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Summary

The thesis starts with a short introduction to smooth dynamical systems and
Hamiltonian dynamical systems. The aim of the introductory chapter is to collect basic
results and concepts used in the thesis to make it self–contained.

The second chapter of the thesis deals with the interaction of two charges moving
in R

2 in a magnetic field B. This problem can be formulated as a Hamiltonian system
with four degrees of freedom. Assuming that the magnetic field is uniform and the
interaction potential has rotational symmetry we reduce this Hamiltonian system to one
with two degrees of freedom; for certain values of the conserved quantities and choices
of parameters, we obtain an integrable system. Furthermore, when the interaction
potential is of Coulomb type, we prove that, for suitable regime of parameters, there
are invariant subsets on which this system contains a suspension of a subshift of finite
type. This implies non–integrability for this system with a Coulomb type interaction.
Explicit knowledge of the reconstruction map and a dynamical analysis of the reduced
Hamiltonian systems are the tools we use in order to give a description for the various
types of dynamical behaviours in this system: from periodic to quasiperiodic and chaotic
orbits, from bounded to unbounded motion.

In the third chapter of the thesis we study the interaction of two charges moving
in R

3 in a magnetic field B. This problem can also be formulated as a Hamiltonian
system, but one with six degrees of freedom. We keep the assumption that the magnetic
field is uniform and the interaction potential has rotational symmetry and reduce this
Hamiltonian system to one with three degrees of freedom; for certain values of the
conserved quantities and choices of parameters, we obtain a system with two degrees
of freedom. Furthermore, when the interaction potential is chosen to be Coulomb we
prove the existence of an invariant submanifold where the system can be reduced by a
further degree of freedom. The reductions simplify the analysis of some properties of
this system: we use the reconstruction map to obtain a classification for the dynamics
in terms of boundedness of the motion and the existence of collisions. Moreover, we
study the scattering map associated with this system in the limit of widely separated
trajectories. In this limit we prove that the norms of the gyroradii of the particles are
conserved during an interaction and that the interaction of the two particles is responsible
for a rotation of the guiding centres around a fixed centre in the case of two charges
whose sum is not zero and a drift of the guiding centres in the case of two charges
whose sum is zero.

ix



Chapter 1

Introduction

A dynamical system is a rule describing the evolution with time of a point in a given set.

This rule might be specified by very different means like ordinary differential equations,

iterated maps, partial differential equations or cellular automata. In this thesis we will be

most concerned with a very special case of differential equations: Hamilton’s equations.

Indeed, some famous examples of dynamical systems are mechanical systems that can

be written in terms of Hamilton’s equations like the harmonic oscillator, the pendulum

and double pendulum and the N -body problem.

The mathematical theory of dynamical systems has its roots in classical me-

chanics, which started to be developed in the XVI and XVII centuries by Galileo and

Newton, respectively. In 1686, with the publication of the Principia, Newton laid down

the mathematical principles of classical mechanics with three laws governing the motion

of bodies under the presence of external forces and described the universal law of gravity.

This inspired the work of mathematicians like Euler, Lagrange, Hamilton and Poincaré

that built on the shoulders of Newton!

The work of Poincaré was a great influence to the present state of the subject

since it led to a change in the motivation from the quantitative to the qualitative and

geometrical study of such mechanical systems and more general systems of nonlinear

differential equations. This change was a key step for the development of the modern
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theory of dynamical systems during the XX century. This qualitative way of looking at

nonlinear dynamical systems was further developed by Birkhoff in the first half of the

XX century. At the same time the subject was flourishing in the Soviet Union with

the works of Lyapunov, Andronov, Pontryagin and others. A new wave of development

came by around 1960 with the influential works of Smale and Moser in the United States,

Kolmogorov, Arnold and Sinai in the Soviet Union and Peixoto in Brazil.

1.1 A short introduction to smooth dynamical systems

In a more precise way, a dynamical system is a triple
(
M,φt,K

)
where M is called the

phase space and is usually a smooth manifold, φt : M×K →M , called the evolution, is

a smooth action of K in M and K ∋ t is either a subset of R in the case of a continuous

time dynamical system or a subset of Z in the case of a discrete time dynamical system.

Throughout this thesis we deal mainly with dynamical systems determined by a

special type of ordinary differential equations called Hamilton’s equations. In this section

we will introduce basic concepts of the theory of dynamical systems that will be used in

this thesis. We will concentrate only on introducing concepts related with the analysis

of dynamical systems defined by ordinary differential equations and iterated maps. All

the concepts, statements and its proofs in this section can be found in [16, 20, 31, 34]

and references therein.

1.1.1 Basic definitions and results: maps

In this section we introduce a class of dynamical systems with an evolution rule of the

form

xt = f(xt−1) , t ∈ K , (1.1.1)

where, for simplicity of exposition, we assume that f : M →M is a Ck diffeomorphism

with k ≥ 1. For convenience, we will assume that M is a connected Riemannian

manifold (with a metric d : M ×M → R).
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The forward orbit of a point p is the subset of M defined by

O+(p) = {fn(p) : n ≥ 0} ,

the backward orbit of a point p is the subset of M defined by

O−(p) = {fn(p) : n < 0}

and the (whole) orbit of a point p is the set

O(p) = O+(p) ∪ O−(p) .

Definition 1.1.1. We say that a point p ∈M is a fixed point of f if f(p) = p. A point

p ∈M is a periodic point of period N if there exists N ∈ N such that fN (p) = p and

f j(p) 6= p for every 0 < j < N .

If p is a periodic point of period N then O(p) =
{
p, f(p), ..., fN−1(p)

}
. If

N = 1 then p is a fixed point and O(p) = {p}.
Next we introduce the concept of stability of points. Such concepts are of crucial

importance for applications of dynamical systems.

Definition 1.1.2. A point p is Lyapunov stable if for any ǫ > 0 there is δ > 0 such that

if d(q,p) < δ then d
(
f j(q), f j(p)

)
< ǫ for every j ≥ 0. A point p is asymptotically

stable if it is Lyapunov stable and there exists a neighbourhood V of p such that for

every q ∈ V , d(f j(q), f j(p)) tends to zero as j tends to infinity.

Intuitively, if p is a Lyapunov stable point, then for every point q close enough

to p its orbit stays close to the orbit of p. If p is asymptotically stable, then for every

point q close enough to p the forward orbit of q will converge to the forward orbit of p.

Some subsets of M have a property that makes them special when studying a

dynamical system: they are invariant under the dynamics. The orbits O(p) of points

of M under iteration by f are examples of invariant subsets of M . Below we introduce

the notion of invariance.

Definition 1.1.3. A subset S ⊂M is

3



• positively invariant if f(S) ⊂ S.

• negatively invariant if f−1(S) ⊂ S.

• invariant if f(S) = S.

Local stability of periodic points

The stability of periodic points (and fixed points) is, under certain conditions, determined

by a linear system associated with (1.1.1). We will now discuss such conditions.

Let p be a periodic point of (1.1.1) with least period N ∈ N. Since fN (p) = p

we obtain that p is a fixed point of the dynamical system

x 7→ fN (x) . (1.1.2)

Expanding (1.1.2) in Taylor series about p we obtain

x 7→ p +DfN
p (x − p) +O

(
|x − p|2

)
,

where DfN
p denotes the Jacobian matrix of fN at p. Introducing the variable y =

x − p ∈ R
m in a neighbourhood of p, we obtain

y 7→ DfN
p y +O

(
|y|2

)
.

The linearized system associated with (1.1.2) is then given by

y 7→ DfN
p y .

We define the stable eigenspace E
s, unstable eigenspace E

u and centre eigenspace E
c

by

E
s = span{vs ∈ R

m : vs is a generalized eigenvector for

an eigenvalue λs of DfN
p with |λs| < 1}

E
u = span{vu ∈ R

m : vu is a generalized eigenvector for

an eigenvalue λu of DfN
p with |λu| > 1}

E
c = span{vc ∈ R

m : vc is a generalized eigenvector for

an eigenvalue λc of DfN
p with |λc| = 1} .
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Definition 1.1.4. Let p be a periodic point of (1.1.1) with least period N ∈ N. We

say that

• p is hyperbolic if E
c = {0}.

• p is elliptic if all eigenvalues λc of DfN
p are such that |λc| = 1 and λc 6= ±1. If

p is elliptic we have that E
s = E

u = {0}.

Definition 1.1.5. Let p be a hyperbolic periodic point of (1.1.1) with least period

N ∈ N. We say that

• p is a sink if E
u = {0}.

• p is a source if E
s = {0}.

• p is a saddle if E
s 6= {0} and E

u 6= {0}.

It is clear that the stability of periodic points of (1.1.1) can be studied by

analysing the stability of fixed points of (1.1.2). From now on, we will restrict our

attention to fixed points of (1.1.1).

The next theorem states that if p is a hyperbolic fixed point of (1.1.1) then

the linear part of Dfp completely determines the stability of p. More specifically, the

theorem ensures the existence (in a neighbourhood of p) of a conjugacy between (1.1.1)

and its linearization.

Theorem 1.1.6 (Hartman–Grobman Theorem). Let f : M → M be a Cr diffeomor-

phism (r ≥ 1) with a hyperbolic fixed point p. Then there exist neighbourhoods U of

p and V of 0 and a homeomorphism h : V → U such that f(h(x)) = h(Ax) for all

x ∈ V , where A = Dfp.

The stability of a hyperbolic fixed point (or periodic point) follows from the

Hartman–Grobman theorem.

Corollary 1.1.7. Let f : M → M be a Cr diffeomorphism (r ≥ 1) with a hyperbolic

fixed point p. If p is a source or a saddle then the fixed point p is not Liapunov stable.

If p is a sink then it is asymptotically stable.
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Definition 1.1.8. Let p be a hyperbolic fixed point of (1.1.1) and U a neighbourhood

of p. The local stable manifold for p in the neighbourhood U is the set

W s(p, U) =
{
q ∈ U : f j(q) ∈ U for j > 0 and d(f j(q),p) → 0 as j → ∞

}
.

The local unstable manifold for p in the neighbourhood U is the set

W u(p, U) =
{
q ∈ U : f−j(q) ∈ U for j > 0 and d(f−j(q),p) → 0 as j → ∞

}
.

To simplify notation we also denote W s(p, U) and W u(p, U) by W s
loc and W u

loc,

respectively, provided this does not causes any ambiguity regarding the point p. Further-

more, it is usual to take U = B (p, ǫ) = {q ∈M : d(q,p) < ǫ}. In this case we denote

the stable and unstable manifolds for p in B (p, ǫ) by W s
ǫ (p) and W u

ǫ (p), respectively.

It follows from Hartman–Grobman theorem that the local stable and unstable

manifolds are topological disks. The next theorem states that the local stable and

unstable manifolds are Ck embedded manifolds which can be represented as the graph

of a map from one of the spaces E
s or E

u to the other. Before stating the theorem we

need to introduce the notion of exponential map at a point p ∈M .

Note that there exists a neighbourhood Vp of 0 ∈ TpM such that all geodesics

through p ∈ M are defined for t ∈ [0, 1]. For a tangent vector v ∈ TpM , let γv(t) be

the unique geodesic with γv(0) = p and γ̇v(0) = v. We define the exponential map at

p ∈M , expp : Vp →M , by

expp(v) = γv(1) .

Theorem 1.1.9 (Stable Manifold Theorem). Let f : M →M be a Ck diffeomorphism

(k ≥ 1) with a hyperbolic fixed point p. Then, there is ǫ > 0 such that W s
ǫ (p) and

W u
ǫ (p) are each Ck embedded disks which are tangent to E

s and E
u, respectively.

Let Ds(ǫ) and Du(ǫ) denote disks of radius ǫ contained in E
s and E

u, respectively.

The local stable manifold W s
ǫ (p) can be represented as the graph of a Ck function

σs : Ds(ǫ) → Du(ǫ) with σs(0) = 0 and D(σs)0 = 0:

W s
ǫ (p) = expp ({(σs(v),v) : v ∈ Ds(ǫ)}) .
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Similarly, the local unstable manifold W u
ǫ (p) can be represented as the graph of a Ck

function σu : Du(ǫ) → Ds(ǫ) with σu(0) = 0 and D(σu)0 = 0:

W u
ǫ (p) = expp ({(v, σu(v)) : v ∈ Du(ǫ)}) .

The global stable and unstable manifolds, denoted by W s(p) and W u(p) res-

pectively, are obtained from the local stable and unstable manifolds by the relations

W s(p) =
⋃

n≥0

f−n (W s(p, U))

W u(p) =
⋃

n≥0

fn (W u(p, U)) .

1.1.2 Basic definitions and results: flows

In this section we introduce a class of dynamical systems for which the evolution rule is

determined by an ordinary differential equation of the form

ẋ = f(x) , (1.1.3)

where f : M → TM is a Cr vector field (r ≥ 1) on the manifold M . For convenience

we will also assume throughout this section that M is a connected Riemannian manifold

(with a metric d : M ×M → R).

We now state a fundamental result for the study of solutions of ordinary diffe-

rential equations that will guarantee the existence of an evolution rule (flow) associated

with (1.1.3).

Theorem 1.1.10 (Existence and Uniqueness of solutions of ordinary differential equa-

tions). Let M be a smooth manifold and f : M → TM a Lipschitz map. Let x0 ∈M

and t0 ∈ R. Then, there exists an α > 0 and a unique solution x(t) of ẋ = f(x)

defined for t0 − α < t < t0 + α such that x(t0) = x0. Furthermore, the solution x(t)

depends continuously on the initial condition x0.

Let x(t) be a solution of (1.1.3) with initial condition x(t0) = x0. Since (1.1.3)

is independent of t, any translate of the solution, x(t − τ), is also a solution. Hence,

from now on we will only consider initial conditions of the form x(0) = x0.

7



We define the maximal domain of definition of a solution x(t) of (1.1.3) with

initial condition x(0) = x0 as the largest open interval (t−, t+) for which the solution

is defined. The interval must be open by the existence of solutions on a short interval

guaranteed by theorem 1.1.10. We say that the vector field f is complete if the maximal

domain of definition of all solutions of (1.1.3) is R. We next state a condition that

ensures the existence of solutions of (1.1.3) for all t ∈ R.

Theorem 1.1.11. Let M be a compact manifold with no boundary and f : M → TM

a C1 vector field. Then f is a complete vector field.

The last theorem does not includes the fundamental case where M is a more

general subset of R
m (or the whole R

m) for some m ∈ N. We will now see how to

modify a differential equation so that its solutions are defined for all t ∈ R.

Assume that f : U ⊂ R
m → R

m is a vector field defined on a open set U of

R
m and let g : U → R be a smooth positive function. Then a reparametrization of the

solutions of (1.1.3) is defined by

dt = g(x)dτ .

Let a prime denote the derivative with respect to τ , then (1.1.3) becomes

x′ = f(x)g(x) .

Theorem 1.1.12. Let f : U ⊂ R
m → R

m be a C1 vector field defined on a open set U

of R
m. There exists a reparametrization of (1.1.3) such that all solutions are defined

for all t.

For simplicity of exposition, from now on we will assume that the vector field in

(1.1.3) is complete, that is, either M is a compact manifold with no boundary or M is

a open subset of R
m and (1.1.3) has been conveniently reparametrized.

For the case of dynamical systems defined by differential equations, the time

parameter is continuous t ∈ R and the evolution φt is the flow of the vector field f(x),

i.e. φt : M × R →M satisfies each of the following properties:
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i) d
dtφ

t(x) = f ◦ φt(x) for every t ∈ R and x ∈M ,

ii) φ0(x) = x for every x ∈M ,

iii) φt ◦ φs(x) = φt+s(x) for every t, s ∈ R and x ∈M ,

iv) for fixed t, φt is a homeomorphism on its domain of definition.

Given a point p ∈M , the orbit of p is the subset of M defined by

O(p) =
{
φt(p) : t ∈ R

}
.

Definition 1.1.13. We say that a point p ∈M is an equilibrium for the flow of (1.1.3)

if φt(p) = p for all t ∈ R. A point p ∈M is a periodic point of period T if there exists

positive T ∈ R such that φT (p) = p and φt(p) 6= p for every 0 < t < T . The orbit

O(p) of a periodic point is called a periodic orbit.

If p is a periodic point of period T then O(p) =
{
φt(p) : 0 ≤ t < T

}
is called

a periodic orbit.

Since the flows we consider here are solutions of differential equations we obtain

that an equilibrium p for the flow φt of the differential equation (1.1.3) must satisfy

f(p) = 0.

We next give the definitions of Lyapunov stability and asymptotic stability in the

context of flows.

Definition 1.1.14. The orbit of a point p is Lyapunov stable for a flow φt if for any

ǫ > 0 there is δ > 0 such that if d(q,p) < δ, then d
(
φt(q), φt(p)

)
< ǫ for all t ≥ 0.

The orbit of a point p is asymptotically stable if it is Lyapunov stable and there exists

a neighbourhood V of p such that for every q ∈ V , d
(
φt(q), φt(p)

)
tends to zero as t

tends to infinity.

The notion of an invariant set also generalizes for the case of flows.

Definition 1.1.15. A subset S ⊂M is invariant if φt(S) = S for all t ∈ R.

9



Local stability of equilibria

The stability of equilibria is, under certain conditions, determined by a linear system

associated with (1.1.3). We will now discuss such conditions.

Let p be an equilibrium point of (1.1.3). Since f(p) = 0, expanding (1.1.3) in

Taylor series about p we obtain

ẋ = Dfp(x − p) +O
(
|x − p|2

)
,

where Dfp denotes the Jacobian matrix of f at p. The linearized system at p associated

with (1.1.3) is then given by

ẋ = Dfp(x − p) . (1.1.4)

We define the stable eigenspace E
s, unstable eigenspace E

u and centre eigenspace E
c

by

E
s = span{vs ∈ R

m : vs is a generalized eigenvector for

an eigenvalue λs of Dfp with Re(λs) < 0}

E
u = span{vu ∈ R

m : vu is a generalized eigenvector for

an eigenvalue λu of Dfp with Re(λu) > 0}

E
c = span{vc ∈ R

m : vc is a generalized eigenvector for

an eigenvalue λc of Dfp with Re(λc) = 0} .

Definition 1.1.16. Let p be an equilibrium for the flow of (1.1.3). We say that

• p is hyperbolic if E
c = {0}.

• p is elliptic if E
s = E

u = {0}.

Definition 1.1.17. Let p be a hyperbolic equilibrium for the flow of (1.1.3). We say

that

• p is a sink if E
u = {0}.

• p is a source if E
s = {0}.
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• p is a saddle if E
s 6= {0} and E

u 6= {0}.

The next theorem states that if p is a hyperbolic equilibrium point for the flow

of (1.1.3) then the linear part of Dfp completely determines the stability of p. More

specifically, the theorem ensures the existence (in a neighbourhood of p) of a conjugacy

between (1.1.3) and its linearization (1.1.4).

Theorem 1.1.18 (Hartman–Grobman Theorem). Let p be a hyperbolic equilibrium for

the flow of ẋ = f(x). Then, the flow φt of f is conjugate in a neighbourhood of p to the

affine flow p+eAt(y−p), where A = Dfp. More precisely, there exist a neighbourhood

U of p and a homeomorphism h : U → U such that φt(h(x)) = h
(
p + eAt(y − p)

)
as

long as p + eAt(y − p) ∈ U .

The stability of a hyperbolic equilibrium follows from the Hartman–Grobman

theorem.

Corollary 1.1.19. Let p be a hyperbolic equilibrium for the flow of ẋ = f(x). If p is a

source or a saddle, then p is not Liapunov stable. If p is a sink, then it is asymptotically

stable.

Remark Let p be a hyperbolic equilibrium for the flow of ẋ = f(x) and let λ1, ..., λm

be the eigenvalues of the matrix Dfp. Assume a non–degeneracy condition of the form

λj 6=
m∑

i=1

miλi , j ∈ {1, ...,m}

for any choice of mi ∈ Z such that mi ≥ 0 for every i ∈ {1, ...,m} and
∑m

i=1mi ≥ 2.

Then, if the vector field f is smooth enough, the homeomorphism h in the Hartman–

Grobman theorem 1.1.18 can be shown to be a diffeomorphism. See [3, 19] and refe-

rences therein for more details on smooth linearization of vector fields.

Definition 1.1.20. Let p be an equilibrium point for the flow of ẋ = f(x) and U a

neighbourhood of p. The local stable manifold for p in the neighbourhood U is the set

W s(p, U) =
{
q ∈ U : φt(q) ∈ U for t > 0 and d(φt(q),p) → 0 as t→ ∞

}
.
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The local unstable manifold for p in the neighbourhood U is the set

W u(p, U) =
{
q ∈ U : φ−t(q) ∈ U for t > 0 and d(φ−t(q),p) → 0 as t→ ∞

}
.

To simplify notation we also denote W s(p, U) and W u(p, U) by W s
loc and W u

loc,

respectively, provided this does not causes any ambiguity regarding the point p. Further-

more, it is usual to take U = B (p, ǫ) = {q ∈M : d(q,p) < ǫ}. In this case we denote

the stable and unstable manifolds for p in B (p, ǫ) by W s
ǫ (p) and W u

ǫ (p), respectively.

It follows from Hartman–Grobman theorem that the local stable and unstable

manifolds are topological disks. The next theorem states that the local stable and

unstable manifolds are Ck embedded manifolds which can be represented as the graph

of a map from one of the spaces E
s or E

u to the other.

Theorem 1.1.21 (Stable Manifold Theorem). Let p be a hyperbolic equilibrium for the

flow of ẋ = f(x), where f : M → TM is a Ck vector field (k ≥ 1). Then, there is

ǫ > 0 such that W s
ǫ (p) and W u

ǫ (p) are each Ck embedded disks which are tangent to

E
s and E

u, respectively. Let Ds(ǫ) and Du(ǫ) denote disks of radius ǫ contained in E
s

and E
u, respectively. The local stable manifold W s

ǫ (p) can be represented as the graph

of a Ck function σs : Ds(ǫ) → Du(ǫ) with σs(0) = 0 and D(σs)0 = 0:

W s
ǫ (p) = expp ({(σs(v),v) : v ∈ Ds(ǫ)}) .

Similarly, the local unstable manifold W u
ǫ (p) can be represented as the graph of a Ck

function σu : Du(ǫ) → Ds(ǫ) with σu(0) = 0 and D(σu)0 = 0:

W u
ǫ (p) = expp ({(v, σu(v)) : v ∈ Du(ǫ)}) .

The global stable and unstable manifolds, denoted by W s(p) and W u(p) res-

pectively, are obtained from the local stable and unstable manifolds by the relations

W s(p) =
⋃

t≤0

φt (W s(p, U))

W u(p) =
⋃

t≥0

φt (W u(p, U)) .

12



1.1.3 The Poincaré map and the suspension of a map

In this section we will look at two constructions that connect the two kinds of dynamical

systems introduced in the previous sections.

The Poincaré map

We consider again the differential equation (1.1.3) and let γ denote a periodic orbit of

the flow of (1.1.3) with period T and p ∈ γ. Then, for some k, the kth coordinate of

the vector field f must be non–zero at p, fk(p) 6= 0. We take the hyperplane given by

Σ = {x : xk = pk} .

The hyperplane Σ is called a cross section at p. For some x ∈ Σ near p, the flow φt(x)

returns to Σ in time τ(x) close to T . We call τ(x) the first return time.

Definition 1.1.22. Let V ⊂ Σ be an open set in Σ on which τ(x) is a differentiable

function. The Poincaré map, P : V → Σ, is defined by

P (x) = φτ(x)(x) . (1.1.5)

Thus, the Poincaré map reduces the analysis of a continuous time dynamical

system to the analysis of a discrete time dynamical system. This is very useful for the

analysis of the behaviour of periodic orbits of flows since such orbits are fixed points of

the Poincaré map. We list below some properties of the Poincaré map of a flow near a

periodic orbit.

Theorem 1.1.23. Let φt be a Cr flow (r ≥ 1) of ẋ = f(x).

i) If p is on a periodic orbit of period T and Σ is transversal at p, then the first

return time τ(x) is defined in a neighbourhood V of p and τ : V → R is Cr.

ii) The Poincaré map (1.1.5) is Cr.

iii) If γ is a periodic orbit of period T and p ∈ γ, then DφT
p has 1 as an eigenvalue

with eigenvector f(p).
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iv) If γ is a periodic orbit of period T and p, q ∈ γ, then the derivatives DφT
p and

DφT
q are linearly conjugate and so have the same eigenvalues.

We will now use the Poincaré map to study the stability of periodic orbits of the

dynamical system defined by (1.1.3).

Definition 1.1.24. Let γ be a periodic orbit of period T for the flow of (1.1.3) with

p ∈ γ and let 1, λ1, ..., λm−1 be the eigenvalues of DφT
p . The m − 1 eigenvalues

λ1, ..., λm−1 are called the characteristic multipliers of the periodic orbit γ.

Definition 1.1.25. Let γ be a periodic orbit of period T for the flow of (1.1.3) with

characteristic multipliers λ1, ..., λm−1. We say that

• γ is hyperbolic if |λj | 6= 1 for all j ∈ {1, ...,m− 1}.

• γ is elliptic if |λj | = 1 for all j ∈ {1, ...,m− 1}.

Definition 1.1.26. Let γ be a hyperbolic periodic orbit of period T for the flow of

(1.1.3) with characteristic multipliers λ1, ..., λm−1. We say that

• γ is a periodic sink if |λj | < 1 for all j ∈ {1, ...,m− 1}.

• γ is a periodic source if |λj | > 1 for all j ∈ {1, ...,m− 1}.

• γ is a saddle periodic orbit if γ is neither a periodic sink nor a periodic source.

The next result establishes the relation between the characteristic multipliers and

the Poincaré map near a periodic orbit.

Theorem 1.1.27. Let p be a point on a periodic orbit γ of period T for the flow of

ẋ = f(x). Then, the characteristic multipliers of the periodic orbit are the same as the

eigenvalues of the derivative of the Poincaré map at p.

The next theorem regarding the stability of periodic orbits of flows follows the

theorem above and the analysis of the stability of fixed points of maps.

Theorem 1.1.28. Let γ be a periodic orbit of period T for the flow of ẋ = f(x).
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i) If γ is a periodic sink, then γ is asymptotically stable.

ii) If γ has at least one characteristic multiplier λk such that |λk| > 1, then γ is not

Lyapunov stable.

The suspension of a map

We now describe a construction that takes a Cr diffeomorphism on a given space to a

Cr flow on a space of one higher dimension. The flow we obtain is called the suspension

of the map.

Given a map f : X → X, consider the space X×R with the equivalence relation

∼ given by

(x, s+ 1) ∼ (f(x), s) ,

and consider the quotient space of X × R under ∼

X̃ = X × R/ ∼ .

It is enough to consider 0 ≤ s ≤ 1, but including the other points makes it clear that the

quotient space has a Cr structure provided f is Cr. Consider the equations on X × R

given by

ẋ = 0

ṡ = 1 .

This induces a flow φt on X × R which passes to a flow φ̃t on the quotient space X̃.

The flow φ̃t is the suspension flow of the map f . Noting that

φ1(x, 0) = (x, 1) ∼ (f(x), 0) ,

we obtain that the flow on X̃ has f as its Poincaré map.

1.1.4 The λ-Lemma

In this section we state two versions of the λ-Lemma and a result that follows from

it that will be a key ingredient for section 2.5. Although the λ-Lemma holds in other
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settings, we will restrict our attention to its formulation for continuous time dynamical

systems of the form (1.1.3).

The standard version of the λ-Lemma

Let p be a hyperbolic equilibrium for the flow φt of (1.1.3) and let W s
loc and W u

loc

denote, respectively, the local stable and unstable manifolds for the point p. Let Bs be

a disc embedded in W s
loc and Bu a disc contained in W u

loc. Take V = Bu × Bs for a

neighbourhood of p.

We consider a point q ∈ W s
loc and a disc Du of dimension u = dimW u

loc

transversal to W s
loc at q.

Theorem 1.1.29 (λ-Lemma). Let V = Bu ×Bs, q ∈ W s
loc\{p} and Du be as above.

Let Du
t denote the connected component of φt (Du) ∩ V that contains φt(q). Given

ǫ > 0 there exists t0 > 0 such that, if t > t0, then Du
t is ǫ C1–close to W u

loc.

The strong λ-Lemma

Theorem 1.1.29 was improved in [10]. We will now introduce the appropriate setting

for this stronger version of the λ-Lemma. Let m,n ∈ N and d = m+ n. Assume that

x ∈ R
m, y ∈ R

n, A is a real m ×m matrix and B is a real n × n matrix and let |·|
denote the sup norm for vectors in Euclidean space. Let U ⊂ R

d be a neighbourhood of

the origin, f ∈ Ck+1 (U,Rm) and g ∈ Ck+1 (U,Rn) with k ≥ 1. Consider the following

hypothesis:

H1: There exist constants λ < 0 < µ and C > 1 satisfying

∣∣eAt
∣∣ ≤ Ceλt for all t ≥ 0

and
∣∣eBt

∣∣ ≤ Ceµt for all t ≤ 0 .

H2: The maps f and g are such that

f(0,y) = 0 for all (0,y) ∈ U
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g(x,0) = 0 for all (x,0) ∈ U

and

Df(0,0) = 0 , Dg(0,0) = 0 ,

where D is the differentiation operator with respect to the variables (x,y).

Consider a system of autonomous ordinary differential equations

ẋ = Ax + f(x,y)

ẏ = By + g(x,y) , (1.1.6)

with (x,y) ∈ U and A, B, f and g satisfying H1 and H2. Note that every autonomous

ordinary differential equation ż = F (z) with z ∈ R
d and F ∈ Ck+2 is Ck+2 locally

conjugate to (1.1.6) in a neighbourhood of its hyperbolic equilibrium.

Let Bd(0, δ) denote the closed δ-ball in R
d with its centre at the origin. Assume

that Dn (an n–dimensional disc) is the graph of a smooth function h of y ∈ Bn(0, δ)

taking values in Bm(0, δ). We say that Dn is Ck if h is Ck.

Denote by φt(z0) the solution of (1.1.6) with initial data φ0(z0) = z0 and let

Dn
t = φt(Dn) ∩Bd(0, δ) .

Denote by W u
loc the local unstable manifold of the equilibrium (0,0). We say

that Dn
t is Ck–close to W u

loc by ǫ if Dn
t is the graph of a Ck function ht of y ∈ Bn(0, δ)

such that all the derivatives of ht in y up to the order k are bounded by ǫ for all

y ∈ Bn(0, δ).

We can now state the strong λ-Lemma.

Theorem 1.1.30 (Strong λ-Lemma). Assuming the conditions above we have that for

every given n–dimensional disc Dn of class Ck there exist constants t0 > 0 and K > 0

such that Dn
t is Ck exponentially close to W u

loc by Keλt for all t ≥ t0.

An application of the strong λ-Lemma

The next result and its proof can be found in [6]. It follows from theorem 1.1.30 and it

is an improvement of Shilnikov’s Lemma [35].
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We consider the differential equation

ż = F (z) , (1.1.7)

where F is a C3 vector field in a neighbourhood of 0 ∈ R
m. Let φt, t ∈ R, be the flow

of (1.1.7). Suppose that F (0) = 0 and the matrix DzF (0) has no eigenvalues on the

imaginary axis. Furthermore, assume that there are eigenvalues both with positive and

negative real parts and let

λ = min |Re (Spec DzF (0))| .

Denote by W s
loc and W u

loc the local stable and unstable manifolds of the equilibrium 0.

The following result holds.

Theorem 1.1.31. Let X, Y be manifolds in R
m intersecting the manifolds W s

loc and

W u
loc, respectively, transversally at some points x0 and y0. Then for sufficiently large

T > 0 and τ ≥ T there exists a solution z(t) = φt(z(0)), 0 ≤ t ≤ τ , such that:

• z(0) ∈ X and z(τ) ∈ Y ,

• there is a representation

z(t) = φt(x0) + φt−τ (y0) + e−λτψ (τ, t) ,

where ψ is C2 uniformly bounded on DT , i.e. there exists a constant C > 0 such

that

‖ψ‖C2(DT ,Rm) ≤ C , DT = {(τ, t) : τ ≥ T, 0 ≤ t ≤ τ} .

• if the manifolds X and Y depend smoothly on a parameter c taking values in a

compact manifold Z, then ψ (τ, t, c) is a C2 function of (τ, t, c) ∈ DT × Z, and

‖ψ‖C2(DT×Z,Rm) ≤ C.

1.1.5 Chaotic dynamical systems

In this section we will give two possible definitions for a chaotic dynamical system. The

first one is based on sensitive dependence on initial conditions and the second one on
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the notion of topological entropy. It will be useful for section 2.5 that we exemplify the

behaviour of a chaotic dynamical system by introducing the notion of a subshift of finite

type.

We choose to introduce these concepts in the setting of discrete time dynamical

systems since this is the most appropriated for section 2.5.

Chaos

Let (X, d) be a metric space. In what follows we will consider discrete time dynamical

systems determined by maps f : X → X. Before defining what we mean by saying

that the dynamical system defined by f is chaotic we need to introduce some auxiliary

notions.

Definition 1.1.32. We say that a map f : X → X is transitive on a invariant set Y if

the forward orbit of some point x ∈ X is dense in Y .

Definition 1.1.33. We say that a map f : X → X has sensitive dependence on initial

conditions if there exists δ > 0 such that for each point x ∈ X and for each ǫ > 0 there

is a point y ∈ X such that d(x,y) < ǫ and k ≥ 0 such that d
(
fk(x), fk(y)

)
≥ δ.

