

    Get PDF
    We firstly discuss classical stability for a dynamical system of two ions levitated in a 3D Radio-Frequency (RF) trap, assimilated with two coupled oscillators. We obtain the solutions of the coupled system of equations that characterizes the associated dynamics. In addition, we supply the modes of oscillation and demonstrate the weak coupling condition is inappropriate in practice, while for collective modes of motion (and strong coupling) only a peak of the mass can be detected. Phase portraits and power spectra are employed to illustrate how the trajectory executes quasiperiodic motion on the surface of torus, namely a Kolmogorov–Arnold–Moser (KAM) torus. In an attempt to better describe dynamical stability of the system, we introduce a model that characterizes dynamical stability and the critical points based on the Hessian matrix approach. The model is then applied to investigate quantum dynamics for many-body systems consisting of identical ions, levitated in 2D and 3D ion traps. Finally, the same model is applied to the case of a combined 3D Quadrupole Ion Trap (QIT) with axial symmetry, for which we obtain the associated Hamilton function. The ion distribution can be described by means of numerical modeling, based on the Hamilton function we assign to the system. The approach we introduce is effective to infer the parameters of distinct types of traps by applying a unitary and coherent method, and especially for identifying equilibrium configurations, of large interest for ion crystals or quantum logic

    Cosmological Moduli Dynamics

    Get PDF
    Low energy effective actions arising from string theory typically contain many scalar fields, some with a very complicated potential and others with no potential at all. The evolution of these scalars is of great interest. Their late time values have a direct impact on low energy observables, while their early universe dynamics can potentially source inflation or adversely affect big bang nucleosynthesis. Recently, classical and quantum methods for fixing the values of these scalars have been introduced. The purpose of this work is to explore moduli dynamics in light of these stabilization mechanisms. In particular, we explore a truncated low energy effective action that models the neighborhood of special points (or more generally loci) in moduli space, such as conifold points, where extra massless degrees of freedom arise. We find that the dynamics has a surprisingly rich structure - including the appearance of chaos - and we find a viable mechanism for trapping some of the moduli.Comment: 35 pages, 14 figures, references adde

    Interaction of two charges in a uniform magnetic field

    Get PDF
    The thesis starts with a short introduction to smooth dynamical systems and Hamiltonian dynamical systems. The aim of the introductory chapter is to collect basic results and concepts used in the thesis to make it self–contained. The second chapter of the thesis deals with the interaction of two charges moving in R2 in a magnetic field B. This problem can be formulated as a Hamiltonian system with four degrees of freedom. Assuming that the magnetic field is uniform and the interaction potential has rotational symmetry we reduce this Hamiltonian system to one with two degrees of freedom; for certain values of the conserved quantities and choices of parameters, we obtain an integrable system. Furthermore, when the interaction potential is of Coulomb type, we prove that, for suitable regime of parameters, there are invariant subsets on which this system contains a suspension of a subshift of finite type. This implies non–integrability for this system with a Coulomb type interaction. Explicit knowledge of the reconstruction map and a dynamical analysis of the reduced Hamiltonian systems are the tools we use in order to give a description for the various types of dynamical behaviours in this system: from periodic to quasiperiodic and chaotic orbits, from bounded to unbounded motion. In the third chapter of the thesis we study the interaction of two charges moving in R3 in a magnetic field B. This problem can also be formulated as a Hamiltonian system, but one with six degrees of freedom. We keep the assumption that the magnetic field is uniform and the interaction potential has rotational symmetry and reduce this Hamiltonian system to one with three degrees of freedom; for certain values of the conserved quantities and choices of parameters, we obtain a system with two degrees of freedom. Furthermore, when the interaction potential is chosen to be Coulomb we prove the existence of an invariant submanifold where the system can be reduced by a further degree of freedom. The reductions simplify the analysis of some properties of this system: we use the reconstruction map to obtain a classification for the dynamics in terms of boundedness of the motion and the existence of collisions. Moreover, we study the scattering map associated with this system in the limit of widely separated trajectories. In this limit we prove that the norms of the gyroradii of the particles are conserved during an interaction and that the interaction of the two particles is responsible for a rotation of the guiding centres around a fixed centre in the case of two charges whose sum is not zero and a drift of the guiding centres in the case of two charges whose sum is zero

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    • …
    corecore