We now state a possible definition for a chaotic dynamical system.

Definition 1.1.34. We say that a map f on a metric space (X, d) is chaotic on an

invariant set Y if it satisfies the following properties:

i) f is transitive on Y .

ii) f has sensitive dependence on initial conditions.

iii) the set of periodic points of f is dense in Y .

Some other definitions of chaos in dynamical systems are available. For example,

another possible definition would be: a map f on a metric space (X, d) is chaotic on

an invariant set Y if the restriction of f to the invariant set Y has positive topological
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entropy. We should remark, however, that the two definitions given above are not

equivalent.

We will now discuss the notion of topological entropy.

Topological entropy

As in the preceding section let (X, d) be a metric space. In what follows we will consider

the map f : X → X to be continuous.

The topological entropy of the map f is a quantity that describes the amount of

chaos a dynamical system has. We start by giving an intuitive description of topological

entropy before giving a precise definition of it.

Suppose that it is not possible to distinguish between points in X which are

closer together by less than a given distance ǫ. Then, their orbits of length n can be

distinguished provided there is some iterate between 0 and n for which they are at a

distance greater than ǫ. Let r(n, ǫ, f) be the number of such orbits of length n that

can be distinguished. The entropy for a given ǫ, h(ǫ, f), is the growth rate of r(n, ǫ, f)

as n goes to infinity. The limit of h(ǫ, f) as ǫ goes to 0 is the entropy of f , h(f).

We now make the notion rigorous. We define the distance dn,f : X ×X → R

given by

dn,f (x,y) = sup
0≤i≤n

d
(
f i(x), f i(y)

)

and say that a subset S of X is (n, ǫ) separated for f if dn,f (x,y) > ǫ for every pair

of distinct points x,y ∈ S.

The number of different orbits of length n is defined by

r(n, ǫ, f) = max {card(S) : S ⊂ X is a (n, ǫ) separated set for f} ,

where card(S) denotes the cardinal of a set S. To measure the growth rate of r(n, ǫ, f)

as n increases, we define

h(ǫ, f) = lim sup
n→∞

log (r(n, ǫ, f))

n
.
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Definition 1.1.35. Let f : X → X be a continuous map of a metric space (X, d). The

topological entropy of f is given by

h(f) = lim
ǫ→0,ǫ>0

h(ǫ, f) .

Since h (ǫ, f) is a decreasing monotone function of ǫ, it follows that the limit of

h (ǫ, f) as ǫ→ 0 exists or is equal to ∞.

Subshifts of finite type

In this section we introduce the shift map and subshifts of finite type. We also state

some results that ensure the existence of chaotic behaviour in this systems.

Let n be an integer such that n ≥ 2 and let Σ+
n be the space of functions from

N to the set {1, 2, ..., n}. We define a metric on Σ+
n by

d(x,y) =
∞∑

k=0

δ(xk, yk)

3k

for x = (x0, x1, ...) and y = (y0, y1, ...), where

δ(i, j) =





1 if i 6= j

0 if i = j

.

Definition 1.1.36. We define the full shift map on Σ+
n by σ(x) = y where yk = xk+1.

The space Σ+
n with the shift map σ, (Σ+

n , σ), is called the symbol space on n symbols.

The shift map has many interesting invariant sets. We describe one of those

invariant sets below.

A transition matrix is an n× n matrix A = (aij) such that

i) aij ∈ {0, 1} for all i, j ∈ {1, ..., n}.

ii)
∑n

j=1 aij ≥ 1 for all i ∈ {1, ..., n} and
∑n

i=1 aij ≥ 1 for all j ∈ {1, ..., n}.

The transition matrix restricts the number of sequences in Σ+
n to a set of “al-

lowable” sequences: if we let x be a sequence in Σ+
n given by x = (x0, x1, ...) then
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if axixi+1
= 1 we allow the symbol xi+1 to follow the symbol xi in the sequence x

whereas if axixi+1
= 0 it is not possible for the symbol xi+1 to follow the symbol xi

in the sequence x. This subset of “allowed” sequences of Σ+
n is invariant for the shift

map.

Definition 1.1.37. Let (Σ+
n , σ) be the symbol space on n symbols. Given an n × n

transition matrix A, let

Σ+
A =

{
x ∈ Σ+

n : axixi+1
= 1 for i ≥ 0

}
.

The space Σ+
A is made of the allowed sequences of Σ+

n for A. Let σA = σ|
Σ

+
A

. The map

σA : Σ+
A → Σ+

A is called the subshift of finite type for the matrix A.

The shift map is a very good example of what a (strongly) chaotic dynamical

system looks like. We state below some results in this direction.

Theorem 1.1.38. Let (Σ+
n , σ) be the symbol space on n symbols. Then

i) σ has periodic points of all periods.

ii) The set of periodic points of σ is dense in Σ+
n .

iii) σ is transitive on Σ+
n .

iv) σ has sensitive dependence on initial conditions.

From the statement above we obtain that σ defines a chaotic dynamical system

on Σ+
n . We will now look at the topological entropy of the shift map and subshifts of

finite type. It is clear that σ must have positive topological entropy but this need not

be the case for subshifts of finite type.

Theorem 1.1.39. Let (Σ+
n , σ) be the symbol space on n symbols. Then, the topological

entropy of σ is given by

h(σ) = log(n) .
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Theorem 1.1.40. Let A be a transition matrix (on n symbols) and σA : Σ+
A → Σ+

A

be the associated subshift of finite type. Then, h(σA) = log(λ1), where λ1 is the real

eigenvalue of A such that λ1 ≥ |λj | for all the other eigenvalues λj of A.

Since the matrix A has all its entries equal to either 0 or 1, and every line and

column of A have at least one entry equal to 1, then its largest eigenvalue is always

real.

1.2 A short introduction to Hamiltonian systems, symme-

tries and symplectic reduction

Hamiltonian mechanics are one of the possible formulations for classical mechanics.

Since its invention in 1833 by William Rowan Hamilton it has been one of the most

useful tools for the mathematical analysis of physical systems and it is still a flourishing

field as a mathematical theory.

Its appeal possibly comes from two major qualities in its modern formulation.

First of all, we can say that the main concept in Hamiltonian mechanics is the Hamil-

tonian function which, in the physical setting has the interpretation of energy, giving

the mathematical theory a clear interpretation for some physical problems. Another

major quality for this theory is the mathematical nature of the phase spaces in which

Hamiltonian systems are defined - symplectic manifolds - which are, in some sense, the

perfect setting to deal with symmetries and conservation of quantities in such mechanical

systems.

In this section we shortly revise some of the basic concepts on the theory of

Hamiltonian systems. All the concepts, statements and its proofs in this section can be

found in [1, 4, 9, 24] and references therein. For simplicity of exposition we deal only

with the finite dimensional case here.
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1.2.1 Basic definitions and results

Definition 1.2.1. Let M be a smooth manifold and TM its tangent bundle. A sym-

plectic form on M is a map ω : TM × TM → R satisfying the following conditions:

i) ω is bilinear.

ii) ω is skew-symmetric: ω(u,v) = −ω(v,u) ∀u,v ∈ TM .

iii) ω is closed: dω = 0.

iv) ω is non–degenerate: ω(v,w) = 0 ∀w ∈ TM ⇒ v = 0.

Definition 1.2.2. A symplectic manifold is a pair (M,ω) where M is a smooth manifold

and ω is a symplectic form on M .

It is worth noting that non–degeneracy of the symplectic form implies that every

symplectic manifold has even dimension. The most immediate example of a symplectic

manifold is R
2n with the canonical symplectic form

ω =
n∑

i=1

dqi ∧ dpi .

There is another reason for the importance of this last example: we next state Darboux’s

theorem which guarantees that in small neighbourhoods of symplectic manifolds we can

choose coordinates such that the symplectic form is the canonical one.

Theorem 1.2.3 (Darboux’s Theorem). Let (M,ω) be a symplectic manifold of dimen-

sion 2n. Then in a neighbourhood of z ∈M there are local coordinates

(q1, ..., qn, p1, ..., pn)

such that

ω =
n∑

i=1

dqi ∧ dpi .
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Definition 1.2.4. Let (M,ω) be a symplectic manifold and H : M → R be a Cr

map (r ≥ 1), to which we call Hamiltonian function. The Hamiltonian vector field

XH : M → TM associated with the Hamiltonian function H is defined by

ω (XH , ξ) = dH(ξ) , ∀ξ ∈ TM . (1.2.1)

We call Hamiltonian system the pair ((M,ω), H) and Hamiltonian dynamical system

the dynamical system determined by Hamilton’s equations

.
z = XH(z) .

Non–degeneracy of the symplectic form implies that the Hamiltonian vector field

XH is uniquely defined by (1.2.1).

We now introduce a geometrical structure that generalizes symplectic manifolds:

Poisson manifolds.

Definition 1.2.5. Let M be a smooth manifold and C∞(M) be the algebra of smooth

functions over M . A Poisson bracket on M , {., .} : C∞(M) × C∞(M) −→ R, is a

bilinear, skew-symmetric operator satisfying Jacobi’s identity

{F, {G,H}} + {G, {H,F}} + {H, {F,G}} = 0 ∀F,G,H ∈ C∞(M) .

Definition 1.2.6. A Poisson manifold is a pair (M, {., .}) where M is a smooth manifold

and {., .} is a Poisson bracket on M .

A Poisson manifold is a more general setting than a symplectic manifold to study

Hamiltonian systems. We have that:

1) every symplectic manifold is a Poisson manifold with Poisson bracket given by

{F,G} = ω (XF , XG) ,

where XF and XG are the Hamiltonian vector fields of F and G, respectively.

2) Hamiltonian dynamical systems are well–defined in a Poisson manifold by the

following differential equations:

.
z = {H, z} .
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In this thesis we will only deal with Hamiltonian systems defined on symplectic manifolds.

Definition 1.2.7. We say that the Hamiltonian system ((M,ω), H) has n degrees of

freedom if M is 2n–dimensional. We will often refer to M as the phase space for the

associated Hamiltonian dynamical system.

Note that in Definition 1.2.4 we have defined the Hamiltonian function in a way

that it does not depend explicit on the time. This will be the case for the particular class

of Hamiltonian systems to be studied in this thesis. One of the fundamental properties

of time–independent Hamiltonian systems is the preservation of phase space volume.

This is a classical result and we state it below.

Theorem 1.2.8 (Liouville’s Theorem). Let ((M,ω), H) be a Hamiltonian system and

let ψt(x) denote the flow of Hamilton’s equations. The flow ψt(x) preserves the volume

in phase space. For any region D ⊂M we have

Vol
(
ψt(D)

)
= Vol (D) ,

for every t in the maximal domain of definition of ψt(x), x ∈ D.

Symmetries and conserved quantities

We will now look at the relation between symmetries and conserved quantities in Hamil-

tonian systems and its consequences for the analysis of Hamiltonian dynamical systems.

Definition 1.2.9. Let ((M,ω), H) be a Hamiltonian system and let ψt(x) denote the

flow of Hamilton’s equations. A conserved quantity (or first integral) of the Hamiltonian

system is a map J : M → R such that J
(
ψt(x)

)
is a constant function of t.

Definition 1.2.10. We say that a Hamiltonian system ((M,ω), H) has (continuous)

symmetry if there exists a one–parameter group of transformations of the phase space

M of the Hamiltonian system, φλ : M × R → M , λ ∈ R, that preserves both the

Hamiltonian function and the symplectic form, i.e. the following equalities are satisfied:

φλ
∗H = H

φλ
∗ω = ω .
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The next theorem provides the relation between symmetries and conserved quan-

tities in Hamiltonian systems.

Theorem 1.2.11 (Noether’s Theorem). If the Hamiltonian system ((M,ω), H) has

a one–parameter group of symmetries φλ, λ ∈ R, then Hamilton’s equations have a

conserved quantity J : M → R. Furthermore, the following identity holds

ω

(
∂φλ

∂λ
, ξ

)
= dJ (ξ) ∀ ξ ∈ TM . (1.2.2)

Thus, associated to each one–parameter group of symmetries there is one con-

served quantity of the Hamiltonian system. The existence of symmetries and conserved

quantities in a Hamiltonian system enables the reduction of the dimension of its phase

space which might lead to a simplification on the analysis of the dynamical behaviour

of Hamilton’s equations. We will explore this relation between symmetries, conserved

quantities and reduction of the phase space dimension in the analysis we do for the

problem of two interacting charges in a uniform magnetic field.

Under certain “mild” conditions on the conserved quantities, for each conserved

quantity of a Hamiltonian system we are able to reduce the dimension of its phase space

by two dimensions. We will now provide the setting for the particular and fundamental

case of a Liouville (or completely) integrable Hamiltonian system: n degrees of freedom

with n conserved quantities (independent and in involution).

Definition 1.2.12. Let ((M,ω), H) be a Hamiltonian system with conserved quantities

F1, ..., Fn. We say that the conserved quantities are in involution if the following set of

equalities is satisfied

{Fi, Fj} = 0 , i 6= j .

Definition 1.2.13. Let ((M,ω), H) be a Hamiltonian system with conserved quantities

F1, ..., Fn and consider the following level set of the conserved quantities F1, ..., Fn:

Ca = {x ∈M : Fi (x) = ai , i ∈ {1, ..., n}} , (1.2.3)

where a = (a1, ..., an) ∈ R
n. We say that the conserved quantities are independent on
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the set Ca ⊂ M if the n 1-forms dFi, i ∈ {1, ..., n}, are linearly independent at each

point of Ca.

Remark An equivalent condition to independence of the conserved quantities F1, ..., Fn

on Ca is that the (n× n) matrix

A = (∇F1(x), ...,∇Fn(x))

has rank n for every x ∈ Ca. If such a point x exists, then there is a neighbourhood V

of x such that for all points in V the matrix A has rank n.

Theorem 1.2.14 (Arnold–Liouville Theorem). Let ((M,ω), H) be a Hamiltonian sys-

tem with n degrees of freedom and assume that

i) ((M,ω), H) has n analytic conserved quantities F1,..., Fn in involution.

ii) the conserved quantities F1,..., Fn are independent on the level set Ca (defined

in (1.2.3)).

Then the Hamiltonian system is completely integrable and Ca is a smooth manifold

invariant under the phase flow of the Hamiltonian dynamical system determined by

((M,ω), H). If, in addition, we have that the Hamiltonian vector fields are complete

on Ca , then

i) each connected component of Ca is diffeomorphic to the product of a k–

dimensional torus T
k with an (n−k)–dimensional Euclidean space R

n−k for some

k. If moreover, Ca is compact, then k = n and Ca is diffeomorphic to a torus

T
n.

ii) on T
k ×R

n−k, there exist coordinates ϕ1, ..., ϕk and z1, ..., zn−k such that Hamil-

ton’s equations on Ca are

ϕ̇i = ωi , 1 ≤ i ≤ k

żj = cj , 1 ≤ j ≤ n− k ,

where ωi = ωi(a) and cj = cj(a) are constants.
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Remark The theorem above still holds if the condition of independence of the conserved

quantities on Ca is replaced by independence on a subset of full measure of Ca.

If a Hamiltonian system does have less conserved quantities than degrees of

freedom a weaker version of Arnold–Liouville theorem still applies.

Theorem 1.2.15. Let ((M,ω), H) be a Hamiltonian system with n degrees of freedom

and let k be a positive integer such that k ≤ n. Assume that

i) ((M,ω), H) has k conserved quantities F1,..., Fk in involution.

ii) the conserved quantities F1,..., Fk are independent on the level set Ca given by

Ca = {x ∈M : Fi (x) = ai , i ∈ {1, ..., k}} ,

where a = (a1, ..., ak) ∈ R
k.

Then the Hamiltonian system ((M,ω), H) induces a Hamiltonian system ((Ma, ωa), Ha)

with n− k degrees of freedom.

The explicit construction of the reduced Hamiltonian system ((Ma, ωa), Ha) is

given by Marsden–Weinstein theorem that we will state in the next section.

1.2.2 Symplectic reduction

A more formal and general approach to the question of reduction of the dimension of

the phase space of Hamiltonian systems is the Marsden–Weinstein symplectic reduction

theory which uses techniques from Lie groups Theory and Symplectic Geometry.

Lie groups and Lie algebras

In this section we introduce the basic concepts concerning Lie groups Theory.

Definition 1.2.16. A Lie group G is a smooth manifold that has a group structure

consistent with its manifold structure in the sense that the group operation µ : G×G→
G given by

µ(g, h) = gh

29



is a smooth map.

Let e denote the identity element of G under the group operation and g−1 the

inverse element of g, for each g ∈ G. We define the left and right translation maps

Lg : G→ G and Rg : G→ G by

Lg(h) = gh

Rg(h) = hg ,

and the inner automorphism Ig : G −→ G by

Ig(h) = Lg ◦Rg−1(h) = ghg−1

Definition 1.2.17. A Lie Algebra is a vector space together with a bilinear, antisym-

metric bracket [ξ, η] satisfying Jacobi’s identity

[[ξ, η] , ζ] + [[ζ, ξ] , η] + [[η, ζ] , ξ] = 0 .

Let f : M → R be a (smooth) real valued function on a manifold M and X a

vector field on M . The Lie derivative of f along X is the directional derivative

LX = X[f ] = df.X .

Let X and Y be vector fields on M . The Lie derivative of Y along X

[X,Y ] = LXY (1.2.4)

is the unique vector field such that

L[X,Y ] = [LX,LY ] .

The bracket defined by (1.2.4) is called Jacobi–Lie bracket. In local coordinates such

that X =
∑n

i=1Xi
∂

∂xi
and Y =

∑n
i=1 Yi

∂
∂xi

, the Jacobi–Lie bracket is given by

[X,Y ] =

n∑

j=1

(
n∑

i=1

Xi
∂Yj

∂xi
− Yi

∂Xj

∂xi

)
∂

∂xj
.
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Lemma 1.2.18. Let M be a smooth manifold and X (M) be the set of vector fields on

M . Then, X (M) with the Jacobi–Lie bracket is a Lie Algebra.

We say that a vector field X on a Lie group G is left invariant if for every g ∈ G

we have that Lg
∗X = X, i.e. the following equality holds

(ThLg)X(h) = X(gh) .

Let XL(G) denote the set of left invariant vector fields on G. If g ∈ G and X,Y ∈
XL(G), then

Lg
∗ [X,Y ] = [Lg

∗X, Lg
∗Y ] = [X,Y ] ,

so [X,Y ] ∈ XL(G). Hence, XL(G) is a Lie subalgebra of X (G). For each ξ ∈ TeG,

we define a vector field Xξ on G by

Xξ(g) = TeLg(ξ) .

We can now define the Lie bracket in TeG by the relation

[ξ, η] = [Xξ, Xη] (e) (1.2.5)

where ξ, η ∈ TeG and [Xξ, Xη] is the Jacobi–Lie bracket of vector fields.

Lemma 1.2.19. The vector space TeG with the Lie bracket (1.2.5) is a Lie Algebra.

We call it the Lie Algebra of G and denote it by G.

Actions of Lie groups on manifolds

In this section we study actions of Lie groups on manifolds. For simplicity of exposition

we fix the following notation: G is a Lie group and M is a smooth manifold.

Definition 1.2.20. An action φ of G on M is a smooth map φ : G×M →M , which

we denote by

φ(g,m) = φg(m) ,

and satisfies the following conditions
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i) φe(x) = x for every x ∈M .

ii) φgh(x) = φg (φh(x)) for every g, h ∈ G and every x ∈M .

Let x ∈M . The orbit of x is the subset of M defined by

Ox = {φg(x) : g ∈ G} .

An action φ of G on M defines an equivalence relation ∼ on M given by

y ∼ x if there exists some g ∈ G such that y ∈ Ox .

Let M/G be the set of the equivalence classes of ∼, to which we call orbit space, define

the projection π : M →M/G as

π(x) = Ox

and give M/G the quotient topology, i.e. A ⊂ M/G is open if and only if π−1(A) is

open in M . If we want to make M/G a smooth manifold we have to put some more

conditions on the action φ of G on M .

Definition 1.2.21. We say that the action φ of G on M is proper if the map ψ :

G×M →M ×M , given by

ψ(g,x) = (x, φg(x))

is a proper map.

Since G and M are manifolds, the condition given above for φ to be proper

is equivalent to require that the preimage ψ−1(K) of a compact set K ⊂ M × M

under the map ψ is still a compact set. If the Lie group G is compact this condition is

automatically satisfied.

We define the isotropy group of φ at x ∈M by

Gx = {g ∈ G : φg(x) = x} .

Noting that the isotropy group Gx is a closed subgroup of G we obtain that Gx is also

a Lie group and hence a Lie subgroup of G.

32



Definition 1.2.22. We say that the action φ of G on M is free when each point x ∈M

has a trivial isotropy group, i.e. Gx = {e} for all x ∈M .

Remark If φ is an action of G on M which is proper and free then the quotient M/G

is a smooth manifold.

We now look at actions of G on its Lie Algebra G and the dual of its Lie Algebra

G∗.

Definition 1.2.23. The adjoint action of G on G, Ad : G× G −→ G, is given by

Ad (g, ξ) = TeIgξ

and the adjoint representation of G on G, Adg : G −→ G, is given by

Adg(ξ) = Ad (g, ξ) .

Denote by Ad∗g : G∗ −→ G∗ the dual of Adg, defined by

〈
Ad∗gµ, ξ

〉
= 〈µ,Adgξ〉 ,

where µ ∈ G∗, ξ ∈ G and 〈·, ·〉 is the natural pairing between G∗ and G.

Definition 1.2.24. The coadjoint action of G on G∗, Ad∗ : G×G∗ −→ G∗, is given by

Ad∗(g, µ) = Ad∗g−1(µ) .

The isotropy group of the coadjoint action of G on G∗ at µ ∈ G∗ is defined by

Gµ =
{
g ∈ G : Ad∗g−1µ = µ

}
.

Momentum map

Throughout this section let ((M,ω), H) be a Hamiltonian system and G a Lie group

acting on M through φ.

For every ξ ∈ G we define the vector field Xξ on M by

Xξ(x) =
d

dt |t=0

φexp(tξ)(x) .

We call Xξ the infinitesimal generator of φ in the direction ξ.
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Definition 1.2.25. We say that an action φ of G on M is a Hamiltonian action if

for every ξ ∈ G the infinitesimal generator Xξ is a Hamiltonian vector field on the

symplectic manifold (M,ω).

Equivalently, one could have defined a Hamiltonian action by requiring that for

every ξ ∈ G there exists a smooth function Jξ : M → R such that Xξ is the Hamiltonian

vector field XJξ of Jξ.

Remark If G is a connected Lie group and φ is a Hamiltonian action then, for every

g ∈ G, φg is a symplectomorphism. From now on we will assume that G is connected

so that all Hamiltonian actions are also symplectomorphisms.

Definition 1.2.26. We say that the map J : M → G∗ is a momentum map for the

action φ of G on M if for every ξ ∈ G

ω
(
Xξ, ζ

)
= dJξ(ζ) ,

where Jξ : M → R is defined by

Jξ(x) = J(x).ξ

and Xξ is the infinitesimal generator of φ in the direction ξ.

In other words, the definition above says that J is a momentum map if Xξ is

the Hamiltonian vector field of Jξ.

If the Hamiltonian action φ is a group of symmetries of the Hamiltonian system

((M,ω), H), i.e for every g ∈ G we have that

φg
∗H = H

φg
∗ω = ω ,

then for every ξ ∈ G the function Jξ(x) is a conserved quantity of the Hamiltonian

system ((M,ω), H).
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Definition 1.2.27. We say that the momentum map J : M −→ G∗ is coadjoint

equivariant if for every g ∈ G the following equality holds:

J (φg(x)) = Ad∗g−1 (J(x)) .

We now look at the case of (possibly) non coadjoint equivariant momentum

maps. We will see that it is always possible to make a (constant) correction to the

coadjoint action of G on G∗ such that the new coadjoint action makes the momentum

map coadjoint equivariant.

Proposition 1.2.28. Let (M,ω) be a symplectic manifold, φ a Hamiltonian action of

a Lie group G on M , Ad∗ the coadjoint action of G on G∗ and J a momentum map

for the action φ. Define, for every g ∈ G and ξ ∈ G, the map ψg,ξ : M → R, given by

ψg,ξ(x) = Jξ (φg(x)) − J
Ad∗

g−1ξ
(x) .

Then ψg,ξ is constant on M . Let σ : G→ G∗ be defined by σ(g).ξ = ψg,ξ(x). We call

σ the coadjoint cocycle associated to J .

Proposition 1.2.29. Let (M,ω) be a symplectic manifold, φ a Hamiltonian action of

a Lie group G on M , Ad∗ the coadjoint action of G on G∗ and J a momentum map

for the action φ, with cocycle σ. Then:

i) the map Ãd
∗

: G× G∗ → G∗ defined by

Ãd
∗
(g, µ) = Ad∗g−1(µ) + σ(g)

is a (coadjoint) action of G on G∗.

ii) the momentum map J is coadjoint equivariant with respect to the coadjoint action

Ãd
∗
.

Marsden–Weinstein Theorem

The first step towards the next theorem was done by Smale [36]. This was later gene-

ralized by Meyer [27] and Marsden and Weinstein [25].
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Theorem 1.2.30 (Marsden–Weinstein Reduction). Let φ be a free proper action of

the Lie group G on the symplectic manifold (M,ω), which has a coadjoint equivariant

momentum map J : M −→ G∗. Suppose that µ ∈ G∗ is a regular value of J . Then

the reduced space Mµ = J−1(µ)/Gµ is a smooth symplectic manifold with symplectic

form ωµ defined by π∗µωµ = i∗ω with dimension

dimMµ = dimJ−1(µ) − dimGµ .

Here πµ : J−1(µ) −→Mµ is the orbit map (or reduction map) of the action φ|Gµ×J−1(µ)

of Gµ on J−1(µ) and i : J−1(µ) −→M is the inclusion.

One of the main applications of the last theorem is to remove symmetries from a

Hamiltonian system defined on (M,ω). Thus, if the Hamiltonian function H : M −→ R

is invariant under the action φ given in the theorem with coadjoint equivariant momen-

tum map J : M −→ G∗ then, for every regular value µ of J , H|J−1(µ)
induces a smooth

function Hµ on the reduced space Mµ, called the reduced Hamiltonian, satisfying

π∗µHµ = i∗H .

We call the pair ((Mµ, ωµ), Hµ) reduced Hamiltonian system. It is relevant to note that

the Hamiltonian vector field associated with H in J−1(µ) is related with the Hamiltonian

vector field associated with Hµ in Mµ by

Tπµ ◦XH = XHµ
◦ πµ .

Remark We note that:

i) by Sard’s theorem almost every µ ∈ G∗ is a regular value of J .

ii) the assumption that µ ∈ G∗ is a regular value of J can be relaxed in theorem

1.2.30. Indeed, it is enough to assume that µ ∈ G∗ is a weakly regular value of

J , i.e. J−1(µ) is a submanifold of M and TpJ
−1(µ) = kerTpJ .
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iii) if µ is a regular value of J , the action of Gµ is locally free. Even if the action

is not globally free and proper the construction of the reduced space in theorem

1.2.30 can be done locally.

When the group of symmetries of a Hamiltonian system is of the form G ×K

it is useful to use symplectic reduction by stages. The next theorem assures that this

is possible. See [26] for more details and an extension of the next result to semidirect

products of Lie groups.

Theorem 1.2.31 (Commuting Reduction Theorem). Let (M,ω) be a symplectic ma-

nifold, G a Lie group (with Lie algebra G) acting symplectically on M and having an

equivariant momentum map JG : M → G∗. Assume that µ ∈ G∗ is a regular value of

JG and that the action of Gµ is free and proper, so that the symplectic reduced space

Mµ = J−1
G (µ)/Gµ is a smooth manifold. Let K be another group (with Lie algebra K)

acting on M with an equivariant momentum map JK : M → K∗. Assume that ν is a

regular value for the K-action. Suppose that the actions of G and K on M commute.

Then JG × JK is a momentum map for the action of G×K on M and

(i) if JG is K-invariant and G is connected, then JK is G-invariant and JG × JK

is equivariant. Moreover, K induces a symplectic action on Mµ, and the map

Jµ : Mµ → K∗ induced by JK is an equivariant momentum map for this action.

(ii) the (symplectic) reduced space for the action of K on Mµ at ν is symplectically

diffeomorphic to the reduction of M at the point (µ, ν) by the action of G×K.
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Chapter 2

The planar problem

Understanding the interaction of two charges in a magnetic field is important to plasma

physics but this problem seems to have been given little attention. What attention it

has received has tended to be in some limiting regimes such as very strong magnetic

field or plasmas with all the particles of the same kind (see [2, 11, 12, 33]) or with one

heavy particle idealized as fixed (the diamagnetic Kepler Problem, see [18, 37]). In this

chapter we will study the dynamics of two charged particles in a uniform magnetic field

without making any restrictions on the sizes of the magnetic field, the charges or the

masses. We will assume that the particles behave classically and that their velocities

and accelerations are small enough that we can neglect any relativistic and radiation

effects. Although it is well known that non–uniformity of the magnetic field introduces

further significant effects, we believe that there is value in establishing firm results for

the uniform case. The ultimate goal is to treat the three–dimensional case but we limit

our attention here to the two–dimensional case, which will form an important part of

the three–dimensional case.

The motion of one particle in a uniform magnetic field is the well known gyro-

motion. The particle moves in a circle of fixed centre - the guiding centre, and radius -

gyroradius, with constant angular velocity - gyrofrequency. Orienting the magnetic field

upwards, the motion in the circle is clockwise if the charge is positive and anticlock-
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wise otherwise. We sign the gyrofrequency according to the direction of rotation. This

problem can be formulated as a two degrees of freedom Hamiltonian system. It has

three–dimensional Euclidean symmetry (translation and rotation). These symmetries

induce conserved quantities for this system and it is easily seen to be integrable.

On the other hand, the interaction of two charges in the absence of a magnetic

field is also a well known problem. It is a standard two-body problem with four degrees

of freedom. If the interaction potential is chosen to depend only on the distance between

the two particles then the problem is integrable and for the particular case of a Coulomb

potential the classical description obtained by Newton for the dynamics of a planet

orbiting the Sun completely describes the dynamics of this problem too.

In this chapter, we study the interaction of two particles with non–zero charge,

with an interaction potential depending on the distance between the particles, under

the action of a uniform magnetic field. It is then a mixture of the two problems briefly

described above. In contrast to those problems this one presents much greater com-

plexity - there is a rich variety of dynamical behaviour. The trajectories of the two

particles no longer look like circles or ellipses and for some regimes of parameters the

trajectories can look extremely complicated. Indeed, we prove that whenever the charges

have opposite signs of charge (except for the case where the gyrofrequencies sum to

zero) chaotic orbits exist for this system. This last statement implies that with opposite

signs of charge (except for the case where the gyrofrequencies sum to zero) this pro-

blem is non–integrable. However, we also identify regimes of parameters where there is

extra symmetry in the system or an invariant subsystem so that it can be proven to be

integrable.

In section 2.1 we recall two possible formulations for the problem of one particle

moving under the action of a magnetic field. We choose a non–canonical formulation (as

in [22]), that makes easier to identify the system symmetries. Based on this information,

we proceed to formulate the problem of the interaction of two charges in a magnetic field

in a similar fashion. We identify translational and rotational symmetries of the system

and the corresponding conserved quantities. Furthermore, we prove the existence of an
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exceptional conserved quantity when the two particles have the same gyrofrequency.

In sections 2.2 and 2.3 we use two different approaches to the reduction of the

Hamiltonian system in consideration by its symmetries. We prove that the problem of

the interaction of two particles in a magnetic field can be reduced to one with 2 degrees

of freedom. Furthermore, when the two particles have the same gyrofrequency we use

the exceptional conserved quantity to prove integrability of the Hamiltonian system in

this case. We also prove that if the sum of the two charges is zero the dynamics in the

zero sets of the linear momenta are also integrable. In 2.2 we use symplectic reduction

and in 2.3 we do this by constructing a set of coordinates on which the system exhibits a

reduction to two degrees freedom, and integrability when it applies. We should remark

that a similar reduction is obtained in [15] for the problem of two interacting vortices

with mass moving in a plane - in that paper the analogy between that problem and

the one we treat here is also given. However, one key point of the present chapter

is that the total change of coordinates that exhibits the reduction is computed. This

change of coordinates is just the SE(2) lift that, given the base dynamics of the reduced

Hamiltonian systems, enables us to describe the full eight–dimensional dynamics.

In section 2.4, we specialize our analysis of the problem by choosing a specific

interaction potential. The natural choice for the potential V is the Coulomb potential

V (r) =
e1e2
4πǫ0

1

r
, (2.0.1)

where r denotes the distance between the two particles, e1 and e2 denote the values of

the charges and ǫ0 denotes the permittivity of the vacuum. Depending on the problem

other potentials would be plausible as, for example, in [15] a logarithmic potential is

chosen for the interaction of two vortices. In fact, our results are valid for a class of

potential functions (described in section 2.4) that includes both the Coulomb poten-

tial and the screened Coulomb potential. We give a brief description of the reduced

Hamiltonian system obtained in section 2.3 with the generic potential V replaced by the

Coulomb potential, including:

(1) boundedness of some of the variables on the reduced space. In particular, the
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distance between the two particles is always bounded;

(2) existence of regimes of parameters where close approaches between the particles

are possible.

In conjunction with the explicit knowledge of the reconstruction map, point (1) gives

• boundedness of the trajectories of the two particles when the sum of the two

charges is non–zero;

• unboundedness (typically) of the trajectories of the two particles when the sum

of the two charges is zero and certain restrictions on the level sets of the linear

momenta are satisfied.

Point (2) is crucial for the proof of existence of chaotic orbits later in the chapter.

In section 2.5 we prove the existence of periodic and chaotic trajectories sha-

dowing sequences of collision orbits. In particular we obtain large subshifts of solutions

of this type. The method used here was developed in [8] for a proof of the existence

of chaotic orbits of the second species for the circular restricted 3-body problem. To

apply it to our problem we choose appropriate coordinates for our system - relative

positions and corresponding canonically conjugate momenta - and generalize the result

in [8] to include our kind of system. The main ingredients are the construction of a

set of collision orbits satisfying some non–degeneracy conditions, the implicit function

theorem and Levi-Civita regularization. By a result of Moser, the existence of chaotic

orbits, and more precisely, the existence of an invariant subset on a energy level on

which the system contains a suspension of a subshift of finite type with positive entropy,

implies that the system is not integrable in the sense of Liouville, i.e. apart from the

conserved quantities exhibited in section 2.1.2 and the Hamiltonian function there are

no independent analytic conserved quantities - it is not possible to find a set of four

conserved quantities independent and in involution for all regimes of parameters.
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2.1 Problem formulation, symmetries and conserved quan-

tities

2.1.1 One charged particle in a magnetic field

For pedagogical reasons we start by considering the well understood case of one particle

moving in a uniform magnetic field B of norm B 6= 0, orthogonal to the plane of the

motion and pointing upwards. A particle of mass m > 0 and charge e moving in R
2

under the action of such a field is subject to a Lorentz force FL of the form

FL =
eB

c
Jv ,

where v = (vx, vy) ∈ R
2 is the particle velocity and J is the standard symplectic matrix

in R
2, given by

J =


 0 1

−1 0


 . (2.1.1)

The motion of the particle is then described by Newton’s second law

m
dv

dt
= FL , (2.1.2)

and introducing the equation dx
dt = v in (2.1.2) we obtain the system

m
dv

dt
=

e

c
v × B

dx

dt
= v , (2.1.3)

which is known to be Hamiltonian with Hamiltonian function and (non–canonical) sym-

plectic form, given by

H (x,v) =
1

2
m |v|2

ω = mdx ∧ dvx +mdy ∧ dvy −
eB

c
dx ∧ dy , (2.1.4)

where x = (x, y) ∈ R
2 denotes the particle position (see [22]). To put the Hamiltonian

system given by (2.1.4) into canonical form it is common to introduce the canonical
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coordinates q = (qx, qy) ∈ R
2 and p = (px, py) ∈ R

2, given by

q = x

p = mv +
e

c
A (x) , (2.1.5)

where A (x) = (Ax (x) , Ay (x)) ∈ R
2 is a vector potential for B. The new Hamiltonian

system (with phase space M = R
4) is then given by

H (q,p) =
1

2m

∣∣∣p − e

c
A (q)

∣∣∣
2

ω = dqx ∧ dpx + dqy ∧ dpy −
e

c

(
∂Ax

∂qy
− ∂Ay

∂qx
+B

)
dqx ∧ dqy .

Hence, for the system to be canonical the vector field A (x) must be chosen to verify

the equation
∂Ax

∂y
− ∂Ay

∂x
+B = 0 ,

which is indeed the condition for A (x) to be a vector potential for B. If needed, we

make the choice A(x) = −B
2 Jx. We consider it better, however, to use the formulation

(2.1.4) because translation symmetry is more transparent, so instead of the change of

variables (2.1.5) we just make the change of variables given by

q = x

p = mv

obtaining the Hamiltonian system

H (q,p) =
1

2m
|p|2

ω = dqx ∧ dpx + dqy ∧ dpy + k dqx ∧ dqy , (2.1.6)

where

k = −eB
c
.

The symplectic form in (2.1.6) defines a Poisson bracket {., .} : C∞ (
R

4
)
×C∞ (

R
4
)
→

C∞ (
R

4
)

given by

{F,G} =
∂F

∂qx

∂G

∂px
− ∂G

∂qx

∂F

∂px
+
∂F

∂qy

∂G

∂py
− ∂G

∂qy

∂F

∂py
− k

(
∂F

∂px

∂G

∂py
− ∂G

∂px

∂F

∂py

)
.
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In the formulation (2.1.6) the Lorentz force effect can not be seen in the Hamiltonian

function but it is present in the k dqx ∧ dqy term of the symplectic form and equivalent

term in the Poisson bracket.

There is an obvious SE(2) symmetry of the system (2.1.6) generated by the

following transformations of the phase space M = R
4

φv (q,p) = (q + v,p)

φθ (q,p) = (Rθq, Rθp) , (2.1.7)

where v = (vx, vy) is an R
2 vector and Rθ is the rotation matrix defined by

Rθ =


 cos θ − sin θ

sin θ cos θ


 . (2.1.8)

Associated to the symmetries in (2.1.7) we have, by Noether’s theorem 1.2.11, three

conserved quantities, which are given below.

Proposition 2.1.1. The Hamiltonian system (2.1.6) has the following conserved quan-

tities:

• Linear momentum P = (Px, Py) = p + kJq.

• Angular momentum L = q.Jp − k
2 |q|

2.

Furthermore, the following commutation relations hold

{Px, Py} = k , {L,Px} = Py , {L,Py} = −Px .

To finish this section we just note that the dynamical behaviour associated with

this Hamiltonian system is trivial: the particle moves in circles of fixed centre and radius

and constant angular velocity, which is the well known gyromotion: a particle with

initial conditions q0 = (qx0
, qy0

) and p0 = (px0
, py0

) moves in circles of fixed centre
(
x0 − c

eBpy0, y0 + c
eBpx0

)
- the guiding centre - and radius c

|e|B |p0| - the gyroradius,

with constant angular velocity and period 2π cm
|e|B . Furthermore, the motion in the circle

is clockwise if the charge is positive and anticlockwise otherwise.
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2.1.2 Two charged particles in a magnetic field

We consider two particles with positive masses m1 and m2 and non–zero charges e1

and e2, respectively, in the same magnetic field as described in section 2.1.1 (uniform of

norm B 6= 0, orthogonal to the plane of the motion and pointing upwards). Furthermore,

we assume that the interaction of the two particles is determined by a potential V (r)

depending on the distance r between the two particles.

The phase space M for this problem is R
8 with the singular points of the

interaction potential removed (six–dimensional planes if V is the Coulomb potential

(2.0.1)). Let qi = (qxi
, qyi

) ∈ R
2 denote the vector position of the i-th particle and

pi = (pxi
, pyi

) ∈ R
2 denote its (non–conjugate) momentum

pi = mvi , i ∈ {1, 2} ,

where vi is the velocity of the i-th particle. The motion of the two particles can still

be described by a Hamiltonian system, with Hamiltonian function H : M −→ R and

non–canonical symplectic form ω : TM × TM → R, given by

H =
1

2m1
|p1|2 +

1

2m2
|p2|2 + V (|q1 − q2|)

ω =
∑

i=1,2

dqxi
∧ dpxi

+ dqyi
∧ dpyi

+ kidqxi
∧ dqyi

, (2.1.9)

where, for simplicity of notation, we introduce the constants

ki = −eiB
c

, i ∈ {1, 2} .

The Poisson bracket associated with the symplectic form given in (2.1.9), {., .} :

C∞(M) × C∞(M) → C∞(M), is given by

{F,G} =
∑

i=1,2

∂F

∂qxi

∂G

∂pxi

− ∂G

∂qxi

∂F

∂pxi

+
∂F

∂qyi

∂G

∂pyi

− ∂G

∂qyi

∂F

∂pyi

−ki

(
∂F

∂pxi

∂G

∂pyi

− ∂G

∂pxi

∂F

∂pyi

)
. (2.1.10)
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Hamilton’s equations corresponding to the Hamiltonian system (2.1.9) are given by

q̇xi
=

∂H

∂pxi

=
1

mi
pxi

q̇yi
=

∂H

∂pyi

=
1

mi
pyi

ṗxi
= − ∂H

∂qxi

− ki
∂H

∂pyi

= (−1)i V
′(r)
r

(qx1
− qx2

) − ki

mi
pyi

(2.1.11)

ṗyi
= − ∂H

∂qyi

+ ki
∂H

∂pxi

= (−1)i V
′(r)
r

(qy1
− qy2

) +
ki

mi
pxi

.

The Hamiltonian system defined by (2.1.9) is invariant under the group generated

by the following families of symmetries

φv (q1, q2,p1,p2) = (q1 + v, q2 + v,p1,p2)

φθ (q1, q2,p1,p2) = (Rθq1, Rθq2, Rθp1, Rθp2) , (2.1.12)

where v = (vx, vy) ∈ R
2 is a translation vector and Rθ is the rotation matrix in R

2

given by (2.1.8). We define the (signed) gyrofrequency Ωi of each particle as

Ωi =
ki

mi
, i ∈ {1, 2} .

Proposition 2.1.2. The Hamiltonian system (2.1.9) has the following conserved quan-

tities:

• Linear momentum P = (Px, Py) = p1 + p2 + J (k1q1 + k2q2).

• Angular momentum L =
∑

i=1,2 qi.Jpi − ki

2 |qi|2.

Furthermore, if the particles have equal gyrofrequencies Ω1 = Ω2, there exists another

conserved quantity W , given by

W = |p1 + p2|2 .

The following commutation relations between the conserved quantities given above hold:

{Px, Py} = k1 + k2 , {L,Px} = Py , {L,Py} = −Px ,

{W,L} = 0 , {W,Px} = 0 , {W,Py} = 0 .
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Proof. The existence of a one–parameter group of symmetries φλ : M → M (with

parameter λ) of a Hamiltonian system ((M,ω), H) implies, by Noether’s theorem 1.2.11,

the existence of a conserved quantity J : M → R determined, up to an additive constant,

by

ω

(
∂φλ

∂λ
, ξ

)
= dJ (ξ) ∀ξ ∈ TM . (2.1.13)

Using the symmetry groups (2.1.12) and (2.1.13) we obtain the linear momentum P =

(Px, Py) and the angular momentum L.

From Hamilton’s equations (2.1.11), summing up the derivatives of the momenta

of the two particles, we get

ṗ1 + ṗ2 = −J

(
k1

m1
p1 +

k2

m2
p2

)
. (2.1.14)

Using (2.1.14), we obtain

d

dt
|p1 + p2|2 = 2

(
k1

m1
− k2

m2

)
p1.Jp2 . (2.1.15)

Hence, from (2.1.15) we obtain that W = |p1 + p2|2 is conserved provided Ω1 = Ω2.

The commutation relations can be obtained by inserting the conserved quantities

L, Px, Py and W in the Poisson bracket (2.1.10).

Remarks We note that:

i) the conserved quantities P and L are, respectively, the usual linear and angular

momenta for the two body problem with extra terms representing the presence of

the magnetic field and hence the effect of the Lorentz force on the particles.

ii) combining Px and Py into the conserved quantity

P = |P |2 = Px
2 + Py

2 (2.1.16)

we obtain the following commutation relations

{L,P} = 0 , {L,W} = 0 , {P,W} = 0 , (2.1.17)

which show L, P and W to be in involution.
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Lemma 2.1.3. The conserved quantity W corresponds to the one–parameter group of

symmetries φλ : R ×M −→M of the Hamiltonian system (2.1.9), given by

q1 → q1 +
1

k1 + k2

[
R2(k1+k2)λ − Id2×2

]
J(p1 + p2)

q2 → q2 +
1

k1 + k2

[
R2(k1+k2)λ − Id2×2

]
J(p1 + p2)

p1 → p1 +
k1

k1 + k2

[
R2(k1+k2)λ − Id2×2

]
(p1 + p2) (2.1.18)

p2 → p2 +
k2

k1 + k2

[
R2(k1+k2)λ − Id2×2

]
(p1 + p2) ,

where λ ∈ R, R2(k1+k2)λ is defined by (2.1.8) substituting θ by 2(k1 + k2)λ and Id2×2

is the 2 × 2 identity matrix.

Proof. The one–parameter family of symmetries of the Hamiltonian system (2.1.9) as-

sociated with the conserved quantity W is the flow of the Hamiltonian vector field of

W with respect to the symplectic form in (2.1.9), i.e. by Noether’s theorem 1.2.11, φλ

is determined by

ω

(
∂φλ

∂λ
, ξ

)
= dW (ξ) ∀ ξ ∈ TM ,

which turns out to be a system of 8 linear differential equations, which is easily inte-

grated, with solution given by (2.1.18).

If the interaction potential in (2.1.9) is chosen to be the Coulomb potential

(2.0.1) (as we will do in section 2.4) then the scaling transformation given by

qi = λqi

t = λ3/2 t

B = λ−3/2B ,

where λ > 0, transforms the Hamiltonian function and symplectic form (2.1.9) to

H = λ−1H and ω = λ1/2ω. We could then choose λ so that B = 1 by a rescaling

of the level sets of the Hamiltonian function in (2.1.9). Furthermore, choosing e1 and

m1 to be units of charge and mass, respectively, we could further reduce the number of
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parameters of (2.1.9) by two. The Hamiltonian system (2.1.9) would then depend only

on the charge e2, mass m2 and physical constants c and ǫ0.

In section 2.3 we will use the symmetries and conserved quantities discussed

above in order to derive reduced Hamiltonian systems and respective reconstruction

maps. The explicit knowledge of the reconstruction map will enable us to recover the

full dynamics from the reduced dynamics.

2.2 Reduction: Marsden–Weinstein symplectic reduction

In this section we look at the symmetries of the Hamiltonian system (2.1.9) as an action

of a Lie group acting on the phase space M of (2.1.9) and use Marsden–Weinstein

symplectic reduction to obtain the dimensions of the reduced symplectic manifolds.

The results we obtain here completely agree with the results in section 2.3. However,

this procedure gives more detailed information about the global structure of the reduced

phase spaces.

2.2.1 Symmetry group SE(2)

We consider the symmetries (2.1.12) of the Hamiltonian system (2.1.9) as an action of

the Lie group G whose elements are the composition of the symmetries in (2.1.12). Let

(Rθ,v) denote an element of G, where θ ∈ S1, Rθ is the rotation by the angle θ and

v = (vx, vy) ∈ R
2. We note that G is a Lie group of dimension 3 and it is isomorphic

to the special Euclidean group of the plane SE(2) = S1
⋉ R

2 where ⋉ denotes the

semidirect product, given by the group operation

(Rθ1
,v1).(Rθ2

,v2) = (Rθ1
Rθ2

, Rθ1
v2 + v1) .

The identity element of G is given by

0G = (Id2×2,0R2)

and the inverse of an element of G is given by

(Rθ,v)−1 = (R−θ,−R−θv) .
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The action of G on M

The action of the Lie group G on M , φ(Rθ,v) : G×M −→M , is given by

φ(Rθ,v) (q1, q2,p1,p2) = (Rθq1 + v, Rθq2 + v, Rθp1, Rθp2) . (2.2.1)

We have already seen in section 2.1.2 that the Hamiltonian system (2.1.9) is invariant

under this action. Hence, G is a group of symmetries for the Hamiltonian system (2.1.9).

Lemma 2.2.1. The action φ(Rθ,v) acts freely and properly on M .

Proof. To prove that φ(Rθ,v) acts freely on M we compute its isotropy group at m =

(q1, q2,p1,p2) ∈M , defined by

Gm =
{
(Rθ,v) ∈ G : φ(Rθ,v) (m) = m

}
.

Solving the system of equations φ(Rθ,v) (m) = m with respect to (Rθ,v) we obtain

Gm = {(Id2×2,0R2)} .

Hence, φ(Rθ,v) acts freely on M .

We will now see that φ(Rθ,v) acts properly on M . Let ψ : G ×M → M ×M ,

be given by

ψ((Rθ,v) ,m) = (m, φ(Rθ,v)(m)) .

The action φ(Rθ,v) acts properly on M if and only if the map ψ defined above is proper.

Equivalently, we need to check that for every compact set K ∈ M ×M its preimage

ψ−1(K) is also compact.

Let K ⊂M ×M be a compact set and let (yn)n∈N
be a sequence in ψ−1(K) ⊂

G×M . The sequence (yn)n∈N
is of the form

yn = (Rθn ,vn, qn
1 , q

n
2 ,p

n
1 ,p

n
2 ) .

Consider the sequence (xn)n∈N
= (ψ(yn))n∈N

in K. Then, by definition of ψ, (xn)n∈N

is of the form

xn = (qn
1 , q

n
2 ,p

n
1 ,p

n
2 , q

n
1 , q

n
2 ,p

n
1 ,p

n
2 ) ,
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where

qn
i = Rθnqn

i + vn , pn
i = Rθnpn

i , i ∈ {1, 2} . (2.2.2)

Since K is compact there exists a subsequence (xnk)k∈N
of (xn)n∈N

which

converges to a point x∗ = (q∗
1, q

∗
2,p

∗
1,p

∗
2, q

∗
1, q

∗
2,p

∗
1,p

∗
2) ∈ K. It is clear that each one

of the sequences qn
1 , qn

2 , pn
1 ,pn

2 , qn
1 , qn

2 , pn
1 and pn

2 have a convergent subsequence.

To prove that ψ−1(K) is compact we need only to check that the sequences

(θn)n∈N
and (vn)n∈N

have convergent subsequences. Using the second equality in

(2.2.2) we obtain

θnk = arctan

(
pnk

i .Jpnk

i

pnk

i .pnk

i

)
.

Since for each i ∈ {1, 2} the sequences (pnk

i )k∈N
and (pnk

i )k∈N
converge and arctan(x)

is a continuous function then the sequence (θnk)k∈N
converges to a point θ∗ satisfying

p∗
i = Rθ∗p∗

i . Similarly, using the first second equality in (2.2.2), we obtain

vnk = qnk

i −Rθnk qnk

i .

Convergence of (pnk

i )k∈N
, (pnk

i )k∈N
and (θnk)k∈N

implies convergence of (vnk)nk∈N
to

a limit point v∗ satisfying q∗
i = Rθ∗q∗

i + v∗.

Thus, the sequence (yn)n∈N
has a subsequence (ynk)k∈N

converging to a point

y∗ = (Rθ∗ ,v∗, q∗
1, q

∗
2,p

∗
1,p

∗
2) ∈ ψ−1(K), which ends the proof.

The actions of G on G and G∗

As G is isomorphic to SE(2), we use the matricial representation for elements of G

given by 3 × 3 matrices of the form


 Rθ v

0 1


 .

The Lie Algebra G of G also admits a representation in terms of 3 × 3 matrices of the

form 
 −ωJ a

0 0


 ,

51



where ω ∈ R and a ∈ R
2. The bracket in G is given by the commutator bracket

[A,B] = AB −BA. We identify G with R
3 by the isomorphism


 −ωJ a

0 0


 ∈ G 7→ (ω,a) ∈ R

3 ,

so that the expression for the Lie Algebra bracket reduces to

[(ω1,a1) , (ω2,a2)] =
(
0, ω1J

T a2 − ω2J
T a1

)
.

The adjoint action of G on G is then given by the conjugation

 Rθ v

0 1




 −ωJ a

0 0




 R−θ −R−θv

0 1


 =


 −ωJ ωJv +Rθa

0 0


 ,

which is, using the identification with R
3, equal to

Ad(Rθ,v)(ω,a) = (ω, ωJv +Rθa) .

Using the pairing between G and G∗ given by the trace of the product, we obtain a

representation for G∗ in terms of matrices of the form



µ
2J 0

α 0


 ,

where µ ∈ R and α ∈ R
2. As we did with G, we identify G∗ with R

3 by



µ
2J 0

α 0


 ∈ G∗ 7→ (µ,α) ∈ R

3

so that the pairing becomes 〈(µ,α), (ω,a)〉 = µω+α.a. To obtain the coadjoint action

of G on G∗ we compute

〈
Ad∗

(Rθ,v)−1 (µ,α) , (ω,a)
〉

=
〈
(µ,α) , Ad(R−θ,−R−θv) (ω,a)

〉

= 〈(µ,α) , (ω,−ωJR−θv +R−θa)〉

= µω − ωα.JR−θv + α.R−θa

= (µ− α.R−θJv)ω +Rθα.a

= 〈(µ−Rθα.Jv, Rθα) , (ω,a)〉 .
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Hence, we can write the coadjoint action of G on G∗ as

Ad∗
(Rθ,v)−1(µ,α) = (µ−Rθα.Jv, Rθα) . (2.2.3)

The momentum map

By proposition 2.1.2 the action φ(Rθ,v) of G on M is Hamiltonian with momentum map

JG : M → G∗ given by

JG (q1, q2,p1,p2) = (L,P ) . (2.2.4)

To simplify notation, we set

m = (q1, q2,p1,p2) ∈M ,

throughout this section.

Remark Let JG be the momentum map defined in (2.2.4) and (µ,α) ∈ G∗.

i) If k1+k2 6= 0 then every (µ,α) such that 2(k1+k2)µ+ |α|2 6= 0 is a regular value

of JG. If 2(k1 + k2)µ+ |α|2 = 0 then J−1
G (µ,α) is still a smooth submanifold of

M provided we remove the points of the form q1 = q2, p1 = p2 = 0.

ii) If k1 +k2 = 0 then every (µ,α) such that µ 6= 0 is a regular value of JG. If µ = 0

then J−1
G (0,α) is still a smooth submanifold of M provided we remove the points

of the form q1 = q2, p1 = p2 = 0.

Lemma 2.2.2. The momentum map JG is not equivariant with respect to the coadjoint

action Ad∗
(Rθ,v)−1 . Furthermore, the following equalities are satisfied

JG

(
φ(Rθ,v) (m)

)
=

(
L−RθP .Jv − k1 + k2

2
|v|2, RθP + (k1 + k2)Jv

)

Ad∗
(Rθ,v)−1 (JG (m)) = (L−RθP .Jv, RθP ) . (2.2.5)

Proof. The fact that the momentum map (2.2.4) is not equivariant with respect to the

coadjoint action Ad∗
(Rθ,v)−1 follows from the equalities (2.2.5). The second equality in

(2.2.5) follows trivially from the expression for the coadjoint action (2.2.3).
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We now prove the first equality in (2.2.5). To compute JG

(
φ(Rθ,v) (m)

)
, we

note that

JG

(
φ(Rθ,v) (m)

)
=
(
L ◦ φ(Rθ,v) (m) ,P ◦ φ(Rθ,v) (m)

)
.

Recall from proposition 2.1.2 that

P = p1 + p2 + J (k1q1 + k2q2) . (2.2.6)

Using (2.2.1), we get

(p1 + p2) ◦ φ(Rθ,v) (m) = Rθ (p1 + p2)

(k1q1 + k2q2) ◦ φ(Rθ,v) (m) = Rθ (k1q1 + k2q2) + (k1 + k2)v .

From the two equalities above and (2.2.6), we obtain

P ◦ φ(Rθ,v) (m) = RθP + (k1 + k2)Jv .

Recall from proposition 2.1.2 that

L =
∑

i=1,2

qi.Jpi −
ki

2
|qi|2 . (2.2.7)

Using (2.2.1), for each i ∈ {1, 2} we get

qi.Jpi ◦ φ(Rθ,v) (m) = (Rθqi + v) .JRθpi

= Rθqi.RθJpi +RθJpi.v

= qi.Jpi +RθJpi.v (2.2.8)

and

|qi|2 ◦ φ(Rθ,v) (m) = |Rθqi + v|2

= |qi|2 + 2Rθqi.v + |v|2 . (2.2.9)
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From (2.2.8) and (2.2.9), we obtain
(

qi.Jpi −
ki

2
|qi|2

)
◦ φ(Rθ,v) (m) =

= qi.Jpi −
ki

2
|qi|2 +RθJpi.v − kiRθqi.v − ki

2
|v|2

= qi.Jpi −
ki

2
|qi|2 −Rθpi.Jv − kiRθJqi.Jv − ki

2
|v|2

= qi.Jpi −
ki

2
|qi|2 −Rθ (pi − kiJqi) .Jv − ki

2
|v|2 . (2.2.10)

Putting together (2.2.6), (2.2.7) and (2.2.10), we obtain

L ◦ φ(Rθ,v) (m) = L−RθP .Jv − k1 + k2

2
|v|2 ,

as required.

Lemma 2.2.3. The momentum map JG is equivariant with respect to the coadjoint

action Ãd
∗
(Rθ,v)−1 : G× G∗ → G∗ given by

Ãd
∗
(Rθ,v)−1(µ,α) =

(
µ−Rθα.Jv − k1 + k2

2
|v|2, Rθα + (k1 + k2)Jv

)
.

Proof. We use propositions 1.2.28 and 1.2.29. We introduce the coadjoint cocycle

associated to JG, measuring the lack of equivariance of JG, given by

σ (Rθ,v) = JG

(
φ(Rθ,v)(m)

)
−Ad∗

(Rθ,v)−1 (JG(m))

=

(
−k1 + k2

2
|v|2, (k1 + k2)Jv

)
.

We then define a new coadjoint action of G on G∗, given by

Ãd
∗
(Rθ,v)−1(µ,α) = Ad∗

(Rθ,v)−1(µ,α) + σ (Rθ,v)

=

(
µ−Rθα.Jv − k1 + k2

2
|v|2, Rθα + (k1 + k2)Jv

)
.

This new coadjoint action of G on G∗ makes the momentum map JG equivariant.

Application of Marsden–Weinstein Theorem

Lemma 2.2.4. Let G(µ,α) denote the isotropy group of the coadjoint action Ãd
∗
(Rθ,v)−1

of G on G∗.
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i) If k1 + k2 = 0 and α = 0R2 then

G(µ,α) = G .

ii) If k1 + k2 = 0 and α 6= 0R2 then

G(µ,α) = {(Id2×2,v) ∈ G : α.Jv = 0} .

iii) If k1 + k2 6= 0 then

G(µ,α) =

{
(Rθ,v(θ)) ∈ G : v(θ) =

1

k1 + k2
J
−1 (Id −Rθ) α

}
.

Moreover, the action φ(Rθ,v) of G on M induces an action of G(µ,α) on J−1
G (µ,α)

which is free and proper.

Proof. To prove the first part of the lemma recall that the isotropy group of the coadjoint

action Ãd
∗
(Rθ,v)−1 of G on G∗ is defined by

G(µ,α) =
{

(Rθ,v) ∈ G : Ãd
∗
(Rθ,v)−1 (µ,α) = (µ,α)

}
,

where Ãd
∗
(Rθ,v)−1 is given in lemma 2.2.3. Points i), ii) and iii) are easily obtained

solving the equation Ãd
∗
(Rθ,v)−1 (µ,α) = (µ,α) with respect to (Rθ,v).

For the second part of the lemma note that for every (µ,α) ∈ G∗ the isotropy

group G(µ,α) is a closed subgroup of the Lie group G. Hence, G(µ,α) is itself a Lie

group.

Denote by φ(µ,α) the restriction of φ(Rθ,v) to G(µ,α) × J−1
G (µ,α). By lemma

2.2.1 the action φ(Rθ,v) acts freely and properly on M . Thus, its restriction φ(µ,α) is a

free and proper action of G(µ,α) on J−1
G (µ,α), which ends the proof.

We now gather all the information obtained in this section:

1) The action φ(Rθ,v) acts freely and properly on M by lemma 2.2.1.

2) The momentum map JG is coadjoint equivariant by lemma 2.2.3 (for a corrected

coadjoint action Ãd
∗
(Rθ,v)−1 of G on G∗).
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3) If k1 + k2 6= 0 then for all (µ,α) ∈ G∗ such that 2(k1 + k2)µ + |α|2 6= 0,

J−1
G (µ,α) is a smooth submanifold of M (if 2(k1 + k2)µ+ |α|2 = 0 we remove

the points of the form q1 = q2, p1 = p2 = 0 to make it a smooth manifold).

Similarly, if k1 + k2 = 0 then for all (µ,α) ∈ G∗ such that µ 6= 0, J−1
G (µ,α) is a

smooth submanifold of M (if µ = 0 we remove the points of the form q1 = q2,

p1 = p2 = 0 to make it a smooth manifold).

4) By lemma 2.2.4 the isotropy group of the coadjoint action Ãd
∗
(Rθ,v)−1 of G on G∗

has dimension given by

dimG(µ,α) =





3 if k1 + k2 = 0 and α = 0R2

1 if k1 + k2 = 0 and α 6= 0R2

1 if k1 + k2 6= 0

.

From points 1), 2), 3) and 4) above and theorem 1.2.30 (Marsden–Weinstein

reduction) we obtain:

a) M(µ,α) = J−1
G (µ,α)/G(µ,α) is a smooth submanifold of M .

b) M(µ,α) is a symplectic manifold of dimension given by

dimM(µ,α) = dimJ−1
G (µ,α) − dimG(µ,α)

=





2 if α = 0R2 and k1 + k2 = 0

4 otherwise

.

We have proven the following result.

Proposition 2.2.5. The Hamiltonian system (2.1.9) always reduces to one with two

degrees of freedom. Furthermore, if the sum of the two charges is zero, i.e k1 + k2 = 0,

the dynamics in the zero sets of the linear momenta are integrable.

2.2.2 Extended symmetry group for the case Ω1 = Ω2

We proved in proposition 2.1.2 that for the case of equal gyrofrequencies Ω1 = Ω2 the

Hamiltonian system (2.1.9) has an extra conserved quantity W = |p1 + p2|2. In lemma
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2.1.3 we described the group of symmetries of (2.1.9) associated with the conservation

of W . In this section we discuss the symplectic reduction of the phase space of (2.1.9)

by the extended group of symmetries that includes the symmetry associated with W .

We will use the Commuting reduction theorem 1.2.31 and the results in the preceding

section to obtain the reduction of the Hamiltonian system (2.1.9) for the case where

Ω1 = Ω2.

Let K = R and consider the action φλ of K on M given by (2.1.18). The group

operation in K is given by

λ1.λ2 = λ1 + λ2 , (2.2.11)

the identity element of K is 0 ∈ R and the inverse of an element of λ ∈ K is given

by −λ. Let K denote the Lie Algebra of K and K∗ its dual. Since K = R and K is

abelian (with respect to the group operation (2.2.11)), we obtain that

1) K ≈ R and the adjoint action of K on K, Ad : K ×K → K, is given by

Adλ(ξ) = ξ , ξ ∈ K .

2) K∗ ≈ R and the coadjoint action of K on K∗, Ad∗ : K ×K∗ → K∗, is given by

Ad∗λ−1(ζ) = ζ , ζ ∈ K∗ . (2.2.12)

By lemma 2.1.3 the action of K on M is Hamiltonian with momentum map

JK : M → K∗ given by

JK(m) = W , (2.2.13)

where W = |p1 + p2|2 and m = (q1, q2,p1, q2) denotes a point of M .

Remark Let JK be the momentum map defined in (2.2.13) and ξ ∈ K∗. Every ξ 6= 0

is a regular value of JK . In this section we avoid the case ξ = 0 since it needs singular

reduction to be treated. We deal with this case in section 2.3.

Lemma 2.2.6. The momentum map JK is equivariant with respect to the coadjoint

action Ad∗λ−1 : K ×K∗ → K∗ given by (2.2.12).
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Proof. Putting together (2.2.12) and (2.2.13), we obtain

Ad∗λ−1 (JK(m)) = W .

We now compute JK(φλ(m)). Adding the two last equations in (2.1.18), we get

(p1 + p2) ◦ φλ (m) = R2(k1+k2)λ (p1 + p2) .

Thus, we obtain that

W ◦ φλ (m) = |p1 + p2|2 ◦ φλ (m)

=
∣∣R2(k1+k2)λ (p1 + p2)

∣∣2

= |p1 + p2|2

= W .

Hence, we obtain that

JK(φλ(m)) = Ad∗λ−1 (JK(m)) ,

for every m ∈M , which concludes the proof.

Lemma 2.2.7. The actions φ(Rθ,v) of G on M and φλ of K on M commute.

Proof. It is an easy but tedious computation to check that

φ(Rθ,v) ◦ φλ(m) = φλ ◦ φ(Rθ,v)(m) . (2.2.14)

Furthermore, the equality (2.2.14) defines an action of G×K on M , φ(Rθ,v,λ),

given by

q1 → Rθ

[
q1 +

1

k1 + k2
(Rν − Id2×2)J(p1 + p2)

]
+ v

q2 → Rθ

[
q2 +

1

k1 + k2
(Rν − Id2×2)J(p1 + p2)

]
+ v

p1 → Rθ

[
p1 +

k1

k1 + k2
(Rν − Id2×2) (p1 + p2)

]
(2.2.15)

p2 → Rθ

[
p2 +

k2

k1 + k2
(Rν − Id2×2) (p1 + p2)

]
,
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where ν = 2(k1 + k2)λ. The action φ(Rθ,v,λ) defined above is a group of symmetries of

the Hamiltonian system (2.1.9) provided Ω1 = Ω2.

Lemma 2.2.8. The momentum map JG given by (2.2.4) is invariant under the action

φλ of K on M .

Proof. Throughout the proof we use the notation ν = 2(k1 + k2)λ. We need to check

that

JG (φλ(m)) = (L ◦ φλ(m),P ◦ φλ(m)) = (L,P ) .

To compute P ◦ φλ (m) recall from proposition 2.1.2 that

P = p1 + p2 + J (k1q1 + k2q2) . (2.2.16)

Summing the two last entries in (2.1.18), we get

(p1 + p2) ◦ φλ (m) = Rν (p1 + p2) . (2.2.17)

Similarly, using the first two entries of (2.1.18), we obtain

(k1q1 + k2q2) ◦ φλ (m) =

= k1q1 + k2q2 − J (p1 + p2) + JRν (p1 + p2)

= −J (p1 + p2 + J (k1q1 + k2q2)) + JRν (p1 + p2)

= −JP + JRν (p1 + p2) . (2.2.18)

Combining (2.2.16), (2.2.17) and (2.2.18) gives

P ◦ φλ (m) = P . (2.2.19)

To compute L ◦ φλ (m), recall from proposition 2.1.2 that

L =
∑

i=1,2

qi.Jpi −
ki

2
|qi|2 . (2.2.20)
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Let Id2×2 be denoted by Id. Using (2.1.18) we obtain

qiJpi ◦ φλ (m) =

=

(
1

k1 + k2
[Rν − Id]J(p1 + p2) + qi

)(
ki

k1 + k2
[Rν − Id]J(p1 + p2) + Jpi

)

= qiJpi +
ki

k1 + k2
qi [Rν − Id]J(p1 + p2) +

1

k1 + k2
Jpi [Rν − Id]J(p1 + p2)

+
ki

(k1 + k2)
2 |[Rν − Id]J(p1 + p2)|2 . (2.2.21)

Similarly, we obtain

ki

2
|qi|2 ◦ φλ (m) =

ki

2

∣∣∣∣
1

k1 + k2
[Rν − Id]J(p1 + p2) + qi

∣∣∣∣
2

=
ki

2
|qi|2 +

ki

k1 + k2
qi [Rν − Id]J(p1 + p2) (2.2.22)

+
ki

2 (k1 + k2)
2 |[Rν − Id]J(p1 + p2)|2 .

Putting together (2.2.21) and (2.2.22), we get

(
qiJpi −

ki

2
|qi|2

)
◦ φλ (m) = qiJpi −

ki

2
|qi|2

+
1

k1 + k2
Jpi [Rν − Id]J(p1 + p2)

+
ki

2 (k1 + k2)
2 |[Rν − Id]J(p1 + p2)|2 ,

or equivalently

L ◦ φλ (m) = L+
1

k1 + k2
J (p1 + p2) [Rν − Id]J(p1 + p2)

+
1

2 (k1 + k2)
|[Rν − Id]J(p1 + p2)|2 . (2.2.23)
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Noting that

J (p1 + p2) [Rν − Id]J(p1 + p2) +
1

2
|[Rν − Id]J(p1 + p2)|2 =

= J (p1 + p2) . [Rν − Id]J(p1 + p2)

+
1

2
[Rν − Id]J(p1 + p2). [Rν − Id]J(p1 + p2)

=

(
J (p1 + p2) +

1

2
[Rν − Id]J(p1 + p2)

)
. [Rν − Id]J(p1 + p2)

=
1

2
[Rν + Id]J(p1 + p2). [Rν − Id]J(p1 + p2)

=
1

2

(
|RνJ(p1 + p2)|2 − |J(p1 + p2)|2

)

= 0

we obtain that the last two terms on the right hand side of equation (2.2.23) sum up

to zero. Thus, we obtain

L ◦ φλ (m) = L ,

as required.

We can now apply the Commuting Reduction theorem 1.2.31. From the previous

section 2.2.1, we have that:

i) G acts symplectically on M and has a momentum map JG : M → G∗ which is

coadjoint equivariant with respect to the coadjoint action of G on G∗ given in

lemma 2.2.3.

ii) for all (µ,α) ∈ G∗, J−1
G (µ,α) is a smooth submanifold of M .

iii) the action of the isotropy group G(µ,α) of the coadjoint action Ãd
∗
(Rθ,v)−1 of G

on G∗ acts freely and properly on J−1
G (µ,α) by lemma 2.2.4 (or lemma 2.2.1).

iv) applying theorem 1.2.30 we obtained that M(µ,α) = J−1
G (µ,α) /G(µ,α) is a sym-

plectic smooth manifold. Furthermore, since Ω1 = Ω2 we have that k1 and k2 are

of the same sign and hence k1 + k2 6= 0. Thus, we have that dim(M(µ,α)) = 4.

Moreover, we have that:
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1) K acts symplectically on M by lemma 2.1.3.

2) by lemma 2.2.6, the momentum map JK is equivariant with respect to the co-

adjoint action Ad∗λ−1 : K ×K∗ → K∗ given by (2.2.12).

3) for all non–zero ξ ∈ K∗, ξ is a regular value of JK .

4) by lemma 2.2.7 the actions of G and K on M commute.

5) by lemma 2.2.8 the momentum map JG is invariant under the action of K on M .

Statements i) – iv) and 1) – 5) above, together with theorem 1.2.31, imply that

a) the momentum map JK is invariant under the action of G on M .

b) the momentum map JG × JK is equivariant with respect to the coadjoint action

Ãd
∗
(Rθ,v)−1 ×Ad∗λ−1 of G×K on the dual of its Lie Algebra.

c) K induces a symplectic action on M(µ,α) with an equivariant momentum map

J(µ,α) : M(µ,α) → K∗ induced by the momentum map JK . Hence, for all ξ 6= 0,

we have that

M(µ,α,ξ) = J−1
(µ,α)(ξ)/Kξ .

is a symplectic manifold with dimension

dim
(
M(µ,α,ξ)

)
= dim

(
J−1

(µ,α)(ξ)
)
− dim(Kξ)

= dim
(
M(µ,α)

)
− dimJ−1

K (ξ) − dim(K)

= 2 ,

where Kξ is the isotropy group of the coadjoint action Ad∗λ−1 of K on K∗ and

dim(Kξ) = dim(K).

d) the symplectic reduced space for the action of K on M(µ,α) at ξ 6= 0 is symplecti-

cally diffeomorphic to the reduction of M at the point (µ,α, ξ) by the action of

G×K.
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Thus, we have proved the following result.

Proposition 2.2.9. Let Ω1 = Ω2 and assume that the dynamics of the Hamiltonian

system (2.1.9) do not lie on the invariant subset W = 0. Then, the Hamiltonian system

(2.1.9) is integrable.

In the next section we will construct an appropriate change of coordinates, to

which we will call reconstruction map, to obtain the reduced Hamiltonian system in local

coordinates, for each case studied in this section and in the previous one. Furthermore,

we will see that proposition 2.2.9 holds even if the dynamics of (2.1.9) lie on the invariant

subset W = 0.

2.3 Reduction: cyclic variables

In this section we provide local coordinates that exhibit the reduction of the Hamiltonian

system (2.1.9) to two degrees of freedom. Moreover, we identify regimes of parameters

and invariant subsets of R
8 where the system can be proved to be integrable. To simplify

notation we define the combinations

M = m1 +m2

m =
m1m2

m1 +m2
.

We separate our analysis into two cases: k1 + k2 6= 0 and k1 + k2 = 0.

2.3.1 Case k1 + k2 6= 0

We start by noting that since k1 + k2 6= 0 the following combinations are well–defined:

µ = k1 + k2

e =
k1k2

k1 + k2
.
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We make a change of coordinates given by

q = q1 − q2

p = e

(
1

k1
p1 −

1

k2
p2 +

1

2
J (q1 − q2)

)

f = p1 + p2 (2.3.1)

P = p1 + p2 + J (k1q1 + k2q2) ,

where q = (qx, qy) ∈ R
2 is the relative position of the two particles, p = (px, py) ∈ R

2

a conjugate momentum, f = (fx, fy) ∈ R
2 and P = (Px, Py) ∈ R

2. Inverting (2.3.1)

we obtain

q1 =
1

µ
J (f − P ) +

k2

µ
q

p1 =
k1

µ
f − e

2
Jq + p

q2 =
1

µ
J (f − P ) − k1

µ
q (2.3.2)

p2 =
k2

µ
f +

e

2
Jq − p .

Combining (2.3.2) with (2.1.9), we obtain

H =
1

2m
|p|2 +

e2

8m
|q|2 +

e

2m
q.Jp +

k1Ω1 + k2Ω2

2µ2
|f |2

+ǫ (2p − eJq) .f + V (|q|) (2.3.3)

ω = dqx ∧ dpx + dqy ∧ dpy +
1

µ
(dPx ∧ dPy − dfx ∧ dfy) ,

where

ǫ =
Ω1 − Ω2

2µ
(2.3.4)

measures the displacement from the set of parameters satisfying Ω1 = Ω2. The quanti-

ties L and W are now given by

L = q.Jp +
1

2µ

(
|f |2 − |P |2

)

W = |f |2 .
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Since P is conserved we remove the − |P |2 /(2µ) term from the angular momentum,

corresponding to a change in the level set of the angular momentum, defining the

following conserved quantity

pθ = q.Jp +
1

2µ
|f |2 .

A final change of coordinates makes the system canonical and exhibits the reduction to

two degrees of freedom. It is given by writing

q = rer p = prer + 2µpθ−pφ

2µr eθ

f = p
1/2
φ e2µφ+θ

Px = µΠx Py = Πy ,

(2.3.5)

where θ is the direction of q, i.e.

er = cos θex + sin θey

eθ = − sin θex + cos θey , (2.3.6)

with ex = (1, 0) ∈ R
2 and ey = (0, 1) ∈ R

2. The vector e2µφ+θ is defined in the same

way as eθ with θ replaced by 2µφ+θ. The coordinate change given in (2.3.5) is singular

at pφ = 0 since φ is undefined in this case. There exists another coordinate singularity

at r = 0, which is not included in the phase space in the case of interaction of Coulomb

type.

We obtain the following result.

Theorem 2.3.1. Let k1 + k2 6= 0. Then, under the change of coordinates given by

q1 = −JP

µ
+

1

µ

(
k2rer + p

1/2
φ Je2µφ+θ

)

q2 = −JP

µ
− 1

µ

(
k1rer − p

1/2
φ Je2µφ+θ

)

p1 =
k1

µ
p
1/2
φ e2µφ+θ +

(
prer +

(
e

2
r +

2µpθ − pφ

2µr

)
eθ

)
(2.3.7)

p2 =
k2

µ
p
1/2
φ e2µφ+θ −

(
prer +

(
e

2
r +

2µpθ − pφ

2µr

)
eθ

)
,
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where

pθ = L+
1

2µ
P

(µΠx,Πy) = P

pφ = W ,

the Hamiltonian system (2.1.9) reduces to one with two degrees of freedom in the

variables (r, pr, φ, pφ), given by

H = H0(r, pr, pθ, pφ) + ǫH1 (r, pr, pθ, φ, pφ)

ω = dr ∧ dpr + dφ ∧ dpφ + dθ ∧ dpθ + dΠx ∧ dΠy , (2.3.8)

where H0(r, pr, pθ, pφ) is given by

H0 =
1

2m
pr

2 +
1

2m

(
2µpθ − pφ

2µr

)2

+
e2

8m
r2 +

e

2m

(
pθ +

pφ

2µ

)
+ V (r)

and H1 (r, pr, pθ, φ, pφ) is given by

H1 = pφ
1/2

((
er +

2µpθ − pφ

µr

)
cos (2µφ) − 2pr sin (2µφ)

)
+
k1 − k2

µ
pφ .

The reduced phase space for the Hamiltonian system (2.3.8) is the symplectic

blow up of C
2 (see [17] for more details).

If the gyrofrequencies of the two particles are equal, i.e. Ω1 = Ω2, we have that

ǫ = 0. Applying theorem 2.3.1 we see that φ is a cyclic variable and so we obtain the

following result.

Corollary 2.3.2. If Ω1 = Ω2, using the change of coordinates (2.3.7) given in theorem

2.3.1 the Hamiltonian system (2.1.9) reduces to one with one degree of freedom in the

variables (r, pr), given by

H = H0(r, pr, pθ, pφ)

ω = dr ∧ dpr + dφ ∧ dpφ + dθ ∧ dpθ + dΠx ∧ dΠy ,

where H0 is as given in theorem 2.3.1.
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2.3.2 Case k1 + k2 = 0

We now treat the case where the charges sum to zero. To simplify notation, we define

κ = k1 = −k2 .

We make the change of coordinates given by

q = q1 − q2

p =
1

2
(p1 − p2)

C = −1

2
J (q1 + q2) (2.3.9)

Π = κ (q1 − q2) − J (p1 + p2) ,

where q = (qx, qy) ∈ R
2 is the relative position of the two particles, p = (px, py) ∈ R

2 a

conjugate momentum, C = (Cx, Cy) ∈ R
2 and Π = (Πx,Πy) ∈ R

2. Inverting (2.3.9)

we obtain

q1 = JC +
1

2
q

q2 = JC − 1

2
q

p1 =
1

2
JΠ − κ

2
Jq + p (2.3.10)

p2 =
1

2
JΠ − κ

2
Jq − p .

From (2.3.10) and (2.1.9), we get the Hamiltonian system

H =
1

2m
|p|2 +

κ2

8m
|q|2 +

(m2 −m1)κ

2m1m2
q.Jp + V (|q|)

−
(
κ

4m
q +

m2 −m1

2m1m2
Jp

)
.Π +

1

8m
|Π|2 (2.3.11)

ω = dqx ∧ dpx + dqy ∧ dpy + dCx ∧ dΠx + dCy ∧ dΠy ,

with the conserved quantities

P = JΠ

L = q.Jp + C.JΠ . (2.3.12)
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The Hamiltonian system (2.3.11) is already reduced to two degrees of freedom by the

conservation of Π and the elimination of C. Unless Π = 0 (or equivalently P = 0),

it is not possible to use the angular momentum L to further reduce (2.3.11) since L

depends on the cyclic variables C and hence it is not a function defined on the reduced

space. We make a final change of coordinates, given by

q = rer

p = prer +
pθ

r
eθ , (2.3.13)

where er and eθ are as given in (2.3.6). We obtain the following result.

Theorem 2.3.3. Let k1 + k2 = 0. Then, under the change of coordinates given by

q1 = JC +
1

2
rer

q2 = JC − 1

2
rer

p1 =
1

2
P + prer +

(pθ

r
+
κr

2

)
eθ (2.3.14)

p2 =
1

2
P − prer −

(pθ

r
− κr

2

)
eθ ,

where

pθ = L− C.JΠ

Π = −JP ,

the Hamiltonian system (2.1.9) reduces to one with two degrees of freedom in the

variables (r, pr, θ, pθ), given by

H = H0(r, pr, pθ) +H1 (r, pr, θ, pθ,Πx,Πy)

ω = dr ∧ dpr + dθ ∧ dpθ + dCx ∧ dΠx + dCy ∧ dΠy , (2.3.15)

where H0(r, pr, pθ) is given by

H0 =
1

2m
pr

2 +
1

2m

(pθ

r

)2
+
κ2

8m
r2 +

(m2 −m1)κ

2m1m2
pθ + V (r)
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and H1 (r, pr, θ, pθ,Πx,Πy) is given by

H1 = −
((

κ

4m
r +

m2 −m1

2m1m2

pθ

r

)
er −

m2 −m1

2m1m2
preθ

)
.Π +

1

8m
|Π|2 .

If P = 0 then Π = 0 and hence H1, as given in the statement of theorem

2.3.3, is identically zero. From theorem 2.3.3, we obtain the following result.

Corollary 2.3.4. If k1 + k2 = 0 and P = 0 then, using the change of coordinates

(2.3.14) given in theorem 2.3.3 the Hamiltonian system (2.1.9) reduces to one with one

degree of freedom in the variables (r, pr), given by

H = H0(r, pr, pθ)

ω = dr ∧ dpr + dθ ∧ dpθ + dCx ∧ dΠx + dCy ∧ dΠy ,

where H0 is as given in theorem 2.3.3.

2.4 Reconstructed dynamics for a Coulomb potential

In this section we use the reduced Hamiltonian systems and the corresponding recons-

truction maps obtained in section 2.3 to provide a qualitative description of the possible

types of dynamics in the full eight–dimensional phase space in terms of the proper-

ties of the dynamics of the reduced systems. Throughout this section we consider the

interaction potential to be Coulomb

V (r) =
e1e2
4πǫ0

1

r
,

where r is the distance between the particles and ǫ0 is the permittivity of the vacuum.

We should remark, however, that the description given below still holds for a class of

Coulomb–type potentials of the form

W (r) =
e1e2
4πǫ0

f(r)

r
,

where f(r) is a positive bounded smooth function. A physically interesting particular

case is the screened Coulomb potential where f(r) = e−r/rD and rD is the Debye length.

70



The next two lemmas follow from an analysis of the form of the Hamiltonian

functions given in theorems 2.3.1 and 2.3.3, respectively. We skip their proof.

Lemma 2.4.1. Let k1 + k2 6= 0 and consider the reduced Hamiltonian system given in

theorem 2.3.1. For every level set of the Hamiltonian function the dynamics of r and

pφ are bounded for all time.

Lemma 2.4.2. Let k1 + k2 = 0 and consider the reduced Hamiltonian system given in

theorem 2.3.3. For every level set of the Hamiltonian function the dynamics of r and

pθ are bounded for all time.

In the next lemma we provide a complete description for the orbits in the two–

dimensional phase space corresponding to the integrable reduced Hamiltonian systems

given in corollaries 2.3.2 and 2.3.4.

Lemma 2.4.3. • Let Ω1 = Ω2. The reduced Hamiltonian system given in corollary

2.3.2 has a unique equilibrium. The equilibrium is elliptic and the rest of the

reduced phase space is filled by periodic orbits.

• Let k1 + k2 = 0, P = 0 and pθ 6= 0. The reduced Hamiltonian system given in

corollary 2.3.4 has a unique equilibrium. The equilibrium is elliptic and the rest of

the reduced phase space is filled by periodic orbits.

• Let k1 + k2 = 0, P = 0 and pθ = 0. The phase space of reduced Hamiltonian

system given in corollary 2.3.4 is filled by orbits doubly asymptotic to a collision.

Proof. From corollaries 2.3.2 and 2.3.4 we have that in the integrable regimes the

Hamiltonian system (2.1.9) reduces to one of one degree of freedom of the form

H = Apr
2 +

(
B

r

)2

+ Cr2 +
D

r

ω = dr ∧ dpr , (2.4.1)

where A and C are positive and D is non–zero. Let U(r) denote the effective potential

U(r) = Cr2 +

(
B

r

)2

+
D

r
.
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Differentiating with respect to r we obtain

U ′(r) = 2Cr − 2B2

r3
− D

r2

U ′′(r) = 2C +
6B2

r4
+

2D

r3
. (2.4.2)

We separate our analysis into three cases.

1) Assume that D > 0. Using (2.4.2) we obtain that U ′′(r) > 0 for every r > 0

and hence U ′(r) is strictly increasing in that range. Since we also have that

limr→0+ U ′(r) = −∞ and limr→+∞ U ′(r) = +∞ we obtain that U ′(r) has a

unique zero on (0,+∞) corresponding to an elliptic equilibrium of (2.4.1). Apart

from the equilibrium, all the level sets of H are regular and closed, so the orbits

of (2.4.1) are periodic.

2) Assume that D < 0 and B 6= 0 and rewrite U ′(r) as

U ′(r) =
1

r3
g(r) ,

where g(r) = 2Cr4−2B2−Dr. Noting that g(r) is strictly increasing in [0,+∞),

g(0) < 0 and limr→+∞ g(r) = +∞ we obtain that U ′(r) is also increasing and

since limr→0+ U ′(r) = −∞ and limr→+∞ U ′(r) = +∞ we obtain that the unique

zero of U ′(r) on (0,+∞) corresponds to an elliptic equilibrium of (2.4.1). Apart

from the equilibrium, all the level sets of H are regular and closed, so the orbits

of (2.4.1) are periodic.

3) Assume that D < 0 and B = 0. From (2.4.2) we obtain that U ′(r) > 0 for every

r > 0 and hence U(r) is strictly increasing in that range. Furthermore, we have

that limr→0+ U(r) = −∞ and limr→+∞ U(r) = +∞. In this case (2.4.1) does

not have any equilibria and all the orbits in the reduced phase space are doubly

asymptotic to a collision.
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By conservation of the linear momenta P and putting together lemma 2.4.1 and

the reconstruction map (2.3.7) given in the statement of theorem 2.3.1, we obtain the

following result.

Corollary 2.4.4. Let k1 + k2 6= 0. Then the positions of the two particles are bounded

for all time.

For any function v of time we define the average value by

〈v〉 = lim
T→∞

1

T

∫ T

0
v(t)dt

if the limit exists. By Birkhoff’s ergodic theorem, if v is the value of a continuous

function on the state space evaluated along an orbit of a volume–preserving system of

finite volume, the limit exists for the orbit of almost every point.

Corollary 2.4.5. Let k1 + k2 = 0. We have that:

i) the relative position of the two particles q1 − q2 is bounded.

ii) for small non–zero values of the conserved quantity P the motion of q1 and q2 is

typically unbounded: they drift with a non–zero average velocity.

Proof. Item i) follows from lemma 2.4.2 and the reconstruction map (2.3.14) given in

the statement of theorem 2.3.3.

To prove item ii) we use (2.3.15) to compute

Ċ =

(
∂H

∂Πx
,
∂H

∂Πy

)
=

1

4m
Π −Rθ(t) v (r(t), pr(t), pθ(t)) , (2.4.3)

where the evolution of θ is determined by

θ̇ =
∂H

∂pθ
=

1

m

pθ

r2
+
m2 −m1

2m1m2

(
κ− er.Π

r

)
, (2.4.4)

Rθ(t) denotes the rotation by the angle θ(t) and v (r, pr, pθ) is the vector in R
2 given

by

v (r, pr, pθ) =

(
κ

4m
r +

m2 −m1

2m1m2

pθ

r
,−m2 −m1

2m1m2
pr

)
.
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From (2.4.3) we obtain that

〈Ċ〉 =
1

4m
Π − lim

T→∞
1

T

∫ T

0
Rθ(t) v (r(t), pr(t), pθ(t))dt , (2.4.5)

and hence we obtain that for those orbits with 〈Ċ〉 6= 0, C(t) grows like 〈Ċ〉t.
Evaluating the integral of Ċ over the level sets of the energy and conserved

quantities, with respect to the invariant measure induced from Liouville measure, we

obtain that it is zero when we restrict to level sets with P = 0. Differentiating that

integral with respect to Πx and Πy we obtain that at least one of these partial derivatives

is non–zero when evaluated at P = 0. It follows that in a small neighbourhood of the

level sets P = 0 the integral of Ċ over the level sets of the energy and conserved

quantities is non–zero. Hence, the drift velocity 〈Ċ〉 must be non–zero for a subset of

positive measure.

From lemma 2.4.2 and the reconstruction map (2.3.14) we would get that the

motion is unbounded with average velocity J〈Ċ〉

Remarks We note that:

i) if k1 + k2 = 0, P = 0 and pθ 6= 0, then Π/(4m) = 0, the reduced motion is

periodic with period T depending on the values of pθ and H and the equation for

the evolution of θ̇ does not contain θ, so the second term in (2.4.5) vanishes if

α =

∫ T

0

1

m

pθ

r2(t)
+

(m2 −m1)κ

2m1m2
dt /∈ 2πZ .

Now α is an analytic function of the value h of H (above its minimum) and is not

identically 2πN for any N ∈ Z (as h tends to infinity, for every non–zero pθ the

period T tends to 4πm/|κ| and α approaches the value sign(κ)2π(m2 −m1)/M

in a non–constant way), so there are at most isolated values of h (given pθ) for

which α ∈ 2πZ. If these orbits are avoided then 〈Ċ〉 = 0 and the positions of the

two particles are bounded for all time.

ii) We believe that for large P 6= 0, item ii) of corollary 2.4.5 still holds, i.e. the

motion of q1 and q2 is typically unbounded. In fact, the third term of (2.4.4)
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induces a preference for θ to be in the direction of Π, so it would be an unlikely

accident for the second term of (2.4.5) to exactly cancel the first..

One of the key steps for the proof of the existence of chaotic orbits is proving

the existence of an abundant number of trajectories connecting two close approaches

between the particles. The next two lemmas describe the set of parameters and level

sets of the conserved quantities where such trajectories might exist. We skip the proofs

of these lemmas, which follow from an analysis of the Hamiltonian functions given in

theorems 2.3.1 and 2.3.3.

Lemma 2.4.6. Let k1 + k2 6= 0. Then

• if k1k2 > 0, or k1k2 < 0 and the value of the conserved quantity pθ is fixed so

that µpθ < 0, the distance between the two particles is bounded away from zero,

i.e. there exists d > 0 such that r(t) > d for all t ∈ R.

• if k1k2 < 0 and the value of the conserved quantity pθ is fixed so that µpθ is

positive, the distance r between the two particles can be arbitrarily close to 0.

Furthermore, pr → ∞ and pφ → 2µpθ as r → 0.

Lemma 2.4.7. Let k1 + k2 = 0. Then

• if P = 0 and pθ 6= 0, the distance between the two particles is bounded away

from zero, i.e. there exists d > 0 such that r(t) > d for all t ∈ R.

• if P = 0 and pθ = 0, the distance r between the two particles can be arbitrarily

close to 0. Furthermore, pr → ∞ as r → 0.

• if P 6= 0, the distance r between the two particles can be arbitrarily close to 0.

Furthermore, pr → ∞ and pθ → 0 as r → 0.

The dynamics of the Hamiltonian system (2.1.9) are completely characterized by

the dynamics of the reduced Hamiltonian systems and their cyclic variables (θ and φ in

the case k1 +k2 6= 0, θ and C if k1 +k2 = 0) given in theorems 2.3.1 and 2.3.3 and the
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respective reconstruction maps. The full dynamics correspond to Euclidean extensions,

given by the reconstruction maps, of the reduced dynamics. Extensions of dynamical

systems by Lie groups have been extensively studied in [5, 13, 14, 29]. For the case

of extensions of dynamical systems by the Special Euclidean group of the plane it was

proven in [29] that:

i) extensions of Anosov base dynamics are generically unbounded;

ii) extensions of quasiperiodic base dynamics are typically bounded in a probabilistic

sense, but there is a dense set of base rotations for which extensions are typically

unbounded in a topological sense.

The boundedness of the trajectories of the Hamiltonian system (2.1.9) obtained in

corollary 2.4.4 for the case k1 + k2 6= 0 is due to the very special form of the SE(2)

extension provided by the reconstruction map (2.3.7) and the existence of conserved

quantities for this system.

The reduced Hamiltonian systems exhibit a rich dynamical behaviour:

• In the integrable regimes the energy levels are foliated by periodic orbits.

• Close to the integrable regimes most of the periodic orbits cease to exist but

almost all orbits in the energy levels are quasiperiodic and hence the dynamics

still look regular.

• As we will prove in the next section, for opposite signs of charge (except for the

case Ω1 + Ω2 = 0) there is chaotic dynamics which implies non–integrability for

this system.

Using the reconstruction maps we obtain the following.

1) If k1+k2 6= 0 periodic and quasiperiodic base dynamics lift to quasiperiodic dynamics

under the reconstruction map (figures 2.4.1a–2.4.1c). In this case the dynamics

are, generically, quasiperiodic with three rationally independent frequencies. The

particles rotate with these three frequencies about a fixed centre determined by

the linear momenta.

76



2) If k1 + k2 = 0 periodic and quasiperiodic base dynamics lift to possibly unbounded

motion corresponding to a combination of a drift and quasiperiodic dynamics. The

quasiperiodic dynamics have, generically, two rationally independent frequencies.

3) Chaotic dynamics lift to chaotic dynamics under the reconstruction maps. The

motion is always bounded if k1 + k2 6= 0 (figures 2.4.1d–2.4.1f) and typically

unbounded otherwise (figures 2.4.1g–2.4.1i).
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Figure 2.4.1: Three distinct dynamical behaviours. For all the figures we fix the
parameters e1 = m1 = 1, B = c = 1 and ǫ0 = 0.1 and initial conditions
qy1

(0) = qy2
(0) = py1

(0) = py2
(0) = 0 and px1

(0) = px2
(0) = 1. On the left and

centre columns we have plots of projections of the reduced dynamics on the r− pr and
φ−pφ planes respectively (r−pr and θ−pθ on the bottom line) and on the right column
the respective reconstructed dynamics, i.e. trajectories of the two particles in R

2, where
the black trajectory corresponds to the first particle and the red trajectory corresponds
to the second particle. On the top figures e2 = 2, m2 = 6 and qx1

(0) = −qx2
(0) = 2,

on the centre figures e2 = −8, m2 = π and qx1
(0) = −qx2

(0) = 1 and on the bottom
figures e2 = −1, m2 = 5 and qx1

(0) = −qx2
(0) = 1.
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2.5 Non–integrability of (2.1.9) with a Coulomb–type po-

tential and opposite signs of charge

2.5.1 Motivation and main result of the section

In this section we will prove that the Hamiltonian system (2.1.9) is, for opposite signs of

charge (except for the case Ω1 + Ω2 = 0), not integrable. We use a method developed

in [8] to prove that there exist regimes of parameters and energy for which there is an

invariant subset where the system contains a suspension of a subshift of finite type and

has positive entropy. Roughly, this corresponds to the existence of a horseshoe in the

dynamics and hence, from a result in [28], we obtain that, for the two degree of freedom

Hamiltonian systems in theorems 2.3.1 and 2.3.3, there is no other analytic conserved

quantity independent of the Hamiltonian function.

By lemma 2.4.3, the integrable case Ω1 = Ω2 described in corollary 2.3.2 does

not have any saddle point in its reduced phase space, so there are no possibilities for a

simple use of Melnikov method to obtain chaos for nearby Ω1 6= Ω2.

The condition of opposite signs for the charges is needed to guarantee, by lemmas

2.4.6 and 2.4.7, arbitrarily close approaches on the level sets of the conserved quantities

of (2.1.9). The construction of a large set of collision orbits will form an important part

in the proof of existence of chaotic orbits.

Let Q = R
2 and consider a two degrees of freedom canonical Hamiltonian system

with phase space M = T ∗(Q\{0}) and Hamiltonian function Hδ : M → R, given by

Hδ = H + δV (q) , δ ∈ R . (2.5.1)

We assume that H is C4 on M and has the form

H =
1

2
|p|2 +W (q,p) , (2.5.2)

where W : M → R is a C4 function of M , such that

W (q,p) = W1 (q) +W2 (q.Jp) + (a.q + b.p)W3 (q.Jp) , (2.5.3)
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where W1 : Q→ R and W2,W3 : R → R are at least C4 functions and a, b are constant

vectors in R
2. Furthermore, we assume that V : Q\{0} → R is of the form

V (q) = −f (q)

|q| ,

where f : Q → R is a C4 function with f (0) 6= 0. We will study the Hamiltonian

system (2.5.1), for small δ > 0, as a perturbation of the canonical Hamiltonian system

with Hamiltonian function (2.5.2). The main example we are concerned with is the

interaction of two charges in a uniform magnetic field. In lemma 2.5.2 we will prove

that the Hamiltonian system (2.1.9) can be reduced to a canonical Hamiltonian system

of the form (2.5.1).

We consider energies E satisfying the following:

i) the domain D = {q ∈ Q : W (q,0) < E} contains 0,

ii) E > W (0,0) − (|b|W3(0))2 /2,

and study the system (2.5.1) on the energy level {Hδ = E} ⊂ M . We say that a

trajectory γ : [0, τ ] → D is a collision trajectory of the Hamiltonian system (2.5.2) if

γ (0) = 0, γ (τ) = 0 and γ(t) 6= 0 for every t ∈ (0, τ). Let q (λ, t), p (λ, t) represent the

general solution of the Hamiltonian system (2.5.2), where λ is a parameter of dimension

2 dimQ. Then H (q (λ, t) ,p (λ, t)) = h (λ) for some function h. Collision orbits with

energy E correspond to solutions of the system of equations

q (λ, 0) = 0

q (λ, τ) = 0 (2.5.4)

h(λ) = E ,

in the variables λ, τ . A solution of (2.5.4) is non–degenerate if the rank of the derivative

of (2.5.4) at the solution is maximal, i.e. equals 2 dimQ + 1. The definition of non–

degeneracy given above is suitable for verification of non–degeneracy on concrete exam-

ples. For completeness we give below two equivalent formulations of non–degeneracy

that will be useful later in this section. See [8] and references therein for more details.
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i) To any solution (γ(t), ξ(t)) of Hamilton’s equations associated with the canoni-

cal Hamiltonian system with Hamiltonian H, there corresponds the variational

equation

v̇ = Hqp (γ(t), ξ(t)) v +Hpp (γ(t), ξ(t)) u

u̇ = −Hqq (γ(t), ξ(t)) v −Hqp (γ(t), ξ(t)) u . (2.5.5)

We say that the points γ(τ1) and γ(τ2) are conjugate along γ if there exists a

non–identically zero solution (v(t),u(t)) of (2.5.5) such that v(τ1) = v(τ2) = 0.

We say that a collision orbit γ : [0, τ ] → D is non–degenerate if the points γ(0)

and γ(τ) are not conjugate along γ.

ii) Let Ω be the space of W 1,2 curves u : [0, 1] → Q such that u(0) = u(1) = 0.

Any point (u, τ) ∈ Ω × R
+ defines a curve γ : [0, τ ] → Q by γ(t) = u(t/τ). Let

(γ(t), ξ(t)) be the orbit in phase space corresponding to the trajectory γ(t) and

define its action as

F (u, τ) =

∫ τ

0
ξ(t).

∂H

∂p
(γ(t), ξ(t)) dt . (2.5.6)

Then F is a C2 functional on Ω × R
+ and its critical points correspond to tra-

jectories of energy E = H (γ(t), ξ(t)) connecting two collisions. A collision orbit

γ : [0, τ ] → D is non–degenerate if (u, τ), where u(t) = γ (tτ) is a non–degenerate

critical point for F .

Let K be a finite set of non–degenerate collision trajectories of (2.5.2). Denote such

trajectories by γk : [0, τk] → D, k ∈ K. A sequence (γki
)i∈Z

of non–degenerate collision

trajectories is called a chain if γ̇ki
(τki

) 6= ±γ̇ki+1
(0) for all i ∈ Z. Let Wk be a small

neighbourhood of γk ([0, τk]). We say that a trajectory γ : R → D\{0} shadows the

chain (γki
)i∈Z

if there exists an increasing sequence (ti)i∈Z such that γ ([ti, ti+1]) ⊂Wki
.

Theorem 2.5.1. Given a finite set K of non–degenerate collision orbits, there exists

δ0 > 0 such that for all δ ∈ (0, δ0] and any chain (γki
)i∈Z

, ki ∈ K, the following

statements hold.
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• There exists a trajectory γ : R → D\{0} of energy E for the canonical Hamilto-

nian system determined by (2.5.1) shadowing the chain (γki
)i∈Z

, and it is unique

(up to a time shift) if the neighbourhoods Wki
of γki

(0, τki
) in D are chosen

small enough.

• The orbit γ converges to the chain of collision orbits as δ → 0, i.e. there exists

an increasing sequence (ti)i∈Z
such that

max
ti≤t≤ti+1

dist (γ(t), γki
([0, τki

])) ≤ Cδ ,

where the constant C > 0 depends only on the set K of collision orbits.

• the orbit γ avoids collision by a distance of order δ, i.e. there exists a constant

c ∈ (0, C), depending only on K such that

cδ ≤ min
ti≤t≤ti+1

dist (γ(t),0) .

A more precise version of theorem 2.5.1 is given in theorem 2.5.12 of section

2.5.5. Theorem 2.5.1 implies that there is an invariant subset in {Hδ = E} on which the

system contains a suspension of a subshift of finite type (see [20, 21]). The topological

entropy is positive provided the graph with the set of vertices K and the set of edges

G =
{
(k, l) ∈ K2 : γ̇k (τk) 6= ±γ̇l (0)

}
(2.5.7)

has a connected branched subgraph. In this last case theorem 2.5.1 implies non–

integrability, i.e. the Hamiltonian system determined by (2.5.1) does not have any

more analytic first integrals apart from the Hamiltonian function (see [28]). Theorem

2.5.1 generalizes the main theorem in [8] where function W in (2.5.3) was allowed to

depend on p through only a linear term in p. This theorem still holds for Hamiltonian

systems of the form (2.5.1) with n degrees of freedom and for potentials V with several

Newtonian singularities and for kinetic energy given by a general Riemannian metric (see

[8] for more details). For simplicity of exposition however, we choose not to deal with

such a general system here. The proof of theorem 2.5.1 occupies sections 2.5.4–2.5.6
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and follows the technique developed in [8] up to some minor modifications that are due

to the chosen dependence of the function W on the momenta p.

2.5.2 Application to the problem of the interaction of two charges in a

uniform magnetic field

In this section we start by proving that the Hamiltonian system (2.1.9) with a Coulomb

interaction potential can be reduced to one of the form (2.5.1). Then, we use the

collision orbits constructed in section 2.5.3 and theorem 2.5.1 to prove the existence of

chaotic orbits in the interaction of two charges in a uniform magnetic field.

Lemma 2.5.2. The Hamiltonian system (2.1.9) can always be reduced to a two degrees

of freedom canonical Hamiltonian system of the form (2.5.1).

Proof. As in section 2.3 we separate the proof into two cases. If k1 + k2 = 0, apply the

change of coordinates given by

q 7→ 1

m1/2
q

p 7→ m1/2p (2.5.8)

to the Hamiltonian system given by (2.3.11) to obtain one in the form (2.5.1) with

W1 (x) =
κ2

8m2
|x|2 +

1

8m
|Π|2

W2 (ℓ) =
(m2 −m1)κ

2m1m2
ℓ

W3 (ℓ) = 1 ,

where

a = − κ

4m3/2
Π

b =
(m2 −m1)

2m1/2M
JΠ

δ =
|e1e2|m1/2

4πǫ0

f(q) = 1 .
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If k1 + k2 6= 0, we consider the three degrees of freedom Hamiltonian system

given by (2.3.3). This system has the following symmetry

φθ (q,p,f) = (Rθq, Rθp, Rθf) , (2.5.9)

with an associated conserved quantity L = q.Jp + |f |2 /(2µ). To quotient by the

symmetry group (2.5.9), we use the equivalence relation between elements of the phase

space (already reduced by translations), given by

(q,p,f) ∼
(
q′,p′,f ′)

if and only if there exist θ ∈ S1 such that (q′,p′,f ′) = (Rθq, Rθp, Rθf), and choose

for representative elements of the equivalence classes of the above relation elements

satisfying fy = 0, fx ≥ 0, and use conservation of L to obtain

fx =
√

2µ (L− q.Jp) .

Applying the above reduction to the Hamiltonian system (2.3.3), we get the following

two degrees of freedom canonical Hamiltonian system in the variables (q,p):

H =
1

2m
|p|2 +

e2

8m
|q|2 + ΛL+

( e

2m
− Λ

)
q.Jp

+ǫ (2px − eqy)
√

2µ (L− q.Jp) + V (|q|) , (2.5.10)

where

Λ =
k1Ω1 + k2Ω2

µ
.

Apply the change of coordinates (2.5.8) to the Hamiltonian system determined by

(2.5.10) to obtain one of the form (2.5.1) with

W1 (x) =
e2

8m2
|x|2 + ΛL

W2 (ℓ) =
( e

2m
− Λ

)
ℓ

W3 (ℓ) = ǫ
√

2µ (L− ℓ) ,
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where

a =
(
0,− e

m1/2

)

b =
(
2m1/2, 0

)

δ =
|e1e2|m1/2

4πǫ0

f(q) = 1 .

Introducing the rescaling given by

qi 7→
1

λ
qi , pi 7→

1

λ
pi ,

the Hamiltonian system (2.1.9) is transformed to the Hamiltonian system determined

by H/λ2 and ω/λ2, where H is given by

H =
1

2m1
|p1|2 +

1

2m2
|p2|2 + λ3 G

|q1 − q2|
and G = e1e2/(4πǫ0). Moreover, noting that Hamilton’s equations associated with the

Hamiltonian system defined by H/λ2 and ω/λ2 are the same as for the Hamiltonian

system defined by H and ω we obtain that the existence of chaotic orbits for small

values of λ for the Hamiltonian system defined by H and ω implies the existence of

chaotic orbits for the Hamiltonian system (2.1.9) on level sets of high energy.

Theorem 2.5.3. Let e1 and e2 be non–zero and have opposite signs. Furthermore,

assume that e1 + e2 is non–zero and fix values ℓ ∈ R of L and h > 0 of H such that

ξ =
(k1 + k2)ℓ

h
∈ (0,m1 +m2) . (2.5.11)

Then,

• if Ω1 and Ω2 are rationally independent then for every ξ ∈ (0,m1 +m2) there are

infinitely many non–degenerate collision trajectories of energy h and for any finite

set K of them there exists δ0 > 0 such that for every chain (γki
)i∈Z

, ki ∈ K, and

δ ∈ (0, δ0) there is a unique trajectory of energy h near the collision chain and

converging to the chain as δ → 0.
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• Let m′ be given by

m′ =
(k1 + k2)

2

k1Ω1 + k2Ω2
.

If |Ω1/Ω2| is rational, say N1/N2 in lowest terms, then

(i) if min{m1,m2} ≥ m′ and N1 > 2 (respectively N2 > 2) there is a subin-

terval (m1,m
∗) (respectively (m2,m

∗)) of (0,m1 + m2) such that for all

ξ ∈ (m1,m
∗) (respectively ξ ∈ (m2,m

∗)) there are at least four non–

degenerate collision trajectories of energy h, and the set of chains formed

from them has positive entropy. Furthermore, if N2−2 < N1 or N1−2 < N2

there is a subinterval (m′′,m′) of (0,m1+m2) such that for all ξ ∈ (m′′,m′)

there are at least four non–degenerate collision trajectories of energy h, and

the set of chains formed from them has positive entropy.

(ii) if m2 < m′ < m1 (respectively m1 < m′ < m2) and N1 > 2 (respectively

N2 > 2) there is a subinterval (m1,m
∗) (respectively (m2,m

∗)) of (0,m1 +

m2) such that for all ξ ∈ (m1,m
∗) (respectively ξ ∈ (m2,m

∗)) there are at

least four non–degenerate collision trajectories of energy h, and the set of

chains formed from them has positive entropy.

(iii) if m′ < min{m1,m2} there is a subinterval (m′,min{m1,m2}) of (0,m1 +

m2) with 2(N1 +N2 − 1) non–degenerate collision trajectories of energy h.

Given a finite set K of non–degenerate collision trajectories, there exists δ0 > 0

such that for every chain (γki
)i∈Z

, ki ∈ K, and δ ∈ (0, δ0) there is a unique

trajectory of energy h near the collision chain and converging to the chain as

δ → 0.

Proof. From lemma 2.5.2 and a rescalling we obtain that the Hamiltonian system (2.1.9)

can be reduced to one of the form (2.5.1). In section 2.5.3 we prove the existence of

chains for a Hamiltonian system of the form (2.5.2): in lemma 2.5.6 we prove the

existence of collision orbits for such system, in lemma 2.5.8 we check non–degeneracy

of such collision orbits and in lemma 2.5.9 we prove that we can build sets of such non–

85



degenerate collision orbits satisfying the direction change condition. The result then

follows by theorem 2.5.1 above, which guarantees that each chain of collision orbits of

the system (2.5.2) is shadowed by an orbit of the system (2.5.1).

Theorem 2.5.4. Let e1 and e2 be non–zero and assume that e1 + e2 = 0. Fix the

values p ∈ R
2 of P and h > 0 of H such that

ξ =
|p|2
2h

∈ (0,m1 +m2) . (2.5.12)

Then,

• if Ω1 and Ω2 are rationally independent then for every ξ ∈ (0,m1 +m2) there are

infinitely many non–degenerate collision trajectories of energy h, and for any finite

set K of them there exists δ0 > 0 such that for every chain (γki
)i∈Z

, ki ∈ K, and

δ ∈ (0, δ0) there is a unique trajectory of energy h near the collision chain and

converging to the chain as δ → 0.

• If |Ω1/Ω2| is rational and not equal to 1, say N1/N2 in lowest terms, for all

ξ ∈ (0,m1 +m2) there is at least one chain and for ξ ∈ (0,min{m1,m2}) there

is a set of chains with entropy at least log(N1 +N2 − 1). For each finite set K of

non–degenerate collision trajectories there exists δ0 > 0 such that for every chain

(γki
)i∈Z

, ki ∈ K, and δ ∈ (0, δ0) there is a unique trajectory of energy h near the

collision chain and converging to the chain as δ → 0.

Proof. From lemma 2.5.2 and a rescalling we obtain that the Hamiltonian system (2.1.9)

can be reduced to one of the form (2.5.1). In section 2.5.3 we prove the existence of

chains for a Hamiltonian system of the form (2.5.2): in lemma 2.5.7 we prove the

existence of collision orbits for such system, in lemma 2.5.8 we check non–degeneracy

of such collision orbits and in lemma 2.5.9 we prove that we can build sets of such non–

degenerate collision orbits satisfying the direction change condition. The result then

follows by theorem 2.5.1 above, which guarantees that each chain of collision orbits of

the system (2.5.2) is shadowed by an orbit of the system (2.5.1).
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Remark Note that in the case Ω1 = −Ω2, theorem 2.5.3 for k1 +k2 6= 0 produces only

one orbit (in fact it is periodic with two near collisions per period) and theorem 2.5.4

for k1 + k2 = 0 produces none (because we will see in the proof of lemma 2.5.9 that

in this case the direction change condition can not be satisfied). For all other negative

frequency ratios, theorems 2.5.3 and 2.5.4 produce chaos.

2.5.3 Construction of collision orbits

In this section we prove the existence of a countably infinite subset of collision orbits for

the Hamiltonian system (2.1.9) after reduction to the form (2.5.1), as given in lemma

2.5.2, for δ = 0. Furthermore, we prove that the collision orbits are non–degenerate and

satisfy the direction change condition on the reduced space. This construction combined

with theorem 2.5.1 implies theorems 2.5.3 and 2.5.4 .

The general solution for the Hamiltonian system (2.1.9) with zero interaction

potential can be written as

qi(t) = Ri + ρiJeΩit+φi

pi(t) = kiρieΩit+φi
, (2.5.13)

for i ∈ {1, 2}, where Ri = (Rxi
, Ryi

) ∈ R
2 are the guiding centres of the particles,

ρi ≥ 0 their gyroradii, Ωi ∈ R their gyrofrequencies, φi ∈ S1 their initial phases and

eΩit+φi
= (− sin(Ωit+ φi), cos(Ωit+ φi)). Substituting (2.5.13) in the expressions for

the Hamiltonian function given in (2.1.9) and the linear and angular momenta given in

proposition 2.1.2, we obtain the conserved quantities of the Hamiltonian system (2.1.9)

as functions of the parameters introduced above

H =
k1Ω1

2
ρ1

2 +
k2Ω2

2
ρ2

2 (2.5.14)

P = J (k1R1 + k2R2) (2.5.15)

L =
∑

i=1,2

ki

2

(
ρ2

i − |Ri|2
)
. (2.5.16)

By lemma 2.5.2, on level sets {H = h, L = ℓ,P = p} of the Hamiltonian and

the conserved quantities, to each orbit of the Hamiltonian system (2.1.9), satisfying the
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conditions

q1(0) = q2(0)

q1(τ) = q2(τ) , (2.5.17)

for some τ > 0 and such that q1(t) 6= q2(t) for every 0 < t < τ , there exists a collision

orbit

q(t) =
1

m1/2
(q1(t) − q2(t)) ,

of the corresponding reduced Hamiltonian system, given in lemma 2.5.2, on the level

set with energy h and fixed parameters L = ℓ and P = p such that

q(0) = 0

q(τ) = 0 ,

for some τ > 0 and q(t) 6= 0 for every 0 < t < τ .

The next lemma follows by some simple geometric arguments. We skip its proof.

Lemma 2.5.5. Assume that the trajectories of the two particles are given by (2.5.13).

Then

• the images of the trajectories intersect in two distinct points if and only if the

inequalities

|ρ1 − ρ2| < |R1 − R2| < ρ1 + ρ2 .

are satisfied. Furthermore, the intersections are transversal and if the angles φ1

and φ2 are fixed by the condition q(0) = 0 they satisfy φ2 − φ1 6= 0 (mod π).

• if Ω1 and Ω2 are rationally independent then the two particles collide at most once

at each of the intersection points.

We now prove the existence of a large set of collision orbits of (2.1.9) on fixed

level sets of the conserved quantities. In the construction we choose these collision orbits

to connect distinct collision points since collision orbits connecting a point to itself are
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possible only for rationally dependent gyrofrequencies. Moreover, such orbits turn out

to be degenerate. As before, we separate the analysis into two cases: k1 + k2 6= 0 and

k1 + k2 = 0.

Case k1 + k2 6= 0

Lemma 2.5.6. Let e1 and e2 be such that e1 + e2 6= 0 and e1e2 < 0 and fix ℓ ∈ R and

h > 0 such that

ξ =
(k1 + k2)ℓ

h
∈ (0,m1 +m2) . (2.5.18)

Then,

• if Ω1 and Ω2 are rationally independent then for every ξ ∈ (0,m1 + m2) there

are infinitely many SE(2) equivalence classes of orbits of the Hamiltonian system

(2.1.9) with zero interaction on the level set

{
(q1, q2,p1,p2) ∈ R

8 : H = h , L = ℓ ,P = p
}

(2.5.19)

satisfying (2.5.17) with no early collisions.

• If |Ω1/Ω2| is rational, say N1/N2 in lowest terms, then the following holds.

(i) If min{m1,m2} ≥ m′ and N1 > 2 (respectively N2 > 2) there is a subin-

terval (m1,m
∗) (respectively (m2,m

∗)) of (0,m1 + m2) such that for all

ξ ∈ (m1,m
∗) (respectively ξ ∈ (m2,m

∗)) there are at least four SE(2)

equivalence classes of orbits of the Hamiltonian system (2.1.9) with zero in-

teraction on the level set (2.5.19) satisfying (2.5.17) with no early collisions.

Furthermore, if N2 −2 < N1 or N1 −2 < N2 there is a subinterval (m′′,m′)

of (0,m1 +m2) such that for all ξ ∈ (m′′,m′) there are at least four of such

equivalence classes.

(ii) If m2 < m′ < m1 (respectively m1 < m′ < m2) and N1 > 2 (respectively

N2 > 2) there is a subinterval (m1,m
∗) (respectively (m2,m

∗)) of (0,m1 +

m2) such that for all ξ ∈ (m1,m
∗) (respectively ξ ∈ (m2,m

∗)) there are at

least four of such equivalence classes.
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(iii) If m′ < min{m1,m2} there is a subinterval (m′,min{m1,m2}) of (0,m1 +

m2) with 2(N1 +N2 − 1) of such equivalence classes.

Proof. We fix the values of the masses m1 > 0 and m2 > 0 and charges e1 and e2

such that e1e2 < 0 and e1 + e2 6= 0. We assume that k1 + k2 > 0, as the case

k1 + k2 < 0 can be transformed to this by time reversal. Without loss of generality we

assume that k1 > 0 and k2 < 0. With this choice we also have Ω1 = k1/m1 > 0 and

Ω2 = k2/m2 < 0.

From (2.5.15) we get that the centre of charge of the guiding centres

k1R1 + k2R2

k1 + k2
=

−JP

k1 + k2

is a constant. So by a translation we can assume it and P are 0. This implies the

relation

R2 = −k1

k2
R1 . (2.5.20)

We remove the symmetry associated with the conservation of angular momentum using a

rotation that makes the guiding centre of the first particle R1 = (Rx1
, Ry1

) a horizontal

vector, i.e.

Ry1
= 0 , Rx1

> 0 . (2.5.21)

Let us treat the case where at time t = 0 the two charges are at the intersection

point of the two circles above the horizontal axis. We will treat the other case similarly.

The situation is pictured in figure 2.5.1.

From the sine rule we obtain

ρ1 =
r sinφ2

sin(φ1 + φ2)

ρ2 =
r sinφ1

sin(φ1 + φ2)
, (2.5.22)

where φ1 and φ2 belong to the set

S =
{
(φ1, φ2) ∈ S1 × S1 : 0 < φ1 < π, 0 < φ2 < π − φ1

}
(2.5.23)
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ρ2ρ1

φ2φ1

e2

e1

Rx2
Rx1

Figure 2.5.1: Trajectories of the two charges between collision points (for k1 ≥ |k2|).

and r denotes the distance between the guiding centres of the particles and satisfies

Rx1
= − k2

k1 + k2
r . (2.5.24)

From (2.5.14) and (2.5.22) we obtain

H =
r2

2 sin2(φ1 + φ2)

(
k1Ω1 sin2 φ2 + k2Ω2 sin2 φ1

)
. (2.5.25)

Similarly, using (2.5.16), (2.5.20), (2.5.22) and (2.5.24) we obtain that

L =
r2

2 sin2(φ1 + φ2)

(
k1 sin2 φ2 + k2 sin2 φ1 −

k1k2

k1 + k2
sin2(φ1 + φ2)

)
. (2.5.26)

We define the function

Ξ =
(k1 + k2)L

H
=

(k1 + k2)
(
k1 sin2 φ2 + k2 sin2 φ1

)
− k1k2 sin2(φ1 + φ2)

k1Ω1 sin2 φ2 + k2Ω2 sin2 φ1
(2.5.27)

and note that Ξ has range (0,m1 +m2) and takes the values m1, m2 and

m′ =
(k1 + k2)

2

k1Ω1 + k2Ω2
(2.5.28)

along the boundaries φ1 = 0, φ2 = 0 and φ1 + φ2 = π, respectively. Note that

m′ < max {m1,m2} (in particular, since we are assuming k1 + k2 > 0 then m′ <

m1) and if m1 = m2 then m′ < m1. The supremum m1 + m2 of Ξ is approached
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Figure 2.5.2: Contour plots of Ξ in the set S for k1 > |k2|. From left to right, on
the top line are the cases m′ < m1 < m2 (2.5.2a), m′ < m1 = m2 (2.5.2b) and
m′ < m2 < m1 (2.5.2c) and on the bottom line are the cases m′ = m2 < m1

(2.5.2d) and m2 < m′ < m1 (2.5.2e). The contour plots are qualitatively the same
for all parameters in these ranges; the values used in the figures are k1 = m1 = 1
and (k2,m2,m

′) = (−1/2, 2, 2/9) (2.5.2a), (−1/2, 1, 1/5) (2.5.2b), (−1/2, 1/2, 1/6)
(2.5.2c), (−1/4, 1/2, 1/2) (2.5.2d), (−1/4, 1/4, 9/20) (2.5.2e).

along the line φ2/φ1 = |Ω2|/Ω1 to (0, 0). Its infimum 0 is approached along the line

φ2/(π − φ1) = |k2|/k1 to (π, 0). See figure 2.5.2 for plots of the level sets of Ξ.

From an analysis of figure 2.5.1 we get that the time τ > 0 in (2.5.17) for the

particles to collide at the intersection point lying below the horizontal line must satisfy

the conditions

τ =
2πn1 − 2φ1

Ω1
=

2πn2 − 2φ2

|Ω2|
, (2.5.29)

for some integers n1, n2 ≥ 1.

If the gyrofrequencies Ω1 and Ω2 are rationally independent then, by lemma
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2.5.5, there are no collisions for times t ∈ (0, τ). On the other hand, if Ω1 and Ω2 are

rationally dependent, say Ω1/|Ω2| = N1/N2 in lowest terms, then early collisions might

occur, i.e. there might exist 0 < t∗ < τ such that q1(t
∗) = q2(t

∗). It suffices, however,

to reduce (n1, n2) by the first integer multiple of (N1, N2) to make n1 ≤ N1 or n2 ≤ N2

(maintaining n1, n2 ≥ 1) to obtain a collision trajectory with the same start and end as

before with no early collisions.

Also from (2.5.29) we get the relation

φ2 = |Ω2|
(
C(n1, n2) +

φ1

Ω1

)
, (2.5.30)

where C (n1, n2) is given by

C (n1, n2) =
πn2

|Ω2|
− πn1

Ω1
.

The case where at t = 0 the two particles are at the lower intersection of

figure 2.5.1 is similar, but

τ =
2φ1 + 2πn′1

Ω1
=

2φ2 + 2πn′2
|Ω2|

for some integers n′1, n
′
2 ≥ 0. So the two cases can be combined by allowing (n1, n2) in

(2.5.29) to range over N =
{
(n1, n2) ∈ Z

2 : n1, n2 ≥ 1 or n1, n2 ≤ 0
}

(reduced suita-

bly by multiples of (N1, N2) in the rational case to avoid early collisions).

We fix a level set of Ξ = ξ, where ξ ∈ (0,m1+m2). Collision orbits correspond to

intersections of that level set with the set of lines in S given by (2.5.30) for n1, n2 ∈ N .

Now we separate the analysis into two cases.

Claim 1: If Ω1 and Ω2 are rationally independent there are infinitely many transverse

intersections in S for any given ξ ∈ (0,m1 +m2).

Claim 2: If Ω1 and Ω2 are rationally dependent, say Ω1/|Ω2| = N1/N2 in lowest terms,

there are transverse intersections for all ξ ∈ (m′,m1 +m2). Furthermore, we have

that the following holds.

(i) If min{m1,m2} ≥ m′ and N1 > 2 (respectively N2 > 2) there are at least

two transverse intersections for all ξ ∈ (m1,m
∗) (respectively ξ ∈ (m2,m

∗))
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for somem∗ ∈ (m1,m1+m2) (respectivelym∗ ∈ (m2,m1+m2)). Moreover,

if N2−2 < N1 or N1−2 < N2 there are at least two transverse intersections

for all ξ ∈ (m′′,m′) for some m′′ ∈ (0,m′).

(ii) If m2 < m′ < m1 and N1 > 2 there are at least two transverse intersections

for all ξ ∈ (m1,m
∗) for some m∗ ∈ (m1,m1 +m2).

(iii) If m′ < min{m1,m2} there is a subinterval (m′,min{m1,m2}) with at least

(N1 +N2 − 1) transverse intersections.

(iv) Each intersection defines two collision trajectories, one from the upper point

to the lower point, the other from the lower to the upper.

Claim 1 is trivial since rational independence of Ω1 and Ω2 implies that the lines

(2.5.30) densely fill the set S. Since there are no level sets of Ξ parallel to the lines

(2.5.30) then we have infinitely many intersections with each level set ξ ∈ (0,m1 +m2)

of Ξ. Infinitely many of them are transverse.

We now prove Claim 2. Equation (2.5.30) defines N1 + N2 − 1 lines of slope

N2/N1, from the origin, the points nπ/N1 on the φ2-axis and the points nπ/N2 on the

φ1-axis. On the line from (0, 0) one of the two situations happen: either Ξ decreases

at non–zero rate from m1 + m2 to a minimum and then rises at non–zero rate to

m′ or Ξ decreases at non–zero rate to m′. Thus, transverse intersections exist for all

ξ ∈ (m′,m1 +m2).

Now if N1 > 2 there is a line starting from π/N1 on the φ2-axis. On this line

Ξ rises at non–zero rate from m1 to a maximum value and then either Ξ decreases to

m′ at non–zero rate or Ξ decreases to a minimum below m′ to rise again to m′. Take

m∗ to be the maximum value in this line. If N2 > 2 there is a line starting from π/N2

on the φ1-axis. On this line Ξ rises at non–zero rate from m2 to a maximum value and

then either Ξ decreases to m′ at non–zero rate or Ξ decreases to a minimum below m′

to rise again to m′. Take m∗ to be the maximum value of Ξ on this line. To finish the

proof of (i) note that the condition N2 − 2 < N1 implies that on the line from π/N2

the map Ξ has a maximum above m′ and a minimum m′′ below m′. The condition
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N1 − 2 < N2 implies the same conclusion when the line from π/N1 is considered. To

prove (ii) note that if m2 < m′ < m1 then on the line from π/N1 on the φ2-axis Ξ

rises at non–zero rate from m1 to a maximum value and then either Ξ decreases to m′

at non–zero rate or Ξ decreases to a minimum below m′ to rise again to m′. For (iii),

note that on all the N1 +N2 − 1 lines, Ξ connects one of m1 +m2 (at (0, 0)), m1 (at

φ1 = 0) or m2 (at φ2 = 0) to m′ at φ1 + φ2 = π. Statement (iv) is a result of the

rational frequency ratio. This finishes the proof of Claim 2.

To finish the proof of lemma 2.5.6 we note that given (φ1, φ2) ∈ S and fixing

H = h in (2.5.25) we determine r. Having determined r we obtain R1 and R2 by

(2.5.20) and (2.5.24). The values of ρ1 and ρ2 are determined by (2.5.22) once r, φ1

and φ2 are known. The results for k1 + k2 < 0 are obtained by time reversal, the only

effect being that the case m1 < m′ < m2 of item (ii) of the lemma applies.

Case k1 + k2 = 0

Lemma 2.5.7. Let e1 and e2 be such that e1 + e2 = 0 and fix p ∈ R
2 non–zero and

h > 0 such that

ξ =
|p|2
2h

∈ (0,m1 +m2) . (2.5.31)

Then,

• if Ω1 and Ω2 are rationally independent then for every ξ ∈ (0,m1 + m2) there

exist infinitely many SE(2) equivalence classes of orbits of the Hamiltonian system

(2.1.9) with zero interaction on the level set

{
(q1, q2,p1,p2) ∈ R

8 : H = h , L = ℓ ,P = p
}

satisfying (2.5.17) with no early collisions.

• If |Ω1/Ω2| is rational, say N1/N2 in lowest terms, and ξ ∈ (0,m1 +m2) there are

at least two SE(2) equivalence classes of orbits of the Hamiltonian system (2.1.9)

with zero interaction on the level set

{
(q1, q2,p1,p2) ∈ R

8 : H = h , L = ℓ ,P = p
}
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satisfying (2.5.17) with no early collisions. If ξ ∈ (0,min{m1,m2}) there are at

least 2(N1 +N2 − 1) of them.

Proof. Without loss of generality, we fix the values of the masses m1 > 0 and m2 > 0

and charges e1 < 0 and e2 > 0 so that k1 > 0 and k2 < 0. Since e1 + e2 = 0 we have

k1 + k2 = 0, so throughout this proof we set k2 = −k1.

We fix a non–zero value p = (px, py) ∈ R
2 for the level set {P = p} (we have

seen already that if k1 + k2 = 0 and P = 0 then the system is integrable). Without

loss of generality we apply a rotation to make p vertical, i.e.

p = (px, py) , px = 0 , py > 0 . (2.5.32)

Hence, from (2.5.15) and (2.5.32), we get that the vector

R2 − R1 =
1

k1
Jp , (2.5.33)

is horizontal, oriented to the right, and has norm

r =
|p|
k1

. (2.5.34)

Then the situation is as in figure 2.5.1 again.

Let us first treat the case where at t = 0 the two charges are at the intersection

point of the two circles above the horizontal axis.

From the sine-rule we obtain ρ1 and ρ2 as given in (2.5.22) with r given by

(2.5.34) and φ1 and φ2 belong to the set S defined in (2.5.23). From (2.5.14) and

(2.5.22) we obtain H as given in (2.5.25). We define the function

Ξ =
k2

1r
2

2H
=

k1 sin2(φ1 + φ2)

Ω1 sin2 φ2 − Ω2 sin2 φ1
=

m1m2 sin2(φ1 + φ2)

m1 sin2 φ1 +m2 sin2 φ2
(2.5.35)

and note that Ξ again has range (0,m1 + m2) and takes values m1, m2, m
′ = 0 on

φ1 = 0, φ2 = 0, φ1 + φ2 = π, respectively. See figure 2.5.3 for plots of the level sets of

Ξ.

From an analysis of figure 2.5.1 we get that the time τ > 0 in (2.5.17) for which

a collision occurs must satisfy the conditions (2.5.29) for some n1, n2 ∈ N.
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Figure 2.5.3: Contour plots of Ξ in the set S for the case k2 + k1 = 0. From left to
right are the cases m1 < m2 (2.5.3a), m1 = m2 (2.5.3b) and m1 > m2 (2.5.3c). The
figures are drawn for k1 = 1, k2 = −1 and (m1,m2) = (1, 2) (2.5.3a), (1, 1) (2.5.3b),
(1, 1/2) (2.5.3c), but all other parameter choices satisfying the given conditions give
qualitatively equivalent pictures.

If the gyrofrequencies Ω1 and Ω2 are rationally independent then, by lemma

2.5.5, there are no collisions for times t ∈ (0, τ). On the other hand, if Ω1 and Ω2 are

rationally dependent, say Ω1/|Ω2| = N1/N2 in lowest terms, then early collisions might

occur, i.e. there might exist 0 < t∗ < τ such that q1(t
∗) = q2(t

∗). As before, reducing

(n1, n2) by a multiple of (N1, N2) removes any early collisions. As before, we obtain

the relation (2.5.30), and the case where the particles start at the lower intersection in

figure 2.5.1 can be incorporated by allowing (n1, n2) to range over N .

We fix a level set of Ξ = ξ, where ξ ∈ (0,m1+m2). Collision orbits correspond to

intersections of that level set with the set of lines in S given by (2.5.30) for (n1, n2) ∈ N .

Now we separate the analysis into two cases.

Claim 1: If Ω1 and Ω2 are rationally independent there are infinitely many transverse

intersections in S for any given ξ ∈ (0,m1 +m2).

Claim 2: If Ω1 and Ω2 are rationally dependent, say Ω1/|Ω2| = N1/N2 in lowest

terms, there are transverse intersections for all ξ ∈ (0,m1 + m2). For ξ ∈
(0,min{m1,m2}) there are at least N1 + N2 − 1 transverse intersections. Each

intersection gives two collision orbits.

97



The proofs of Claims 1 and 2 are analogous (though simpler) to those given in

the proof of the previous lemma 2.5.6.

To finish the proof we note that given (φ1, φ2) ∈ S and fixing H = h in (2.5.25)

we determine r, from which we obtain R1 and R2 (up to a translation) by (2.5.33).

The values of ρ1 and ρ2 are determined by (2.5.22) once r, φ1 and φ2 are known.

Analysis of the sets of collision trajectories

Lemma 2.5.8. Consider the collision orbits at δ = 0 constructed in lemmas 2.5.6 and

2.5.7.

• If Ω1 and Ω2 are rationally independent there are infinitely many non–degenerate

collision orbits for any given ξ ∈ (0,m1 +m2).

• Suppose |Ω1/Ω2| is rational, say N1/N2 in lowest terms.

– If k1 + k2 6= 0 then

(i) if min{m1,m2} ≥ m′ and N1 > 2 (respectively N2 > 2) for all

ξ ∈ (m1,m
∗) (respectively ξ ∈ (m2,m

∗)) there are at least four non–

degenerate collision orbits. Furthermore, if N2−2 < N1 or N1−2 < N2

for all ξ ∈ (m′′,m′) there are at least four.

(ii) if m2 < m′ < m1 (respectively m1 < m′ < m2) and N1 > 2 (respecti-

vely N2 > 2) for all ξ ∈ (m1,m
∗) (respectively ξ ∈ (m2,m

∗)) there are

at least four non–degenerate collision orbits.

(iii) if m′ < min{m1,m2} for all ξ ∈ (m′,min{m1,m2}) there are 2(N1 +

N2 − 1) non–degenerate collision orbits.

– If k1 + k2 = 0 then for all ξ ∈ (0,m1 + m2) there are at least two non–

degenerate collision orbits and for ξ ∈ (0,min{m1,m2}) there are at least

2(N1 +N2 − 2).

Proof. In the proofs of lemmas 2.5.6 and 2.5.7 we have constructed sets of collision

orbits by removing the symmetries and fixing the conserved quantities of (2.1.9) and
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enforcing the collision conditions (2.5.17). Collision orbits correspond to intersections

of the lines (2.5.30) with level sets of the quantity Ξ (defined in (2.5.27) for the case

k1 + k2 6= 0 and (2.5.35) for the case k1 + k2 = 0). To prove non–degeneracy we must

check that the derivative of (2.5.4) has full rank when evaluated on a collision orbit.

We prove this for the case k1 +k2 = 0. The case k1 +k2 6= 0 is analogous. Substituting

(2.5.13) in (2.5.4) and using (2.5.14) and (2.5.33), we obtain

ρ1Jeφ1
− ρ2Jeφ2

=
1

k1
Jp

ρ1JeΩ1τ+φ1
− ρ2JeΩ2τ+φ2

=
1

k1
Jp (2.5.36)

1

2m1
ρ1

2 +
1

2m2
ρ2

2 = E .

Note that the right hand side of (2.5.36) does not contain any of the five parameters ρ1,

ρ2, φ1, φ2 and τ . Differentiating (2.5.36) with respect to these five parameters, com-

puting the determinant of the resulting matrix, substituting ρ1 and ρ2 by the expressions

given in (2.5.22) and noting that

cos(Ωiτ + φi) = cos(φi) , sin(Ωiτ + φi) = − sin(φi) , i ∈ {1, 2} ,

we obtain

D(φ1, φ2) =
2r4k1 sin(φ1) sin(φ2)

m1m2 sin4(φ1 + φ2)

(
F1(φ1, φ2) +

m1

m2
F1(φ1, φ2) +

m2

m1
F3(φ1, φ2)

)
,

where

F1(φ1, φ2) = cos3(φ1) sin(φ1) sin2(φ2) − cos2(φ1) sin2(φ1) sin(φ2) cos(φ2)

+ sin3(φ1) sin2(φ2) cos(φ1) − sin(φ2) sin2(φ1) cos3(φ2)

+ sin2(φ2) cos(φ1) sin(φ1) cos2(φ2) − sin4(φ1) sin(φ2) cos(φ2)

− sin3(φ2) sin2(φ1) cos(φ2) + sin4(φ2) cos(φ1) sin(φ1)

F2(φ1, φ2) = − cos(φ1) sin3(φ1) cos2(φ2) + cos2(φ1) sin2(φ1) cos(φ2) sin(φ2)

− sin4(φ1) sin(φ2) cos(φ2) + sin3(φ1) cos(φ1) sin2(φ2)

F3(φ1, φ2) = sin3(φ2) cos(φ2) cos2(φ1) − sin2(φ2) cos(φ1) cos2(φ2) sin(φ1)

+ sin4(φ2) sin(φ1) cos(φ1) − sin3(φ2) sin2(φ1) cos(φ2) ,
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and r is as given in (2.5.34). To obtain non–degeneracy it is enough to check that the

level sets of D do not coincide with the level sets of Ξ. Changing variables in (2.5.35)

to x = cos(φ1) and y = cos(φ2), where

(x, y) ∈
{
(u, v) ∈ R

2 : −1 ≤ u, v ≤ 1 , u+ v ≥ 0
}
.

we obtain

Ξ =
m1m2

(
x2 + y2 − 2x2y2

)

m1 +m2 −m1x2 −m2y2
,

Applying the same change to D, we obtain

D(x, y) =
−2k1r

4
√

(1 − x2) (1 − y2)

m1
2m2

2
(
x
√

1 − y2 + y
√

1 − x2
)4G(x, y) ,

where

G(x, y) =
(
m1

2
(
1 − x2

)
+m2

2
(
1 − y2

))
G1(x, y) + 2m1m2G2(x, y)

G1(x, y) = y
(
1 − 2x2

)√
1 − y2 − x

(
1 − 2y2

)√
1 − x2

G2(x, y) = y
(
1 − x2

)√
1 − y2 − x

(
1 − y2

)√
1 − x2 .

Since for the variables (x, y) the level sets of Ξ are quartic curves in R
2 while the level

sets of D are non–algebraic curves in R
2 we obtain that the level sets of Ξ and D do

not coincide.

Let Γ ⊂ N be a set of labels for the non–degenerate collision orbits constructed

in lemmas 2.5.6 and 2.5.7. The set Γ is countably infinite if Ω1 and Ω2 are rationally

independent and finite otherwise. Let n ∈ Γ and denote by qn(t) a collision orbit with

given momenta P, L and energy h, given by

qn(t) =
1

m1/2
(qn

1 (t) − qn
2 (t)) ,

where

qn
1 (t) = Rn

1 + ρn
1JeΩ1t+σnφn

1

qn
2 (t) = Rn

2 + ρn
2JeΩ2t+π−σnφn

2
,
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Rn
i , ρn

i and φn
i for i ∈ {1, 2} are as constructed in lemmas 2.5.6 and 2.5.7 and σn ∈ ±

corresponds to starting at the upper or lower intersection in figure 2.5.1.

Lemma 2.5.9. Let n ∈ Γ and qn(t) be a collision orbit with given momenta P, L and

energy H. Then,

• if Ω1 and Ω2 are rationally independent there exist infinitely many non–degenerate

collision orbits that leave 0 with the same P, L and H in neither the same nor

the opposite direction as qn(τn).

• If |Ω1/Ω2| is rational, say N1/N2 in lowest terms, then

– if k1 + k2 6= 0:

(i) if min{m1,m2} ≥ m′ and N1 > 2 (respectively N2 > 2) for ξ ∈
(m1,m

∗) (respectively ξ ∈ (m2,m
∗)) there is a set of chains with

entropy log 2. Furthermore, if N2 − 2 < N1 or N1 − 2 < N2 for

ξ ∈ (m′′,m′) there is also a set of chains with entropy log 2.

(ii) if m2 < m′ < m1 (respectively m1 < m′ < m2) and N1 > 2 (respecti-

vely N2 > 2) for ξ ∈ (m1,m
∗) (respectively ξ ∈ (m2,m

∗)) there is a

set of chains with entropy log 2.

(iii) if m′ < min{m1,m2} for ξ ∈ (m′,min{m1,m2}) there is a set of chains

with entropy log(N1 +N2 − 1).

– If k1 + k2 = 0 and N1/N2 6= 1 for all ξ ∈ (0,m1 +m2) there is a chain and

for all ξ ∈ (0,min{m1,m2}) there is a set of chains with entropy at least

log(N1 +N2 − 1).

Proof. Using (2.5.13), we get

q̇n(t) =
1

m1/2

(
Ω1ρ

n
1eΩ1t+σnφn

1
− Ω2ρ

n
2eΩ2t+π−σnφn

2

)
.

Let θn(t) denote the angle between q̇n(t) and the horizontal axis of R
2. We have the

following expression for the tangent of θn(t):

tan θn(t) =
Ω1ρ

n
1 cos(Ω1t+ σnφn

1 ) − Ω2ρ
n
2 cos(Ω2t+ π − σnφn

2 )

Ω2ρn
2 sin(Ω2t+ π − σnφn

2 ) − Ω1ρn
1 sin(Ω1t+ σnφn

1 )
, (2.5.37)
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which implies

tan θn(0) = σn Ω1ρ
n
1 cosφn

1 + Ω2ρ
n
2 cosφn

2

Ω2ρn
2 sinφn

2 − Ω1ρn
1 sinφn

1

tan θn(τn) = σn Ω1ρ
n
1 cosφn

1 + Ω2ρ
n
2 cosφn

2

Ω1ρn
1 sinφn

1 − Ω2ρn
2 sinφn

2

, (2.5.38)

Substituting in (2.5.38) the expressions for ρn
1 and ρn

2 given in (2.5.22), we get

tan θn(0) =
σn

Ω2 − Ω1
(Ω1 cotφn

1 + Ω2 cotφn
2 ) = − tan θn(τn) ,

(note that Ω1 > 0 and Ω2 < 0 so the denominator is negative).

If k1 + k2 = 0 then all the collision orbits can be treated in a common frame

where P is vertical, so the change of direction condition is that the next collision orbit

m must satisfy

tan θn(τn) 6= tan θm(0) ,

i.e.

σm (Ω1 cotφm
1 + Ω2 cotφm

2 ) 6= −σn (Ω1 cotφn
1 + Ω2 cotφn

2 ) .

Assume Ω1/Ω2 is irrational. For the condition above to be satisfied it is enough to

check that the level sets of

F (φ1, φ2) = Ω1 cotφ1 + Ω2 cotφ2

do not coincide with the level sets of Ξ (given in (2.5.35)). We change variables to

x = cot(φ1) and y = cot(φ2) so that the level sets of F are just lines of the form

Ω1x+ Ω2y = const.. With this choice of variables the function Ξ has the form

Ξ(x, y) =
k1

(
y2 − x2

)

(Ω1 − Ω2) + Ω1y2 − Ω2x2
.

Since Ω1 and Ω2 are rational independent none of the level sets Ξ = ξ, with ξ ∈
(0,m1 + m2), is a line of the form Ω1x + Ω2y = const.. Hence, there are infinitely

many choices for m and all but finitely many satisfy this condition; thus one can make

sets of chains with arbitrarily large entropy. If Ω1/|Ω2| 6= 1 is rational, say N1/N2 in

lowest terms, then the choice of σm ∈ ± is free so the condition can always be satisfied;

102



thus for all ξ ∈ (0,m1 +m2) one can make a chain and for ξ ∈ (0,min{m1,m2}) one

can make a set of chains with entropy at least log(N1 + N2 − 1). If Ω1/|Ω2| = 1 or

equivalently m1 = m2 then φm
1 = φm

2 and hence Ω1 cotφm
1 + Ω2 cotφm

2 = 0 so the

condition can not be satisfied.

If k1+k2 6= 0 then the analysis for the next collision orbitm in a chain needs to be

rotated by some angle ψ about −JP /(k1+k2) (which we choose to be at 0), determined

to superimpose the collisions qn
j (τ) and qm

j (0), j ∈ {1, 2}: ψ = − (ψn + ψm), where

−ψn is the angle that (k1q
n
1 (τ)+k2q

n
2 (τ))/(k1 +k2) makes with the positive horizontal

axis of R
2 and is given by

cot (ψn) =
σn

k1 + k2
(|k2| cotφn

2 + k1 cotφn
1 )

and ψm is defined in a similar way. Then the direction change condition is

tan(θn(τ) − θm(0)) 6= tan(ψ) .

This is some quadratic inequality in cot(φn
j ) and cot(φm

j ), j ∈ {1, 2}. If Ω1/Ω2 is

irrational there are infinitely many choices for m satisfying this condition; thus one can

make sets of chains with arbitrarily large entropy. If Ω1/|Ω2| is rational, say N1/N2 in

lowest terms, then the choice of σm ∈ ± is free so the condition can be satisfied.

2.5.4 Boundary value problem

In this section we state a result which is a particular case of one proved in [8] and which

is a key ingredient for the proof of theorem 2.5.1: the existence for small δ > 0, of orbits

with energy E > 0 connecting two points a, b in a small ball U centered at 0.

For any a ∈ U , there is a unique trajectory γ+
a : [0, τ+ (a)] → U of energy E

for the canonical Hamiltonian system with Hamiltonian function (2.5.2) connecting a

to 0. Similarly, for any b ∈ U , there is a unique trajectory γ−b : [τ− (b) , 0] → U of

energy E connecting 0 to b. Denote

S+ (a) =
∫ τ+(a)
0 p.dq =

∫ τ+(a)

0
p(t).

∂H

∂p
(q(t),p(t)) dt

S− (b) =
∫ 0
τ−(b) p.dq =

∫ 0

τ−(b)
p(t).

∂H

∂p
(q(t),p(t)) dt .
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Then S± are continuous functions on U and C3 on U\{0}.
Denote by

u+ (a) = γ̇+
a

(
τ+ (a)

)

u− (b) = γ̇−b
(
τ− (b)

)
,

the tangent vectors to γ+
a , γ

−
b at the point 0. Let Σ = ∂U . Fix small ξ > 0 and let

X =
{
(a, b) ∈ Σ2 :

∥∥u+ (a) − u− (b)
∥∥ ≥ ξ

}
.

Equivalently, a pair of points (a, b) ∈ Σ belongs to X if the solution of the system with

Hamiltonian function (2.5.2) with energy E connecting a to b does not pass too close

to the centre 0. Let

Y =
{
(a, b) ∈ X :

∥∥u+ (a) + u− (b)
∥∥ ≥ ξ

}
. (2.5.39)

Lemma 2.5.10. There exists δ0 > 0 such that:

• for any δ ∈ (0, δ0] and (a, b) ∈ X, there exists a unique trajectory γ = γδ
a,b :

[0, τ ] → U of energy E for the canonical Hamiltonian system with Hamiltonian

function (2.5.1) connecting a to b, i.e. γδ
a,b(0) = a and γδ

a,b(τ) = b.

• τ = τ (a, b, δ) is a C2 function on X × (0, δ0] and τ (a, b, δ) → τ+ (a) + τ− (b)

uniformly as δ → 0.

• γδ
a,b|[0,τ+(a)]

(t) → γ+
a (t) and γδ

a,b|[τ−(b),0]
(t+ τ) → γ−b (t) uniformly as δ → 0.

• the action of the trajectory γ

S (a, b, δ) =

∫ τ

0
p.dq =

∫ 0

τ
p(t).

∂Hδ

∂p
(q(t),p(t)) dt (2.5.40)

is a C2 function on X × (0, δ] and

S (a, b, δ) = S+ (a) + S− (b) + δs (a, b, δ) , (2.5.41)

where s is uniformly C2 bounded on X as δ → 0.
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• if, additionally, (a, b) ∈ Y , then the trajectory γδ
a,b does not pass too close to 0.

The following inequality holds:

min
0≤t≤τ

dist
(
γδ

a,b,0
)
≥ cδ , c > 0 . (2.5.42)

Without the condition (a, b) ∈ Y the lemma above still holds except for the last

statement and the trajectory may pass through or close to 0.

The proof of lemma 2.5.10 is given in section 2.5.7. The main ingredients are

the Levi-Civita regularization for binary collisions and the λ-Lemma 1.1.30.

2.5.5 Shadowing collision orbits

For any k ∈ K, let αk,βk ∈ Σ be the two intersection points of γk with Σ. Then

γk(t) = γ−αk
(t− τ− (αk)) for 0 ≤ t ≤ −τ− (αk), γk(t) = γ+

βk
(t+ τk − τ+ (βk)) for

τk −τ+ (βk) ≤ t ≤ τk. Without loss of generality we assume that the points αk and βk

are not conjugated on the fixed energy level along γk for all k ∈ K. If not, we change

the radius of the ball U a little to make the new intersection points non–conjugate.

Let Ak ⊂ Σ be a small neighbourhood of αk, Bk ⊂ Σ a small neighbourhood of

βk andWk a small neighbourhood of γk ([0, τk]). We may assume thatWk∩Σ = Ak∪Bk

with Ak and Bk disjoint sets, making Wk smaller if necessary. If the neighbourhoods

Ak, Bk and Wk are small enough, by the non–conjugacy of αk and βk along γk and the

implicit function theorem, for any u ∈ Ak and v ∈ Bk, there exists a unique solution

σ = σδ
u,v : [0, τ ] →Wk, τ = τ δ

u,v, of energy E for the system with Hamiltonian (2.5.1),

such that σ(0) = u and σ(τ) = v, which is close to γk (t− τ− (αk)) for 0 ≤ t ≤ τ .

This solution is a C3 function of u,v. Let (σ(t), ψ(t)) denote the path in phase space

corresponding to the trajectory σ(t) and define the action of the trajectory σδ
u,v as

f δ (u,v) =

∫ τ

0
ψ(t).

∂Hδ

∂p
(σ(t), ψ(t)) dt .

Then f δ is a C3 function on Ak ×Bk.

Define the following C3 function on Ak ×Bk:

gδ
k (u,v) = f δ (u,v) + S− (u) + S+ (v) . (2.5.43)
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Lemma 2.5.11. The function g0
k (u,v) = f0 (u,v)+S− (u)+S+ (v) on Ak ×Bk has

a non–degenerate critical point at zk = (αk,βk)

Proof. The existence of a non–degenerate critical point of g0
k follows from non–

degeneracy of γk. In fact, g0
k (u,v) is the action of the piecewise smooth trajectory

of the Hamiltonian system determined by (2.5.2) obtained by gluing together the tra-

jectories γ−u , σ0
u,v and γ+

v with appropriate shifts of time parametrization and hence,

g0
k is the restriction of the action functional (2.5.6) to a finite–dimensional submanifold

consisting of broken trajectories, with break points u and v, connecting the collision

point 0 to itself.

Choose coordinates u,v in Ak × Bk. Lemma 2.5.11 implies that if the neigh-

bourhoods Ak and Bk are small enough, there exists C > 0 such that

∥∥(g0
k
′′(s))−1

∥∥ ≤ C , (2.5.44)

where s = (u,v) ∈ Ak × Bk and ‖·‖ is the max norm in Ak × Bk. Note the abuse

of notation: we denote by u,v both the points in Ak × Bk and the corresponding

coordinates that parametrize Ak ×Bk.

Let G ⊂ K2 be the set (2.5.7). Taking the neighbourhoods Ak, Bk small

enough, it can be assumed that for all (k, l) ∈ G, Bk × Al ⊂ Y where Y is defined in

(2.5.39).

The next result is a precise formulation of theorem 2.5.1. Assume that the

neighbourhoods Wk are sufficiently small.

Theorem 2.5.12. There exists δ0 > 0 such that for any δ ∈ (0, δ0] and any chain

(γki
)i∈Z

of collision orbits there exists, up to a time shift, a unique trajectory γ : R →
(∪k∈KWk) \{0} of energy E for the Hamiltonian system determined by (2.5.1) and a

sequence

... < ai < bi < ai+1 < bi+1 < ....

such that for all i ∈ Z:
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• γ ([ai, bi]) ⊂Wki
, γ(ai) ∈ Aki

, γ(bi) ∈ Bki
;

• γ ([bi, ai+1]) ⊂ U .

The asymptotic behaviour of this trajectory as δ → 0 is as follows:

• bi − ai → τki
− τ− (αki

) − τ+ (βki
) as δ → 0;

• γ(t) is O (δ)–close to γki
([τ− (αki

) , τ − τ+ (βki
)]) for ai ≤ t ≤ bi;

• γ(t) = γδ
q(bi),q(ai+1)

(t− bi) for all t ∈ [bi, ai+1] .

The constant δ0 depends only on the set {γk}k∈K of collision orbits and is

independent of the sequence (ki ∈ K). Thus, γ(t) is O(δ)–close to a chain of collision

orbits. Furthermore, by inequality (2.5.42) in lemma 2.5.10 the trajectory avoids 0 by

a distance of order δ.

Proof. This proof follows, up to some minor changes, the proof of a similar theorem in

[8]. We give it here for completeness. The strategy is continuation from the case δ = 0.

Given a sequence (ki)i∈Z
with (ki, ki+1) ∈ G for all i ∈ Z, let

Y =
∏

i∈Z

Aki
×Bki

,

with supremum norm in the chosen charts on Ak and Bk. Then Y is a ball in the Banach

space Z = l∞. Choose δ0 as in lemma 2.5.10 and let δ ∈ (0, δ0]. Then trajectories of

the system (2.5.1) of energy E near the chain (γki
)i∈Z

correspond to critical points of

the formal functional

Fδ (u,v) =
∑

i∈Z

f δ (ui,vi) + S (vi, ui+1, δ) ,

over sequences (u,v) = (ui,vi)i∈Z
∈ Y , where S is defined in (2.5.40). Hence,

Fδ (u,v) is the action for the concatenation of trajectories σδ
ui,vi

connecting ui to vi

and trajectories γδ
vi,ui+1

connecting vi to ui+1 inside U . By (2.5.41) and (2.5.43), we

obtain

Fδ (u,v) =
∑

i∈Z

gδ
ki

(ui,vi) + δs (vi, ui+1, δ) .
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Thus, trajectories of (2.5.1) of energy E correspond to zeros of the map φδ = ∇Fδ :

Y → Z defined by

Ui =
∂gδ

ki

∂u
(ui,vi) + δ

∂s

∂u
(vi−1,ui, δ)

Vi =
∂gδ

ki

∂v
(ui,vi) + δ

∂s

∂v
(vi,ui+1, δ) .

The sequences (U, V ) = (Ui, Vi)i∈Z
∈ Z represent jumps, measured in the supremum

norm, in the components of momentum tangent to Σ at the points ui,vi, between the

trajectories outside and inside the ball U . Since all the trajectories σδ
ui,vi

and γδ
vi,ui+1

have the same energy E, zero jumps in the tangential component of the momentum

implies that the concatenation of these trajectories is a smooth curve and hence a

solution of (2.5.1).

Since the function s is uniformly C2 bounded as δ → 0, and the second derivative

matrix of g0
k is uniformly invertible, the chain of collision trajectories is a non–degenerate

zero of φ0 and the implicit function theorem gives a locally unique continuation for a

range of δ independent of the sequence (ki)i∈Z
. More precisely, φδ has a unique zero

(u,v) ∈ Y provided that

δ−1
0 > C max

(k,l)∈G
max

Bk×Al

∥∥s′′
∥∥ ,

where C is the constant in (2.5.44).

2.5.6 Regularization of collisions

Without loss of generality one can replace W by W −E and assume E = 0. We make

f (0) = 1/4 by rescaling δ. Let x = (x1, x2) ∈ R
2 and y = (y1, y2) ∈ R

2 and consider

the transformation g from R
4 {x,y} to R

4 {q,p}, given by

qx = x1
2 − x2

2

qy = 2x1x2

px =
x1y1 − x2y2

2 (x1
2 + x2

2)
(2.5.45)

py =
x2y1 + x1y2

2 (x1
2 + x2

2)
.
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Lemma 2.5.13 (Levi-Civita regularization). There exists a C4 Hamiltonian on R
4 {x,y}

given by

H (x,y) =
1

2
|y − B (x)|2 − λ

2
|x|2 +O4 (x,y) , (2.5.46)

where B (x) = 2W3(0) (−b.x, b.Jx) and λ = 4 |b|2 (W3(0))2−8W (0,0), such that for

x 6= 0 the transformation g given in (2.5.45) takes trajectories of the canonical Hamil-

tonian system with Hamiltonian function H on the energy level H = δ to trajectories

of the canonical Hamiltonian system with Hamiltonian function Hδ on the energy level

Hδ = 0.

Proof. Using (2.5.45), we obtain the following estimates

g∗W1 (x) = W1(0) +O2 (x)

g∗Wi (xJy) = Wi

(
1

2
xJy

)

= Wi(0) + y.O1(x) , i ∈ {2, 3} (2.5.47)

g∗ [a.q + b.p] (x,y) =
1

2 |x|2
b. (x1y1 − x2y2, x2y1 + x1y2) +O2 (x) .

Using (2.5.45) and (2.5.47) in (2.5.1), we compute H̃ = g∗Hδ, which is given by

H̃ =
1

8 |x|2
(
|y|2 + 4b. (x1y1 − x2y2, x2y1 + x1y2)W3(0)

)

+W (0,0) − δ
f (h(x))

|x|2
+O2 (x) + y.O1(x) , (2.5.48)

where h : R
2 → R

2 is the squaring map given by

h(x) =
(
x1

2 − x2
2, 2x1x2

)
.

Introducing the vector potential B (x), given by

B (x) = 2W3(0) (−b.x, b.Jx)

we get the equalities

|y|2 + 4b. (x1y1 − x2y2, x2y1 + x1y2)W3(0) =

= |y − B (x)|2 − |B (x)|2 (2.5.49)

= |y − B (x)|2 − 4(W3(0))2 |b|2 |x|2 .
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Multiply (2.5.48) by |x|2 /f (h(x)) and use (2.5.49) and f (h(x)) = f (0) +O2 (x) to

obtain a Hamiltonian function defined on R
4, given by

H =
|x|2

f (h(x))
H̃ + δ =

1

2
|y − B (x)|2 − λ

2
|x|2 +O4 (x,y) ,

where λ = 4 |b|2 (W3(0))2 − 8W (0,0), as given in the statement.

By construction of H, we have that the energy levels {H = δ} and {Hδ = 0}
coincide, which finishes the proof.

Standard formulations of lemma 2.5.13 and proofs can be found in [9, 23, 38].

The transformation g defined by (2.5.45) does not preserve the time parametriza-

tion of the solutions, but it preserves the actions

∫

γ
〈y,dx〉 =

∫

g(γ)
〈p,dq〉 .

The Hamiltonian system (2.5.46), has an equilibrium point at the origin, with

eigenvalues ±
√
λ, and hence it is hyperbolic if and only if λ > 0. From now on, we

assume that λ > 0. In this case the hyperbolic equilibrium 0 has two–dimensional

stable and unstable manifolds W±
loc [31]. Since W±

loc are Lagrangian manifolds and

project diffeomorphically to R
2{x}, they are defined by C4 generating functions s± on

a small ball U with centre 0 ∈ R
2. We have that

W±
loc =

{
(x,y) : y = ∓∇s± (x) , x ∈ U

}
. (2.5.50)

The functions s± have a non–degenerate minimum 0 at the point 0.

By the definition of W±
loc, for any point a ∈ U there exists a unique trajectory

ω+
a : [0,+∞) → U such that limt→∞ ω+

a (t) = 0 and ω+
a (0) = a. Similarly, there exists

a unique trajectory ω−
a : (−∞, 0] → U such that limt→−∞ ω−

a (t) = 0 and ω−
a (0) = a.

By (2.5.50) the actions of these trajectories equal

∫

ω±
a

〈y,dx〉 = s± (a) .

For the trajectories ω±
a (t), let z±a (t) ∈ W±

loc be the corresponding orbits in the phase

space.
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Lemma 2.5.14. Let T > 0 be sufficiently large. Then for any points a, b ∈ U and

τ ≥ T :

• there exists a unique trajectory

z(t) = (x(t),y(t)) = f (a, b, τ, t) , (τ, t) ∈ DT = {(τ, t) : τ ≥ T , 0 ≤ t ≤ τ} ,

such that x(0) = a and x(τ) = b.

• the map f is C2 on U2 ×DT and

f (a, b, τ, t) = z+
a (t) + z−b (t− τ) + e−

√
λτφ (a, b, τ, t) , (2.5.51)

where φ is uniformly C2 bounded on U2 ×DT .

• the action

S (a, b, τ) =

∫ τ

0
y.dx

of the trajectory z(t) is C2 on U2 × [T,∞) and

S (a, b, τ) = s+ (a) + s− (b) + e−
√

λτR (a, b, τ) + τh (a, b, τ) , (2.5.52)

where R is uniformly C2 bounded as τ → ∞ and h (a, b, τ) is the energy of z.

This result follows from lemma 1.1.31 in section 1.1.4. See [6] for the proof of

(2.5.51) and [8] for the proof of (2.5.52).

The next result gives a useful representation for the energy function h (a, b, τ)

used in (2.5.52). Similar statements can be found in [6, 7, 8].

Let v± (a) denote the tangent vectors at 0 to the asymptotic trajectories ω±
a .

Lemma 2.5.15. The energy h (a, b, τ) of the trajectory z(t) is a C2 function on U2 ×
[T,+∞) and has the form

h (a, b, τ) = e−
√

λτ (h0 (a, b) + h1 (a, b, τ)) ,

where

h0 (a, b) = 2v+ (a) .v− (b) , v± (a) = lim
t→±∞

e±
√

λtω̇±
a (t) , (2.5.53)

and ‖h1‖C2(U2×[τ,+∞)) → 0 as τ → +∞.
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Proof. There exist local coordinates (u,v) ∈ R
4 in a neighbourhood of the equilibrium

0 such that W−
loc = {v = 0}, W+

loc = {u = 0}, and

H (u,v) =
√
λu.v (1 +O(u,v)) . (2.5.54)

The symplectic transformation (x,y) 7→ (u,v) is given by

x =
u −

√
λv√

2λ

y =
u +

√
λv√

2
+ B

(
u −

√
λv√

2λ

)
, (2.5.55)

where B (x) is as given in lemma 2.5.13. The Hamiltonian vector field on the unstable

manifold W−
loc takes the form

u̇ =
√
λu +O2 (u) ,

where the right hand side is of class C3. This equation can be transformed [3] to a

linear equation ξ̇ =
√
λξ by a C2 change of variables ξ = f−(u). Hence the phase flow

on W−
loc takes the form

g−t (u, 0) =
(
f−1
−
(
e−

√
λtf−(u)

)
, 0
)

= e−
√

λt (f−(u) +G(u, t), 0) , (2.5.56)

where ‖G‖C2(V ×[T,+∞)) → 0 uniformly on W−
loc as t → +∞ and V is such that the

preimage of U2 under (2.5.55) is contained in V 2 and V 2 ⊂ BR(0) ⊂ R
4, for some

finite R > 0.

A similar representation holds for the flow on the stable manifold W+
loc,

gt (0,v) = e−
√

λt (0, f+(v) + E(v, t)) , (2.5.57)

where ‖E‖C2(V ×[T,+∞)) → 0 uniformly on W+
loc as t→ +∞. Furthermore, note that

(f−(u), 0) = lim
t→+∞

e
√

λtg−t (u, 0)

(0, f+(v)) = lim
t→+∞

e
√

λtgt (0,v) . (2.5.58)

Put t = τ/2 in (2.5.51). By (2.5.56) and (2.5.57), we get

z(τ/2) = e−
√

λτ/2 (f−(u), f+(v)) + e−
√

λτ/2F (u,v, τ) , (2.5.59)
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where u = u(τ) and v = v(0), and ‖F‖C2(V 2×[T,+∞)) → 0 as τ → ∞. Since H is

a conserved quantity, substituting (2.5.59) into (2.5.54), we get the following estimate

for the energy

h (a, b, τ) = H (z(τ/2))

=
√
λe−

√
λτ (f−(u).f+(v) + h1 (u,v, τ)) , (2.5.60)

where ‖h1‖C2(V 2×[T,+∞)) → 0 as t → +∞. Passing to the variables x,y and using

(2.5.58), we get

lim
t→+∞

e
√

λtω̇+
a (t) =

√
λ

2
f+(v) = v+(a)

lim
t→−∞

e−
√

λtω̇−
b (t) =

√
λ

2
f−(u) = v−(b) . (2.5.61)

Putting together (2.5.60) and (2.5.61) we get the required result.

Take ν > 0 and let B =
{
(a, b) ∈ U2 : h0 (a, b) > ν

}
. Then, for (a, b) ∈ B,

the function h0 (a, b) is bounded away from zero. Thus h (a, b, τ) is monotone in τ for

sufficiently large τ . For small δ > 0, solving the equation h (a, b, τ) = δ for τ yields

a C2 function τ = τδ (a, b). This, combined with the implicit function theorem and

lemmas 2.5.14 and 2.5.15 gives the following result.

Proposition 2.5.16. There exists δ0 > 0 such that for all δ ∈ (0, δ0] the following

statements hold.

• For any (a, b) ∈ B, there exists a unique trajectory zδ
a,b =

(
xδ

a,b,y
δ
a,b

)
: [0, τ ] →

U × R
2 of energy δ connecting the points a and b.

• the time τ = τδ (a, b) is a C2 function on B and

τδ (a, b) = − log δ√
λ

+ µ (a, b, δ) , (2.5.62)

where the function µ is uniformly C2 bounded on B as δ → 0.

• We have

zδ
a,b(t) = z+

a (t) + z−
b (t− τ) + δζ (a, b, δ) , (2.5.63)
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where the function ζ is uniformly C2 bounded as δ → 0.

• The action fδ (a, b) = S (a, b, τδ (a, b, δ)) of the trajectory zδ
a,b is a C2 function

on B and

fδ (a, b) = s+ (a) + s− (b) + +δr (a, b, δ) − δ log δ√
λ

, (2.5.64)

where r is uniformly C2 bounded on B as δ → 0.

See [6, 7, 8] for results similar to the proposition 2.5.16 above.

Lemma 2.5.17. For any (a, b) ∈ B, the trajectory xδ
a,b(t) avoids 0 provided v+ (a) 6=

v− (b). More precisely, the following equality holds.

min
0≤t≤τ

∣∣∣xδ
a,b(t)

∣∣∣
2

=
2δ

λ

(∣∣v+ (a)
∣∣ ∣∣v− (b)

∣∣− v+ (a) .v− (b)
)
u(a, b, δ) + o(δ) , (2.5.65)

where u is a positive function and uniformly C2 bounded on B as δ → 0.

Proof. Let (a, b) ∈ B. To leading order in δ, we have that

ω+
a (t) = ae−

√
λt

ω−
b (t) = be

√
λt .

By (2.5.53) we get

v+ (a) = −
√
λa

v− (b) =
√
λb , (2.5.66)

Using (2.5.63), we get

xδ
a,b(t) = ae−

√
λt + be

√
λ(t−τ) + δς(a, b, δ) , (2.5.67)

where the function ς is uniformly C2 bounded as δ → 0. From (2.5.67), we obtain

∣∣∣xδ
a,b(t)

∣∣∣
2

= |a|2 e−2
√

λt + |b|2 e2
√

λ(t−τ) + 2a.be−
√

λτ

+2δ
(
ae−

√
λt + be

√
λ(t−τ)

)
.ς(a, b, δ) +O

(
δ2
)
. (2.5.68)
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To leading order in δ,
∣∣∣xδ

a,b(t)
∣∣∣
2

attains its minimum at

t′ =
τ

2
+

1

4
√
λ

log
|a|2

|b|2
.

Thus, we get

∣∣∣xδ
a,b(t

′)
∣∣∣
2

= 2e−
√

λτ (|a| |b| + a.b) +

+2δe−
√

λτ/2
√
|a| |b|

(
a

|a| +
b

|b|

)
.ς(a, b, δ) +O

(
δ2
)
.

By (2.5.62), we obtain

∣∣∣xδ
a,b(t

′)
∣∣∣
2

= 2δ (|a| |b| + a.b)u(a, b, δ) + o (δ) , (2.5.69)

where u is a positive function and uniformly C2 bounded on B as δ → 0. Combining

(2.5.66) and (2.5.69) we obtain the result.

2.5.7 Proof of lemma 2.5.10

This next proof is based on proposition 2.5.16 and lemma 2.5.13 and follows the proof

of the same result given in [8].

Proof. Let h : R
2 → R

2 be the squaring map

h (x1, x2) =
(
x1

2 − x2
2, 2x1x2

)
,

corresponding to the first two arguments in the Levi-Civita transformation (2.5.45).

Collision solutions γ+
h(a) : [0, τ+ (h (a))] → U for the system (2.5.1) correspond,

up to time reparametrization, to asymptotic orbits ω+
a : [0,+∞) → h−1(U) to the

equilibrium 0 for the system with Hamiltonian H, given by (2.5.46), on the level set

H = 0. The map h take the trajectory ω+
a : [0,+∞) → h−1(U) to the trajectory γ+

h(a) :

[0, τ+ (h (a))] → U , with changed time parametrization, i.e. γ+
h(a)(t) = ω+

a (t+(t)),

where t+ : [0, τ+ (h (a))] → [0,+∞). Similarly, γ−h(a)(t) = ω−
a (t−(t)), where t− :

[τ− (h (a)) , 0] → (−∞, 0]. From the definition of the squaring map h, we obtain that

for any a ∈ U ,

h
(
v±(a)

)
= ∓κu± (h (a)) ,
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where κ = |v±(a)|2 /2. By conservation of the action, we obtain S± (h(a)) = s± (a).

Noting that h(y) = αh(x), where α < 0, is equivalent to y⊥x, we obtain that

u+ (h(a)) 6= u− (h(b)) if and only if v+(a) and v+(b) are not orthogonal.

Take two points ã, b̃ ∈ Σ such that
∣∣∣u+ (ã) − u−(b̃)

∣∣∣ ≥ ξ. Then, there exist

a, b ∈ U such that ã = h(a), b̃ = h(b) and

h0 (a, b) = 2v+(a).v−(b) ≥ ν , (2.5.70)

provided ν > 0 is sufficiently small. By proposition 2.5.16 we can connect a to b

by a trajectory zδ
a,b of energy δ for the system (2.5.1). Under the squaring map h

and an appropriate time reparametrization, h
(
xδ

a,b

)
gives a trajectory of energy 0

for the regularized system with Hamiltonian H connecting ã = h(a) to b̃ = h(b).

Since the action is invariant under the transformation h, (2.5.64) implies (2.5.41)

with s (h(a), h(b), δ) = r (a, b, δ). Condition (2.5.42) follows from lemma 2.5.17 and

|h(x)| = |x|2.

2.6 Conclusions

We have proved that the Hamiltonian system (2.1.9) can always be reduced to one with

two degrees of freedom. Moreover, we have proven that, for an interaction between the

two charged particles determined by a Coulomb potential, with opposite sign charges

(except for the case Ω1 + Ω2 = 0), the system contains a suspension of a non–trivial

subshift of finite type for level sets of high energy. Thus, the system can not be reduced

further in such regime. On the other hand the system is integrable for the special case of

same sign charges when the particles have equal gyrofrequencies (equal ratio of charge

to mass). The system is also integrable if the two charges sum to zero and the dynamics

lie on the zero sets of the linear momenta. Furthermore, we explicitly computed the

reduced Hamiltonian systems and corresponding reconstruction maps for the reduced

dynamics, enabling us to lift the dynamics from the reduced spaces and hence obtain

a description for the dynamics on the initial phase space. In particular we determined
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that the motion is bounded if the charges do not sum to zero but if they sum to zero

there is an average drift velocity which depends on the energy and momenta.

It would be interesting to establish what happens when Ω1+Ω2 = 0 and whether

there is chaos for unequal gyrofrequencies of the same sign: presumably there is.

An interesting future work would be to prove an analogous result of non–

integrability for the system (2.1.9) but with a logarithmic potential. This would have

applications to the interaction of two vortices with masses, as was remarked in [15],

where a proof in the limiting regime where the masses tend to zero was given with the

help of some numerical computations.
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Chapter 3

The spatial problem

In this chapter we analyse the interaction of two particles with non–zero charges moving

in three–dimensional space under the action of a uniform magnetic field and an inter-

action potential depending on the distance between the particles. This problem looks

important to plasma physics but it seems to have been given little attention so far. What

attention it has received has tended to be in some limiting regimes such as very strong

magnetic field or plasmas with all the particles of the same kind (see [2, 11, 12, 33]) or

with one heavy particle idealized as fixed (the diamagnetic Kepler Problem, see [18, 37])

or the planar case of chapter 2. We will study the dynamics of two charged particles in

a uniform magnetic field without making restrictions on the sizes of the magnetic field,

the charges or the masses, except that we will assume that the particles behave classi-

cally and that their velocities and accelerations are small enough that we can neglect

any relativistic and radiation effects. Although it is well known that non–uniformity of

the magnetic field introduces further significant effects, we believe that there is value in

establishing firm results for the uniform case.

In chapter 2 we made a detailed study of the problem of the interaction of two

particles with non–zero charge moving in a plane under the effect of a uniform magnetic

field. We assumed that the interaction between the particles was given by a potential

depending on the distance between the two particles and that the magnetic field was
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orthogonal to the plane of motion. That problem can be formulated as a Hamiltonian

system with four degrees of freedom. We made extensive use of the symmetries in

that Hamiltonian system to obtain a reduction in the dimension of the problem to two

degrees of freedom. In the special case of same sign charges with equal gyrofrequencies

(equal ratio of charge to mass) or on some special submanifolds we proved that this

system is integrable. We then specialized our analysis to the more physically interesting

case of a Coulomb–like potential. Analysing the reduced systems and the associated

reconstruction maps we provided a detailed description for the regimes of parameters

and level sets of the conserved quantities where bounded and unbounded motion are

possible and we identified the cases where close approaches between the two particles

are possible. Furthermore, we identified regimes where the system is non–integrable and

contains chaos by proving the existence of invariant subsets containing a suspension of

a non–trivial subshift.

The motion of one particle moving in three–dimensional space under the action

of a uniform magnetic field is simple. It is the composition of two motions: a drift with

constant velocity in the direction of the magnetic field and a uniform rotation of fixed

centre - the guiding centre, and radius - gyroradius, with constant angular velocity -

gyrofrequency, in a plane orthogonal to the magnetic field. Choosing the magnetic field

to be vertical and oriented upwards, the motion in the circle is clockwise if the charge

is positive and anticlockwise otherwise. We sign the gyrofrequency according to the

direction of rotation. This problem can be formulated as a three degrees of freedom

Hamiltonian system. It has a four–dimensional subgroup of the Special Euclidean group

of R
3 as its symmetry group (three–dimensional translations and a one–dimensional

rotation). These symmetries induce conserved quantities for this system which is easily

seen to be integrable.

One of the main goals of this chapter is to study the scattering problem associ-

ated with the interaction of the two charges in the presence of a magnetic field and a
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Coulomb interaction potential:

V (R) =
e1e2
4πǫ0

1

R
, (3.0.1)

where R denotes the distance between the two particles, e1 and e2 denote the values of

the charges and ǫ0 denotes the permittivity of the vacuum. If there is a large distance

between the particles then the interaction is negligible and in this case the two particles

move freely as described above. If the distance between the two particles is small then

the strength of the interaction can not be neglected anymore and the particles interact.

We will be looking for a situation where the particles have initially a large separation and

both move freely towards each other so that the particles start interacting when they

get closer and then start moving apart until both particles move again like free particles.

The goal is to describe the changes in the particles trajectories due to this interaction.

For more details on scattering in classical mechanics see the review [30] and references

therein.

In section 3.1 we formulate our problem as a Hamiltonian system with a non–

canonical symplectic form (see [22]), that makes easier to identify the system symme-

tries. We identify translational and rotational symmetries of the system and the corres-

ponding conserved quantities. Furthermore, we prove the existence of an exceptional

conserved quantity when the two particles have the same gyrofrequency.

We start section 3.2 by proving that the problem of the interaction of two par-

ticles in a magnetic field can be reduced to one with three degrees of freedom. Fur-

thermore, when the two particles have the same gyrofrequency we use the exceptional

conserved quantity to prove that the system reduces to two degrees of freedom in this

case. We also prove that if the sum of the two charges is zero the dynamics in the

zero sets of the linear momenta are described by a two degrees of freedom Hamiltonian

system. We do these by constructing a set of coordinates on which the system exhibits

a reduction to three degrees of freedom, and two degrees of freedom when it applies.

We should remark that this reduction is an extension to the three–dimensional space of

similar reductions obtained for the planar case in chapter 2 (and for a similar problem
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in [15]). The total change of coordinates that exhibits the reduction is computed. This

change of coordinates is just the lift of a SE(3) subgroup that, given the base dynamics

of the reduced Hamiltonian systems, enables us to describe the full twelve–dimensional

dynamics.

In section 3.3, we specialize our analysis of the problem by choosing a specific

interaction potential. The natural choice for the potential V is the Coulomb potential

(3.0.1). We give a description of the reduced Hamiltonian systems obtained in section

3.2 with the generic potential V replaced by the Coulomb potential, including:

• existence of an invariant plane where the reduced dynamics are just the reduced

dynamics associated with the interaction of two particles moving in a plane under

the action of a uniform magnetic field (orthogonal to the plane of motion).

• boundedness of some of the variables on the reduced space.

• existence of regimes of parameters where close approaches between the particles

are possible.

Using this information we obtain a classification of the various distinct types of behaviour

in this system: “planar”, “molecule–like”, “bouncing–back” and “unbounded”.

We start section 3.4 with an analysis of the scattering map associated with this

problem in the limit where the two particles trajectories are widely separated. We obtain

that the magnetic moment of the particles is conserved and that the guiding centres

have the following dynamics:

i) in the case of two charges whose sum is not zero, the guiding centres rotate about

a fixed centre during an interaction,

ii) in the case of two charges which sum to zero, the guiding centres drift in a direction

determined by the conserved quantities.

The results obtained in this limit agree with the more general qualitative description

provided in section 3.3. Furthermore, we prove that in the case of “bouncing–back”
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behaviour there is a transfer of vertical kinetic energy between the particles. We finish

this section with a numerical study of the scattering map without using the assumption

that the two particles trajectories are widely separated. We observe regular behaviour

for large energies and chaotic scattering for small positive energies.

3.1 Problem formulation

3.1.1 One charged particle in a magnetic field

We start by considering the well understood case of one particle moving in R
3 under the

action of a uniform magnetic field B = (0, 0, B). A particle of mass m > 0 and non–

zero charge e under the action of such a field is subject to a Lorentz force of the form

FL = eBc−1v × B where v = (vx, vy, vz) ∈ R
3 is the particle velocity and × denotes

the exterior product between vectors of R
3. This system is known to be Hamiltonian

with Hamiltonian function and (non–canonical) symplectic form, given by

H =
1

2
m |v|2

ω = m dx ∧ dvx +m dy ∧ dvy +m dz ∧ dvz −
eB

c
dx ∧ dy . (3.1.1)

where x = (x, y, z) ∈ R
3 denotes the particle position (see [22]). To put the Hamilto-

nian system given by (3.1.1) into canonical form it is common to introduce the canonical

coordinates q = (qx, qy, qz) ∈ R
3 and p = (px, py, pz) ∈ R

3, given by

q = x

p = mv +
e

c
A (x) , (3.1.2)

where A (x) = (Ax (x) , Ay (x) , 0) ∈ R
3 is a vector potential for B. The new Hamil-

tonian system is then given by

H =
1

2m

∣∣∣p − e

c
A (q)

∣∣∣
2

ω = dqx ∧ dpx + dqy ∧ dpy + dqz ∧ dpz −
e

c

(
∂Ax

∂qy
− ∂Ay

∂qx
+B

)
dqx ∧ dqy .
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Hence, for the system to be canonical the vector field A (x) must be chosen to verify

the equation
∂Ax

∂y
− ∂Ay

∂x
+B = 0 ,

which is indeed the condition for A (x) to be a vector potential for B. If needed, we

make the choice A(x) = −B
2 (y,−x, 0). We consider it better, however, to use the

formulation (3.1.1) because translation symmetry is more transparent, so instead of the

change of variables (3.1.2) we just make the change of variables given by

q = x

p = mv (3.1.3)

obtaining the Hamiltonian system

H =
1

2m
|p|2 (3.1.4)

ω = dqx ∧ dpx + dqy ∧ dpy + dqz ∧ dpz + k dqx ∧ dqy ,

where

k = −eB
c
.

The symplectic form in (3.1.4) defines a Poisson bracket {., .} : C∞ (
R

6
)
×C∞ (

R
6
)
→

C∞ (
R

6
)

given by

{F,G} =
∂F

∂qx

∂G

∂px
− ∂G

∂qx

∂F

∂px
+
∂F

∂qy

∂G

∂py
− ∂G

∂qy

∂F

∂py
+
∂F

∂qz

∂G

∂pz
− ∂G

∂qz

∂F

∂pz

−k
(
∂F

∂px

∂G

∂py
− ∂G

∂px

∂F

∂py

)
.

In the formulation (3.1.4) the Lorentz force effect can not be seen in the Hamiltonian

function but it is present in the k dqx ∧ dqy term of the symplectic form and equivalent

term in the Poisson bracket.

3.1.2 Two charged particles in a magnetic field

We consider two particles with positive masses m1 and m2 and non–zero charges e1 and

e2, respectively, moving in R
3 under the action of a uniform magnetic field B = (0, 0, B).
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Each one of the particles moving under the action of such a field is subject to a Lorentz

force of the form FL = eiBc
−1vi × B where vi = (vxi

, vyi
, vzi

) ∈ R
3 is the i-th

particle velocity (i ∈ {1, 2}) and × denotes the exterior product between vectors of R
3.

Furthermore, we assume that the two particles interaction is determined by a potential

V (r) depending on the distance r between the two particles.

The phase space M for this problem is R
12 with the singular points of the

interaction potential removed (nine–dimensional planes if V is the Coulomb potential

(3.0.1)). Let qi = (qxi
, qyi

, qzi
) ∈ R

3 denote the vector position of the i-th particle and

pi = (pxi
, pyi

, pzi
) ∈ R

3 denote its (non–conjugated) momentum

pi = mvi , i ∈ {1, 2} .

The motion of the two particles can be described by a Hamiltonian system, with Hamil-

tonian function H : M −→ R and non–canonical symplectic form ω (see [22]), given

by

H =
1

2m1
|p1|2 +

1

2m2
|p2|2 + V (|q1 − q2|) (3.1.5)

ω =
∑

i=1,2

dqxi
∧ dpxi

+ dqyi
∧ dpyi

+ dqzi
∧ dpzi

+ ki dqxi
∧ dqyi

,

where, for simplicity of notation, we introduce the constants

ki = −eiB
c

, i ∈ {1, 2} .

The Poisson bracket associated with this symplectic form, {., .} : C∞(M)×C∞(M) →
C∞(M), is given by

{F,G} =
∑

i=1,2

∂F

∂qxi

∂G

∂pxi

− ∂G

∂qxi

∂F

∂pxi

+
∂F

∂qyi

∂G

∂pyi

− ∂G

∂qyi

∂F

∂pyi

+
∂F

∂qzi

∂G

∂pzi

− ∂G

∂qzi

∂F

∂pzi

− ki

(
∂F

∂pxi

∂G

∂pyi

− ∂G

∂pxi

∂F

∂pyi

)
.

The Hamiltonian system defined by (3.1.5) is invariant under the following fa-

milies of symmetries

φv (q1, q2,p1,p2) = (q1 + v, q2 + v,p1,p2)

φθ (q1, q2,p1,p2) = (Rθq1, Rθq2, Rθp1, Rθp2) ,
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where v = (vx, vy, vz) ∈ R
3 is a translation vector and Rθ is the matrix representing a

rotation in R
3 of angle θ about the z axis and is given by

Rθ =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 . (3.1.6)

We define the (signed) gyrofrequency Ωi of each particle as

Ωi =
ki

mi
, i ∈ {1, 2} ,

and introduce the notation J and I for the 3 × 3 matrices given by

J =




0 1 0

−1 0 0

0 0 0


 , I =




1 0 0

0 1 0

0 0 0


 .

Proposition 3.1.1. The Hamiltonian system (3.1.5) has the following conserved quan-

tities:

• Linear momentum, given by

P3 = (Px, Py, Pz) = p1 + p2 + J (k1q1 + k2q2) .

• Angular momentum, given by

L =
∑

i=1,2

qi.Jpi −
ki

2
|I qi|2 .

Furthermore, if the particles have equal gyrofrequencies Ω1 = Ω2, there exists another

conserved quantity W , given by

W = |I (p1 + p2)|2 .

The following commutation relations between the conserved quantities given above hold:

{Px, Py} = k1 + k2 , {Px, Pz} = 0 , {Py, Pz} = 0 ,

{L,Px} = Py , {L,Py} = −Px , {L,Pz} = 0 ,

{W,Px} = 0 , {W,Py} = 0 , {W,Pz} = 0 , {W,L} = 0 .
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For a proof of a similar statement (with the two particles moving on a plane)

see proposition 2.1.2.

We will use the notation

P = (Px, Py) ∈ R
2

for the (x, y)–components of the linear momentum P3 given in proposition 3.1.1 and

will use the notation Pz when referring to its z–component.

Remarks We note that:

i) the conserved quantities P3 and L are, respectively, the usual linear and angular

momenta for the two body problem with extra terms for the magnetic field re-

presenting the presence of the magnetic field and hence the effect of the Lorentz

force on the particles.

ii) combining Px and Py into the conserved quantity

P = |P |2 = P 2
x + P 2

y

we obtain the following commutation relations

{P,L} = 0 , {P, Pz} = 0 , {P,W} = 0 ,

which together with the commutation relations in proposition 3.1.1 show L, P ,

Pz and W to be in involution.

iii) corresponding to W there is a “hidden” symmetry in the case of equal gyrofre-

quencies Ω1 = Ω2, given by

q1 → q1 +
1

k1 + k2

[
R2(k1+k2)φ − Id3×3

]
J(p1 + p2)

q2 → q2 +
1

k1 + k2

[
R2(k1+k2)φ − Id3×3

]
J(p1 + p2)

p1 → p1 +
k1

k1 + k2

[
R2(k1+k2)φ − Id3×3

]
(p1 + p2)

p2 → p2 +
k2

k1 + k2

[
R2(k1+k2)φ − Id3×3

]
(p1 + p2) ,
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where φ ∈ R, Id3×3 is the identity matrix in R
3 and R2(k1+k2)φ is of the form

(3.1.6) with θ replaced by 2(k1 + k2)φ.

iv) if the interaction potential in (3.1.5) is chosen to be the Coulomb potential (3.0.1)

(as we will do in section 3.3) then the scaling transformation given by

qi = λqi

t = λ3/2 t

B = λ−3/2B ,

where λ > 0, transforms the Hamiltonian function and symplectic form (3.1.5) to

H = λ−1H and ω = λ1/2ω. We could then choose λ so that B = 1 by a rescaling

of the level sets of the Hamiltonian function in (3.1.5). Furthermore, choosing e1

and m1 to be units of charge and mass, respectively, we could further reduce the

number of parameters of (3.1.5) by two. The Hamiltonian system (3.1.5) would

then depend only on the charge e2, mass m2 and physical constants c and ǫ0.

v) if the particles were also under the action of an electric field E perpendicular to

the magnetic field B then the particles would drift with constant velocity given

by

u =
E × B

|B|2
.

Changing to a moving frame with velocity u, we reduce this problem to one of

the form (3.1.5).

3.2 Reduction

In this section we provide local coordinates that exhibit the reduction of the Hamiltonian

system (3.1.5) to three degrees of freedom and identify the regime of parameters and

invariant subsets of R
12 where the system can be reduced to two degrees of freedom.

This reduction is valid for all potentials V which depend only on the distance between
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the particles. For simplicity of notation we introduce the combinations

M = m1 +m2

m =
m1m2

m1 +m2
.

We change coordinates from positions qi and momentum pi to guiding centre Ri =

(Rxi
, Ryi

) ∈ R
2, gyroradius ρi = (ρxi

, ρyi
) ∈ R

2, relative vertical position qz ∈ R and

a conjugate momentum pz ∈ R, vertical centre of mass Cz ∈ R and vertical linear

momentum Pz ∈ R by making

ρi = 1
ki

J (pxi
, pyi

) Ri = (qxi
, qyi

) − ρi

qz = qz1
− qz2

pz = (m2pz1
−m1pz2

) /M

Cz = (m1qz1
+m2qz2

) /M Pz = pz1
+ pz2

,

(3.2.1)

where J is the standard symplectic matrix in R
2, given by

J =


 0 1

−1 0


 .

Then, the Hamiltonian system (3.1.5) transforms to

H =
k1Ω1

2
|ρ1|2 +

k2Ω2

2
|ρ2|2 + V (R) +

pz
2

2m
+
Pz

2

2M
(3.2.2)

ω =
∑

i=1,2

ki (dRxi
∧ dRyi

− dρxi
∧ dρyi

) + dqz ∧ dpz + dCz ∧ dPz ,

where R =
(
|R1 − R2 + ρ1 − ρ2|2 + qz

2
)1/2

. This coordinate change reduces (3.1.5)

by one degree of freedom by conservation of Pz and elimination of Cz. The quantities

P , L and W are now given by

P = J (k1R1 + k2R2)

L =
∑

i=1,2

ki

2

(
|ρi|2 − |Ri|2

)

W = |k1ρ1 + k2ρ2|2 .

We separate our analysis into two cases: k1 + k2 6= 0 and k1 + k2 = 0.
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3.2.1 Case k1 + k2 6= 0

We introduce the combinations

µ = k1 + k2

e =
k1k2

k1 + k2
,

and note that since k1 + k2 6= 0 then µ is non–zero and e is well–defined. We in-

troduce the planar relative positions q = (qx, qy) ∈ R
2 and a conjugate momentum

p = (px, py) ∈ R
2, by making the change of coordinates

q = R1 − R2 + ρ1 − ρ2

p =
e

2
J (R1 − R2 − ρ1 + ρ2)

P = J (k1R1 + k2R2)

f = −J (k1ρ1 + k2ρ2) ,

where f = (fx, fy) ∈ R
2 and P = (Px, Py) ∈ R

2. The inverse transformation is given

by

R1 =
1

µ

[
k2

2

(
q − 2

e
Jp

)
− JP

]

R2 =
1

µ

[
−k1

2

(
q − 2

e
Jp

)
− JP

]

ρ1 =
1

µ

[
k2

2

(
q +

2

e
Jp

)
+ Jf

]
(3.2.3)

ρ2 =
1

µ

[
−k1

2

(
q +

2

e
Jp

)
+ Jf

]
.

Combining (3.2.2) and (3.2.3) we obtain

H =
1

2m

(
|p|2 + pz

2
)

+
e2

8m
|q|2 +

e

2m
q.Jp + V (R)

+ ǫ (2p − eJq) .f +
k1Ω1 + k2Ω2

2µ2
|f |2 +

Pz
2

2M
, (3.2.4)

and

ω = dqx ∧ dpx + dqy ∧ dpy + dqz ∧ dpz + dCz ∧ dPz

+
1

µ
(dPx ∧ dPy − dfx ∧ dfy) ,
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where R =
(
|q|2 + qz

2
)1/2

and

ǫ =
Ω1 − Ω2

2µ

measures the displacement from the set of parameters satisfying Ω1 = Ω2. This co-

ordinate change reduces (3.1.5) by a further degree of freedom by conservation (and

elimination) of Px and Py. The quantities L and W are now given by

L = q.Jp +
1

2µ

(
|f |2 − |P |2

)

W = |f |2 .

Since P is conserved we remove the − |P |2 /(2µ) term from the angular momentum,

corresponding to a change in the level set of the angular momentum, defining the

following conserved quantity

pθ = q.Jp +
1

2µ
|f |2 .

A final change of coordinates makes the system canonical and exhibits the reduction to

three degrees of freedom. It is given by writing

q = rer p = prer + 2µpθ−pφ

2µr eθ

f = p
1/2
φ e2µφ+θ

Px = µΠx Py = Πy ,

(3.2.5)

where θ is the direction of q, i.e.

er = cos θex + sin θey , eθ = − sin θex + cos θey , (3.2.6)

with ex = (1, 0) ∈ R
2 and ey = (0, 1) ∈ R

2. The vector e2µφ+θ is defined in the same

way as eθ with θ replaced by 2µφ+θ. The coordinate change given in (3.2.5) is singular

at pφ = 0 since φ is undefined in this case. There exists another coordinate singularity

at r = 0 that corresponds to collisions when qz = 0.

We obtain the following result.
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Theorem 3.2.1. Let k1 +k2 6= 0. Then the Hamiltonian system (3.1.5) reduces to one

with three degrees of freedom in the variables (r, pr, φ, pφ, qz, pz), given by

H = H0 + ǫH1 (3.2.7)

ω = dr ∧ dpr + dφ ∧ dpφ + dqz ∧ dpz + dθ ∧ dpθ + dΠx ∧ dΠy + dCz ∧ dPz ,

where H0 = H0(r, pr, pφ, qz, pz, pθ, Pz) is given by

H0 =
1

2m

(
pr

2 + pz
2
)
+

1

2m

(
2µpθ − pφ

2µr

)2

+
e2

8m
r2+

e

2m

(
pθ +

pφ

2µ

)
+
Pz

2

2M
+V (R) ,

H1 = H1 (r, pr, pθ, φ, pφ) is given by

H1 = pφ
1/2

((
er +

2µpθ − pφ

µr

)
cos(2µφ) − 2pr sin(2µφ)

)
+
k1 − k2

2µ
pφ

and

R =
(
r2 + qz

2
)1/2

, pθ = L+
1

2µ
P , pφ = W , (µΠx,Πy) = P .

The reconstruction map is given by

R1 = −JP

µ
+
k2

2µ

((
r − 2µpθ − pφ

k1k2r

)
er +

2

e
preθ

)

R2 = −JP

µ
− k1

2µ

((
r − 2µpθ − pφ

k1k2r

)
er +

2

e
preθ

)

ρ1 =
p
1/2
φ

µ
Je2µφ+θ +

k2

2µ

((
r +

2µpθ − pφ

k1k2r

)
er −

2

e
preθ

)

ρ2 =
p
1/2
φ

µ
Je2µφ+θ −

k1

2µ

((
r +

2µpθ − pφ

k1k2r

)
er −

2

e
preθ

)

qz1
= Cz +

m2

M
qz , qz2

= Cz −
m1

M
qz

pz1
=

m1

M
Pz + pz , pz2

=
m2

M
Pz − pz .

If the gyrofrequencies of the two particles are equal, i.e. Ω1 = Ω2, we have that

ǫ = 0. Applying theorem 3.2.1 we see that φ is a cyclic variable and so we obtain the

following result.
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Corollary 3.2.2. If Ω1 = Ω2 the Hamiltonian system (3.1.5) reduces to one with two

degree of freedom in the variables (r, pr, qz, pz), given by

H = H0(r, pr, pφ, qz, pz, pθ, Pz)

ω = dr ∧ dpr + dqz ∧ dpz + dφ ∧ dpφ + dCz ∧ dPz + dθ ∧ dpθ + dΠx ∧ dΠy ,

where H0 is as given in theorem 3.2.1.

3.2.2 Case k1 + k2 = 0

We now treat the case where the charges sum to zero. For simplicity of notation let

κ = k1 = −k2 .

We make the change of coordinates given by

q = R1 − R2 + ρ1 − ρ2

p = −κ
2
J (ρ1 + ρ2)

C = −1

2
J (R1 + R2 + ρ1 + ρ2) (3.2.8)

Π = κ (R1 − R2) ,

where q = (qx, qy) ∈ R
2 is the relative position of the two particles, p = (px, py) ∈ R

2 a

conjugate momentum, C = (Cx, Cy) ∈ R
2 and Π = (Πx,Πy) ∈ R

2. Inverting (3.2.8)

we obtain

R1 =
1

2κ
Π + JC − 1

κ
Jp

R2 = − 1

2κ
Π + JC − 1

κ
Jp

ρ1 = − 1

2κ
Π +

1

2

(
q +

2

κ
Jp

)
(3.2.9)

ρ2 =
1

2κ
Π − 1

2

(
q − 2

κ
Jp

)
.
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From (3.2.2) and (3.2.9), we get the Hamiltonian system determined by the Hamiltonian

function

H =
1

2m
|p|2 +

κ2

8m
|q|2 +

(m2 −m1)κ

2m1m2
q.Jp + V (R) (3.2.10)

−
(
κ

4m
q +

m2 −m1

2m1m2
Jp

)
.Π +

1

8m
|Π|2 +

1

2m
pz

2 +
1

2M
Pz

2 ,

where R =
(
|q|2 + qz

2
)1/2

, and symplectic form

ω = dqx ∧ dpx + dqy ∧ dpy + dqz ∧ dpz + dCx ∧ dΠx + dCy ∧ dΠy + dCz ∧ dPz ,

with the conserved quantities

P = JΠ

L = q.Jp + C.JΠ .

The Hamiltonian system (3.2.10) is already reduced to three degrees of freedom by

conservation of Π and Pz and elimination of C and Cz. Unless Π = 0 (or equivalently

P = 0), it is not possible to use the angular momentum L to reduce further (3.2.10)

since L depends on the cyclic variables C and hence it is not a function defined on the

reduced space. We make a final change of coordinates, given by

q = rer

p = prer +
pθ

r
eθ ,

where er and eθ are as given in (3.2.6). We obtain the following result.

Theorem 3.2.3. Let k1 +k2 = 0. Then the Hamiltonian system (3.1.5) reduces to one

with three degrees of freedom in the variables (r, pr, θ, pθ, qz, pz), given by

H = H0 +H1 (3.2.11)

ω = dr ∧ dpr + dθ ∧ dpθ + dqz ∧ dpz + dCx ∧ dΠx + dCy ∧ dΠy + dCz ∧ dPz ,

where H0 = H0(r, pr, pθ, qz, pz, Pz) is given by

H0 =
1

2m

(
pr

2 + pz
2
)

+
1

2m

(pθ

r

)2
+
κ2

8m
r2 +

(m2 −m1)κ

2m1m2
pθ +

Pz
2

2M
+ V (R) ,
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H1 = H1 (r, pr, θ, pθ,Πx,Πy) is given by

H1 = −
((

κ

4m
r +

m2 −m1

2m1m2

pθ

r

)
er −

m2 −m1

2m1m2
preθ

)
.Π +

1

8m
|Π|2

and

R =
(
r2 + qz

2
)1/2

, pθ = L− C.JΠ , Π = −JP .

The reconstruction map is given by

R1 =
1

2κ
Π + JC − 1

κ

pθ

r
er +

1

κ
preθ

R2 = − 1

2κ
Π + JC − 1

κ

pθ

r
er +

1

κ
preθ

ρ1 = − 1

2κ
Π +

1

2

(
r +

2

κ

pθ

r

)
er −

1

κ
preθ

ρ2 =
1

2κ
Π − 1

2

(
r − 2

κ

pθ

r

)
er −

1

κ
preθ

qz1
= Cz +

m2

M
qz , qz2

= Cz −
m1

M
qz

pz1
=

m1

M
Pz + pz , pz2

=
m2

M
Pz − pz .

If P = 0 then Π = 0 and hence H1, as given in the statement of theorem

3.2.3, is identically zero. From theorem 3.2.3, we obtain the following result.

Corollary 3.2.4. If k1+k2 = 0 and P = 0 then the Hamiltonian system (3.1.5) reduces

to one with two degrees of freedom in the variables (r, pr, qz, pz), given by

H = H0(r, pr, qz, pz, pθ, Pz)

ω = dr ∧ dpr + dqz ∧ dpz + dθ ∧ dpθ + dCx ∧ dΠx + dCy ∧ dΠy + dCz ∧ dΠz ,

where H0 is as given in theorem 3.2.3.

3.3 Reconstructed dynamics for a Coulomb potential

In this section we use the reduced Hamiltonian systems and the corresponding recons-

truction maps obtained in section 3.2 to provide a qualitative description of the possible
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types of dynamics in the full twelve–dimensional phase space in terms of the proper-

ties of the dynamics of the reduced systems. Throughout this section we consider the

interaction potential to be Coulomb

V (R) =
e1e2
4πǫ0

1

R
,

where R is the distance between the particles and ǫ0 is the permittivity of the vacuum.

From theorems 3.2.1 and 3.2.3 we obtain that the vertical z–component of the

centre of mass of the two particles moves with constant velocity Ċz = Pz/M . Hence,

by a translation we can assume that Ċz and Pz are 0. Furthermore, without loss of

generality we will assume that Cz = 0. This corresponds to considering the system as

moving with the centre of mass of the z–component. From now on, we will assume this

is the case. To extend the results in the sections below to non–zero Pz it is enough to add

a drift Pzt/M to the vertical positions qz1
and qz2

of the particles (by the reconstruction

maps of theorems 3.2.1 and 3.2.3).

3.3.1 Dynamics on the invariant plane qz = 0, pz = 0

In this section we prove the existence of an invariant plane for the dynamics of the

reduced Hamiltonian systems given in theorems 3.2.1 and 3.2.3 and relate it with an

invariant plane of the Hamiltonian system (3.1.5). We proceed by giving a brief des-

cription of both the reduced and reconstructed dynamics contained in this invariant

plane.

Lemma 3.3.1. The reduced Hamiltonian systems (3.2.7) and (3.2.11) given, respecti-

vely, in theorems 3.2.1 and 3.2.3 have an invariant plane determined by the conditions

qz = 0 and pz = 0.

Proof. From (3.2.7) and (3.2.11) we obtain

q̇z =
1

m
pz

ṗz =
e1e2
4πǫ0

qz

(r2 + qz2)3/2
. (3.3.1)
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From (3.3.1) we obtain q̇z = ṗz = 0 if and only if qz = pz = 0. Since the right hand

side of (3.3.1) is locally Lipschitz away from the singularity, it follows that qz and pz

remain equal to zero if they both start at zero.

Invariance of the plane qz = 0, pz = 0 under the dynamics of (3.2.7) and

(3.2.11) corresponds to invariance of the (ten–dimensional) plane

Λ =
{
(q1, q2,p1,p2) ∈ R

12 : qz1
= qz2

,m2pz1
= m1pz2

}

under the dynamics of (3.1.5). Furthermore, on the invariant plane Λ the dynamics of

the Hamiltonian system (3.1.5) reduce by a further degree of freedom compared to the

reduced systems in theorems 3.2.1 and 3.2.3. In fact, by setting qz = 0, pz = 0 in

the Hamiltonian systems (3.2.7) and (3.2.11) we obtain reduced dynamical systems for

the problem of the interaction of two charges moving in a plane under the action of a

magnetic field (with a shift on the energy level sets by Pz
2/(2M)). This system was

extensively studied in chapter 2. The next two results follow from theorems 3.2.1 and

3.2.3, lemma 3.3.1 and the results in chapter 2. We skip their proof.

Corollary 3.3.2. Let k1+k2 6= 0 and assume that the dynamics of (3.1.5) are contained

in Λ. Then

• the Hamiltonian system (3.1.5) reduces to one with two degrees of freedom in the

variables (r, pr, φ, pφ), given by the restriction of (3.2.7) to qz = 0, pz = 0.

• if Ω1 = Ω2 the Hamiltonian system (3.1.5) reduces to one with one degree of

freedom in the variables (r, pr), given by the restriction of (3.2.7) to qz = 0,

pz = 0 (and ǫ = 0).

• if e1 and e2 have opposite signs and Ω1 + Ω2 6= 0 the Hamiltonian system (3.1.5)

contains a suspension of a non–trivial subshift of finite type on level sets of high

energy.

Corollary 3.3.3. Let k1+k2 = 0 and assume that the dynamics of (3.1.5) are contained

in Λ. Then
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• the Hamiltonian system (3.1.5) reduces to one with two degrees of freedom in the

variables (r, pr, θ, pθ), given by the restriction of (3.2.11) to qz = 0, pz = 0.

• if P = 0 the Hamiltonian system (3.1.5) reduces to one with one degree of

freedom in the variables (r, pr), given by the restriction of (3.2.11) to qz = 0,

pz = 0 (and P = 0).

• if P 6= 0 and Ω1 + Ω2 6= 0 the Hamiltonian system (3.1.5) contains a suspension

of a non–trivial subshift of finite type on level sets of high energy.

As was observed in chapter 2 the reduced dynamics exhibit the following types

of dynamical behaviour:

• In the integrable regimes the energy levels are foliated by periodic orbits.

• Close to the integrable regimes most of the periodic orbits cease to exist but

almost all orbits in the energy levels are quasiperiodic and hence the dynamics

still look regular.

• For opposite signs of charge (except for the case Ω1 +Ω2 = 0) there is chaotic dy-

namics on level sets of high energy, which implies non–integrability in this regime.

The full dynamics in Λ correspond to a drift of the two particles with constant

and equal velocities (equal to Pz/M) in the z–direction. The dynamics in the (x, y)

plane are as described in chapter 2:

1) If k1 + k2 6= 0 the dynamics in the (x, y) plane are, generically, quasiperiodic with

three rationally independent frequencies. The particles rotate with these three

frequencies about a fixed centre determined by the linear momenta.

2) If k1 + k2 = 0 periodic and quasiperiodic base dynamics lift to possibly un-

bounded motion in the (x, y) plane corresponding to a combination of a drift

and quasiperiodic dynamics. The quasiperiodic dynamics have, generically, two

rationally independent frequencies.
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3) Chaotic dynamics lift to chaotic dynamics in the (x, y) plane. The motion (in the

(x, y) plane) is always bounded if k1 +k2 6= 0 and typically unbounded otherwise.

3.3.2 Existence of close approaches and bounded motion

In this section we describe the regime of parameters where close approaches are possible

and discuss the existence of bounded and unbounded motion for some of the variables in

the reduced systems given in theorems 3.2.1 and 3.2.3. This will gives us important in-

sight about distinct types of dynamical behaviour of (3.1.5) which will be of significance

for the study of the scattering problem associated with this system.

The next two lemmas describe the set of parameters and level sets of the con-

served quantities where trajectories with close approaches might exist. We skip the

proofs of these lemmas, which follow from an analysis of the Hamiltonian functions

given in theorems 3.2.1 and 3.2.3. In chapter 2 we give similar results for the case where

the two particles move in a plane.

Lemma 3.3.4. Let k1 + k2 6= 0. Then

• if k1k2 > 0, or k1k2 < 0 and the value of the conserved quantity pθ is fixed so

that µpθ < 0, the planar distance r between the two particles is bounded away

from zero, i.e. there exists d > 0 such that r(t) > d for all t ∈ R.

• if k1k2 < 0 and the value of the conserved quantity pθ is fixed so that µpθ is

positive, the distance r2 + qz
2 between the two particles can be arbitrarily close

to 0. Furthermore, pr
2 + pz

2 → ∞ and pφ → 2µpθ as r2 + qz
2 → 0.

Lemma 3.3.5. Let k1 + k2 = 0. Then

• if P = 0 and pθ 6= 0, the planar distance r between the two particles is bounded

away from zero, i.e. there exists d > 0 such that r(t) > d for all t ∈ R.

• if P = 0 and pθ = 0, the distance r2 + qz
2 between the two particles can be

arbitrarily close to 0. Furthermore, pr
2 + pz

2 → ∞ as r2 + qz
2 → 0.
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• if P 6= 0, the distance r2 + qz
2 between the two particles can be arbitrarily close

to 0. Furthermore, pr
2 + pz

2 → ∞ and pθ → 0 as r2 + qz
2 → 0.

In the next two results we identify the set of parameters and level sets of the

conserved quantities for which the distance between the two particles remains bounded.

Lemma 3.3.6. Let k1 + k2 6= 0 and consider the reduced Hamiltonian system given in

theorem 3.2.1. Then

(i) for every level set of the Hamiltonian function the dynamics of r and pφ are

bounded for all time.

(ii) if e1 and e2 have equal signs, there exists E′ ∈ R such that for every level set

E < E′ of the Hamiltonian function the projection of the level set {H = E}
onto the qz direction is unbounded but bounded away from qz = 0, and for E >

E′ the projection of the level set {H = E} onto the qz direction is unbounded.

Furthermore, for every level set of the Hamiltonian function the dynamics of pr

and pz are bounded for all time.

(iii) if e1 and e2 have opposite signs and the value of the conserved quantity pθ is

fixed so that 2µpθ < 0, there exists E′′ ∈ R such that for every level set E < E′′

of the Hamiltonian function the dynamics of qz are bounded and for every level

set E > E′′ the projection of the level set {H = E} onto the qz direction is

unbounded. Furthermore, for every level set of the Hamiltonian function the

dynamics of pr and pz are bounded for all time.

(iv) if e1 and e2 have opposite signs and the value of the conserved quantity pθ is

fixed so that 2µpθ ≥ 0, there exists E′′ ∈ R such that for every level set E < E′′

of the Hamiltonian function the dynamics of qz are bounded and for every level

set E > E′′ the projection of the level set {H = E} onto the qz direction is

unbounded.

Proof. Item (i) follows trivially from the fact that as r → ∞ then H → ∞ (and similarly

for pφ).
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For the proof of items (iii)–(iv) we define the Hamiltonian function H by

H = H −G
(
r2 + qz

2
)−1/2

,

where H is given in theorem 3.2.1 with V replaced by the Coulomb potential (3.0.1)

and G = e1e2/(4πǫ0). It is crucial to point out that the function H does not depend

on qz and is always bounded below. For simplicity of notation we consider H and H
just as functions of the variables in the reduced phase spaces and do not make their

dependence on the conserved quantities Pz and pθ explicit.

We now prove item (ii). For the case of same sign charges the Hamiltonian

function H is bounded below. Denote its lower bound by

E− = infH(r, pr, φ, pφ, qz, pz) .

By lemma 3.3.4 we obtain that r is bounded away from 0 and hence G
(
r2 + qz

2
)−1/2

is bounded. On lines where r is constant G
(
r2 + qz

2
)−1/2

increases at non–zero rate

from 0 at the limit qz → −∞ to attains its (positive) maximum at qz = 0 to decrease

again to 0 at non–zero rate at the limit qz → +∞. We now define

E′ = infH(r, pr, φ, pφ, qz = 0, pz) ,

and note that E− < E′. From a simple analysis of the Hamiltonian functionH we obtain

that for every level set E− ≤ E < E′ of the Hamiltonian function the projection of the

level set {H = E} onto the qz direction is bounded away from 0 and for E > E′ qz = 0

belongs to the level sets of the Hamiltonian function. Furthermore, we obtain that for

every level set of the Hamiltonian function the projection of the level set {H = E} onto

the qz direction is unbounded. Boundedness of the dynamics of pr and pz follow from

the fact that r is always bounded away from 0 (lemma 3.3.4).

For the proof of item (iii) we start by defining

E′′ = inf H(r, pr, φ, pφ, pz) .

By lemma 3.3.4 we get that r is bounded away from 0 and hence G
(
r2 + qz

2
)−1/2

is

bounded. On lines where r is constant G
(
r2 + qz

2
)−1/2

decreases at non–zero rate

140



from 0 at the limit qz → −∞ to its (negative) minimum at qz = 0 to increase again to

0 at non–zero rate at the limit qz → +∞. We note that in this case the function H is

also bounded below and define

E− = infH(r, pr, φ, pφ, qz = 0, pz)

= inf

(
H(r, pr, φ, pφ, pz) +

G

r

)
,

and note that by item (i) in this lemma, r is bounded and hence G/r is strictly negative

implying that E− < E′′. Using the fact that H does not depend on qz a simple analysis

of the Hamiltonian function H shows that for every level set E− ≤ E < E′′ of H the

dynamics of qz are bounded for all time and for every level set E > E′′ the projection of

the level set {H = E} onto the qz direction is unbounded. Boundedness of the dynamics

of pr and pz follow from the fact that r is always bounded away from 0 (lemma 3.3.4).

To prove (iv) we note thatH is not bounded below at points satisfying pφ = 2µpθ

and define

E′′ = inf H(r, pr, φ, pφ, pz) .

Since G
(
r2 + qz

2
)−1/2

< 0 (possibly unbounded) we obtain that H ≤ H. A simple

analysis of the Hamiltonian function H shows that for every level set E < E′′ of H the

dynamics of qz are bounded for all time and for every level set E > E′′ the projection

of the level set {H = E} onto the qz direction is unbounded.

We skip the proof of the next lemma which is analogous (though simpler) to the

proof of the previous lemma 3.3.6.

Lemma 3.3.7. Let k1 + k2 = 0 and consider the reduced Hamiltonian system given in

theorem 3.2.3. Then

(i) for every level set of the Hamiltonian function the dynamics of r and pθ are

bounded for all time.

(ii) if P = 0 and pθ 6= 0, there exists E′′ ∈ R such that for every level set E < E′′

of the Hamiltonian function the dynamics of qz are bounded and for every level
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set E > E′′ the projection of the level set {H = E} onto the qz direction is

unbounded. Furthermore, for every level set of the Hamiltonian function the

dynamics of pr and pz are bounded for all time.

(iii) if P 6= 0 or P = 0 and pθ = 0, there exists E′′ ∈ R such that for every level

set E < E′′ of the Hamiltonian function the dynamics of qz are bounded and

for every level set E > E′′ the projection of the level set {H = E} onto the qz

direction is unbounded.

3.3.3 Asymptotic properties of the dynamics of the reconstructed sys-

tem

In this section we combine the results given in the two previous subsections to provide

a partial characterization for the dynamics from an “asymptotic point of view”. We

should remark that this characterization might be incomplete and that the existence of

extra conserved quantities or invariant hypersurfaces for the Hamiltonian system (3.1.5)

may introduce other types of dynamical behaviour.

In the absence of extra conserved quantities or invariant hypersurfaces for the

Hamiltonian system (3.1.5), the following (asymptotic) dynamical behaviours are pos-

sible:

(1) “planar” behaviour: in the invariant plane Λ the two particles drift with equal and

constant velocity in the vertical z–direction while the dynamics in the (x, y) plane

correspond to the interaction of the two particles in a plane.

(2) “molecule–like” behaviour: if the charges have opposite signs, then there exists

E1 ∈ R such that for every level set E < E1 of the Hamiltonian function the

relative position q1 − q2 of the two particles is bounded for all time. However,

each particle position may be unbounded:

– if Pz 6= 0 the particles drift in the vertical direction with non–zero velocity.
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– if k1 + k2 6= 0 and Pz = 0 using (3.2.1) and the reconstruction map in

theorem 3.2.1, we obtain

(qxi
, qyi

) = −JP

µ
+ (−1)i+1 1

µ

(
k2rer + (−1)i+1p

1/2
φ Je2µφ+θ

)
.

By lemma 3.3.6 we obtain that r and pφ are bounded and hence q1 and q2

are bounded.

– if k1+k2 = 0 and P 6= 0 we have that the trajectories of the two particles are

typically unbounded in the (x, y) plane: they drift with a non–zero average

velocity (see chapter 2 for more details).

(3) “unbounded” behaviour: there exists E2 ∈ R such that for every level set E > E2

of the Hamiltonian function the dynamics in the vertical z–direction are un-

bounded. More precisely, the asymptotic behaviour satisfies:

a) limt→±∞ qz1
(t) = − limt→±∞ qz2

(t) .

b) limt→±∞ |qz1
(t)| = limt→±∞ |qz2

(t)| = ∞ .

We identify two distinct classes of “unbounded” behaviour to which we call

“bouncing–back” behaviour and “pass–through” behaviour.

(3.1) “bouncing–back” behaviour: we call “bouncing–back” behaviour to an “un-

bounded” behaviour satisfying the additional condition that qz1
(t) − qz2

(t)

is bounded away from zero for all t ∈ R.

In particular, if the charges have equal signs, then there exists E3 ∈ R such

that for every level set E < E3 of the Hamiltonian function the dynamics

exhibit “bouncing–back” behaviour, i.e. the dynamics are unbounded in the

vertical z–direction but bounded away from the plane qz1
= qz2

.

(3.2) “pass–through” behaviour: we call “pass–through” behaviour to an “un-

bounded” behaviour satisfying the following additional condition:

lim
t→+∞

qzi
(t) = − lim

t→−∞
qzi

(t) , i ∈ {1, 2} .
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In particular, there exists E4 ∈ R such that for every level set E > E4 of the

Hamiltonian function the dynamics always exhibit “pass–through” behaviour.

0
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Figure 3.3.1: Three distinct dynamical behaviours. For all the figures we fix the parame-
ters e1 = m1 = 1, B = c = 1 and ǫ0 = 0.1 and initial conditions qx1

(0) = −qx2
(0) = 2,

px1
(0) = px2

(0) = 1 and qy1
(0) = qy2

(0) = py1
(0) = py2

(0) = 0. On the left column
we set e2 = −4, m2 = 3 and qz1

(0) = −qz2
(0) = 0.1, pz1

(0) = −pz2
(0) = −0.01 and

obtain a “molecule–like” behaviour. On the centre column we set e2 = m2 = 3 and
qz1

(0) = −qz2
(0) = 0.1, pz1

(0) = −pz2
(0) = −0.01 and obtain a “bouncing–back”

behaviour. On the right column we set e2 = m2 = 3 and qz1
(0) = −qz2

(0) = 10,
pz1

(0) = −pz2
(0) = −0.85 and obtain a “pass–through” behaviour.

Remark As we will see in the next section, for the case of opposite sign charges, the

regime of energies corresponding to “unbounded” behaviour is the suitable one for the

existence of chaotic scattering in this system: if the energy is high enough, then the

particles always exhibit “pass–through” behaviour while for small positive energies there

is a mixing of “pass–through” behaviour and “bounce–back” behaviour.

3.4 The scattering map

In this section we introduce the scattering map associated with the Hamiltonian system

(3.1.5) and derive relevant properties of this map in some suitable regimes. As in section

3.3, throughout this section we will consider the interaction potential to be Coulomb

V (R) = G/R, where R is the distance between the particles and G = e1e2/4πǫ0; as

before, we will also set Cz = 0 and Pz = 0 without loss of generality.
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In the case of zero interaction, the general solution of (3.1.5) can be written as

qi(t) = (Ri + ρi(t), qzi
(t))

pi(t) = (−kiJρi(t), pzi
) , (3.4.1)

for i ∈ {1, 2}, where Ri = (Rxi
, Ryi

) ∈ R
2 are the guiding centres of the particles,

ρi(t) ∈ R
2 their gyroradii vectors, qzi

(t) ∈ R their vertical positions and pzi
∈ R their

vertical momenta. For zero interaction, Ri, ρi = |ρi(t)| and pzi
are conserved, while

arg (ρi(t)) rotates with gyrofrequency Ωi and the vertical positions qzi
(t) evolve linearly

with time.

As a consequence of theorems 3.2.1 and 3.2.3, for non–zero interactions the

general solution of (3.1.5) can still be written in the form given in (3.4.1), with the

variables Ri, ρi, qzi
and pzi

(i ∈ {1, 2}) evolving with time accordingly with the recons-

truction maps and the reduced Hamiltonian systems given in the statements of theorems

3.2.1 and 3.2.3.

We will be considering the cases in section 3.3.3 where the dynamics in the

vertical direction are unbounded: in the limits of t → ±∞ we have that |qz(t)| =

|qz1
(t) − qz2

(t)| → ∞. In such cases, the typical situation is the following: initially the

particles have a large vertical separation and their trajectories are just helices of the form

(3.4.1), as described for the zero interaction case. At some instant of time their vertical

separation is small so the particles interact and their paths are no longer helices. The

two particles will eventually separate again and their paths approach helices again. Due

to the interaction, the helices in which the particles move before interacting and after

interacting are different. The scattering map describes such asymptotic changes to the

helices.

We will now rigorously introduce the scattering map. We assume that as |t| → ∞
the two particles have infinite vertical separation and the particles move in helices. We

would like the scattering map to map the main asymptotic properties of such helices, i.e.

the guiding centres and gyroradius as well as the vertical position and momentum as the

particles approach t = −∞ to the asymptotic properties of the helices at t = +∞. We
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proceed as follows. First of all, we note that since Cz = Pz = 0 from the reconstruction

maps in theorems 3.2.1 and 3.2.3, we have that

qz1
=

m2

M
qz qz2

= −m1

M
qz

pz1
= pz pz2

= −pz ,

and hence it is enough to look at the asymptotics of qz and pz. There are, however,

some difficulties: in the limit of large vertical separation, the gyroradii of the two parti-

cles rotate uniformly with angular velocity given by the gyrofrequency of each particle

and hence do not have a well–defined limit as |t| → ∞. To overcome this difficulty we

consider the Hamiltonian system (3.2.2) and introduce the following change of coordi-

nates

ρi = (2ρi)
1/2

Jeθi
, i ∈ {1, 2} , (3.4.2)

where eθi
is defined in the same way as eθ in (3.2.6) with θ replaced by θi. Note that

ρi ∈ R is proportional to the gyroradii squared norm |ρi|2 and θi is the i-th particle

gyrophase. Using (3.4.2), we obtain the Hamiltonian system

H =
pz

2

2m
+ k1Ω1ρ1 + k2Ω2ρ2 + V (R) (3.4.3)

ω =
∑

i=1,2

ki (dRxi
∧ dRyi

+ dθi ∧ dρi) + dqz ∧ dpz ,

where

R =

(∣∣∣R1 − R2 + (2ρ1)
1/2

Jeθ1
− (2ρ2)

1/2
Jeθ2

∣∣∣
2
+ qz

2

)1/2

.

We should point out that the transformation (3.4.2) introduces two coordinate singu-

larities at ρ1 = 0 and ρ2 = 0. We note that the gyrophases θi evolve by the differential

equation

θ̇i = Ωi +
1

ki

∂

∂ρi
V (R)

and hence do not have well–defined limits θ±i = limt→±∞ θi(t). To avoid this inconve-

nience we introduce modified gyrophases by

φi = θi − Ωit , i ∈ {1, 2} , (3.4.4)
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measuring the displacement between the gyrophases in the non–zero interaction and zero

interaction settings. Going to the extended phase space by introducing the conjugated

variables energy E and time t and making the change of coordinates (3.4.4) we obtain

the following Hamiltonian system

H =
pz

2

2m
+ k1Ω1ρ1 + k2Ω2ρ2 + V (R) − E

ω =
∑

i=1,2

ki (dRxi
∧ dRyi

+ dφi ∧ dρi) + dqz ∧ dpz (3.4.5)

+d(E − k1Ω1ρ1 − k2Ω2ρ2) ∧ dt ,

where

R =

(∣∣∣R1 − R2 + (2ρ1)
1/2

Jeφ1+Ω1t − (2ρ2)
1/2

Jeφ2+Ω2t

∣∣∣
2
+ qz

2

)1/2

. (3.4.6)

Note that the dynamics on level sets {H = E} of (3.4.3) correspond to the dynamics

of the level set {H = 0} of (3.4.5). Introducing the asymptotic vertical energy

Ez = E − k1Ω1ρ1 − k2Ω2ρ2 ,

we obtain

H =
pz

2

2m
+ V (R) − Ez

ω =
∑

i=1,2

ki (dRxi
∧ dRyi

+ dφi ∧ dρi) + dqz ∧ dpz + dEz ∧ dt , (3.4.7)

where R is given by (3.4.6).

Let i ∈ {1, 2} and let us denote by R+
i , ρ+

i , φ+
i and pz

+ (respectively R−
i ,

ρ−i , φ−i and pz
−) the limits of the quantities Ri(t), ρi(t), φi(t) and pz(t) as t →

+∞ (respectively t → −∞). Furthermore, let us denote by qz
+ the sign of qz(t) as

t → +∞ and by qz
− the sign of qz(t) as t → −∞. The scattering map is the map

S : R
9 × {+,−} → R

9 × {+,−} given by

S
(
R1

−,R2
−, ρ1

−, ρ2
−, φ1

−, φ2
−, pz

−, qz
−) =

=
(
R1

+,R2
+, ρ1

+, ρ2
+, φ1

+, φ2
+, pz

+, qz
+
)
. (3.4.8)
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Remarks We note that:

i) the scattering map is well–defined provided |qz(t)| → ∞ as |t| → ∞ and the

particles do not go through close approaches in their orbits.

ii) a complete study of the scattering map should take into account the asymptotic

time difference for the particles to travel between two points with and without an

interaction. We skip an analytic study of this asymptotic time difference since the

Coulomb potential leads to unbounded time difference due to a logarithmic term.

However, we do a numerical study of the time difference in section 3.4.3.

3.4.1 Scattering map in the limit of widely separated trajectories

Throughout this section we will consider that the projections of the helices on the

horizontal plane in the limits |t| → ∞ are two widely separated circles, i.e. the following

condition is satisfied

|ρ1|2 + |ρ2|2 << |R1 − R2|2 . (3.4.9)

Expanding (3.4.6) we obtain

1/R =
(
|R1 − R2|2 + 2(R1 − R2).w + |w|2 + qz

2
)−1/2

(3.4.10)

=
(
|R1 − R2|2 + qz

2
)−1/2

(
1 +

2(R1 − R2).w + |w|2
|R1 − R2|2 + qz2

)−1/2

,

where

w = (2ρ1)
1/2

Jeφ1+Ω1t − (2ρ2)
1/2

Jeφ2+Ω2t . (3.4.11)

From (3.4.9), we obtain the inequality
∣∣∣∣
2(R1 − R2).w + |w|2
|R1 − R2|2 + qz2

∣∣∣∣ < 1

and hence, using Taylor series, we obtain

(
1 +

2(R1 − R2).w + |w|2
|R1 − R2|2 + qz2

)−1/2

= 1 − 1

2

2(R1 − R2).w + |w|2
|R1 − R2|2 + qz2

(3.4.12)

+O




|R1 − R2|2(
|R1 − R2|2 + qz2

)2


 .
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Putting together (3.4.10) and (3.4.12), we get

V (R) =
G

(
|R1 − R2|2 + qz2

)1/2
− G

2

2(R1 − R2).w + |w|2
(|R1 − R2|2 + qz2)3/2

+O




|R1 − R2|2(
|R1 − R2|2 + qz2

)5/2


 .

Neglecting terms of order O
(
|R1 − R2|2 /(|R1 − R2|2 + qz

2)5/2
)

we obtain an effec-

tive Hamiltonian system for the interaction of two widely separated charges in a uniform

magnetic field, which is given by

Heff =
pz

2

2m
+ Veff − Ez

ω =
∑

i=1,2

ki (dRxi
∧ dRyi

+ dφi ∧ dρi) + dqz ∧ dpz + dEz ∧ dt

Veff =
G

(
|R1 − R2|2 + qz2

)1/2
− G

2

2(R1 − R2).w + |w|2
(|R1 − R2|2 + qz2)3/2

, (3.4.13)

where w is given in (3.4.11).

Averaging

Since the two helices are widely separated, the values of the particles gyrophases have

a negligible effect in the particles distance and hence on the strength of the Coulomb

interaction. This enable us to average (3.4.13) with respect to the gyrophases φ1 and

φ2. We obtain the Hamiltonian system

Heff =
pz

2

2m
+ Veff − Ez (3.4.14)

ω =
∑

i=1,2

ki (dRxi
∧ dRyi

+ dφi ∧ dρi) + dqz ∧ dpz + dEz ∧ dt ,

where

Veff =
1

4π2

∫ 2π

0

∫ 2π

0
Veffdφ1dφ2

=
G

(
|R1 − R2|2 + qz2

)1/2
− G (ρ1 + ρ2)

(|R1 − R2|2 + qz2)3/2
.
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Note that averaging with respect to φ1 and φ2 eliminates t and implies conservation of

the quantities ρ1, ρ2 and Ez. Furthermore, the system (3.4.14) has a three–dimensional

group of symmetries (2 translations and 1 rotation) to which correspond the following

conserved quantities:

P = J (k1R1 + k2R2) (3.4.15)

L− k1ρ1 − k2ρ2 = −k1

2
|R1|2 −

k2

2
|R2|2 .

We will use these symmetries and conserved quantities to reduce the Hamiltonian system

(3.4.14). We divide our analysis into two cases: k1 + k2 6= 0 and k1 + k2 = 0.

Case k1 + k2 6= 0

From (3.4.15) we get that the centre of charge of the guiding centres

k1R1 + k2R2

k1 + k2
=

−JP

k1 + k2

is a constant. So by a translation we can assume it and P are 0. This implies the

relation

R2 = −k1

k2
R1 . (3.4.16)

Restricting the Hamiltonian system to the set determined by (3.4.16) gives

Heff =
pz

2

2m
+ Veff − Ez

ω =
k1

2

e
dRx1

∧ dRy1
+ k1dφ1 ∧ dρ1 + k2dφ2 ∧ dρ2 + dqz ∧ dpz + dEz ∧ dt

Veff =
G

(
k1

2 |R1|2 /e2 + qz2
)1/2

− G (ρ1 + ρ2)(
k1

2 |R1|2 /e2 + qz2
)3/2

.

The angular momentum given in (3.4.15) is now given by

L− k1ρ1 − k2ρ2 = −k1
2

2e
|R1|2 . (3.4.17)

We introduce a corrected angular momentum

pθR
= L− k1ρ1 − k2ρ2 , (3.4.18)

and note that:

150



• −2epθR
> 0,

• conservation of pθR
implies that the guiding centres Ri move in circles of radius

√
−2epθR

/ki
2 , i ∈ {1, 2} .

We reduce the system by angular momentum introducing polar coordinates

R1 =

√
−2epθR

/k1
2eθR

,

where eθR
is defined in the same way as eθ in (3.2.6) with θ replaced by θR. We

note that there is a coordinate singularity when pθR
= 0 corresponding to the case

when R1 = R2 = 0, which is not a problem since we are dealing with the case of

large |R1 − R2|. To obtain a canonical Hamiltonian system we also introduce signed

gyroradius pφi
defined by

pφi
= kiρi

and reduce by the (extra) degree of freedom dEz ∧ dt corresponding to the coordinates

in the extended phase space. We obtain the following one degree of freedom effective

Hamiltonian system

Heff =
pz

2

2m
+ V eff

V eff =
G

(−2pθR
/e+ qz2)1/2

− G (pφ1
/k1 + pφ2

/k2)

(−2pθR
/e+ qz2)3/2

(3.4.19)

ω = dqz ∧ dpz + dθR ∧ dpθR
+ dφ1 ∧ dpφ1

+ dφ2 ∧ dpφ2
.

Without any effect on the preceeding results, we can substitute (3.4.9) by the

following (weaker) condition

3

2

(
|ρ1|2 + |ρ2|2

)
< |R1 − R2|2 . (3.4.20)

Noting that condition (3.4.20) is equivalent to 3 (pφ1
/k1 + pφ2

/k2) < −2pθR
/e, we

obtain that the effective potential in (3.4.19) satisfies:
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Figure 3.4.1: Plots of V eff . For both figures pφ1
/k1 = pφ2

/k2 = 1 and −2pθR
/e = 100.

In the left figure G = 1 while on the right figure G = −1.

• if G > 0, then V eff is positive for all qz ∈ R (see figure (3.4.1a)). It is increasing

for qz < 0, decreasing for qz > 0 and has a maximum E′ at qz = 0, given by

E′ =
G

(−2pθR
/e)1/2

− G (pφ1
/k1 + pφ2

/k2)

(−2pθR
/e)3/2

. (3.4.21)

Furthermore limt→±∞ V eff = 0.

• if G < 0, then V eff is negative for all qz ∈ R (see figure (3.4.1b)). It is decreasing

for qz < 0, increasing for qz > 0 and has global minimum E′ (given by (3.4.21))

at qz = 0. Furthermore limt→±∞ V eff = 0.

The next results summarize some of the most relevant properties of the scattering

map (3.4.8) for the case of two widely separated charges (satisfying k1+k2 6= 0) moving

under the action of a uniform magnetic field and a Coulomb interaction. Before stating

the results we need to introduce some notation. We define the asymptotic change for

k1 + k2 6= 0, Γγ0,γ1,γ2,γ3
, by

Γγ0,γ1,γ2,γ3
= γ1

∫ +∞

γ0

1

(1 + x2)3/2 (1 − Uγ2,γ3
(x))1/2

dx ,

where Uγ2,γ3
(x) is given by

Uγ2,γ3
(x) =

γ2

(1 + x2)1/2
− γ3

(1 + x2)3/2
,
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γ1, γ2 and γ3 are given by

γ1 = − Ge

2pθR

√
m

2E

γ2 =
G

E

√
− e

2pθR

γ3 =
G

E

(√
− e

2pθR

)3(pφ1

k1
+
pφ2

k2

)

and γ0 is defined by

γ0 =





−∞ if k1k2 > 0 and E > E′

qz
∗√−e/(2pθR

) if k1k2 > 0 and 0 < E < E′

−∞ if k1k2 < 0 and E > 0

, (3.4.22)

where qz
∗ is the only positive root of V eff (qz) = E and E′ is given by (3.4.21).

Theorem 3.4.1. Let k1 + k2 6= 0 and k1k2 > 0 and assume that inequality (3.4.20)

is satisfied. Then, for every level set {Heff = E} of (3.4.19) such that E > 0, the

scattering map S is well–defined. Furthermore, there exists E′ ∈ R given by (3.4.21)

such that:

i) for every E > E′ we have that pz
+ = pz

−, |pz
±| = (2mE)1/2 and qz

+ = −qz−.

ii) for every 0 < E < E′ we have that pz
+ = −pz

−, |pz
±| = (2mE)1/2 and

qz
+ = qz

−.

Let i ∈ {1, 2}. Whenever the scattering map is well–defined, it also has the following

properties:

a) there is no transfer of magnetic moment between the two particles, i.e. the norm

of the gyroradius |ρi|2 = 2(pφi
/ki)

2 is conserved and hence ρ+
i = ρ−i .

b) the asymptotic gyrophases φ+
i and φ−i are related by

∆φi = φ+
i − φ−i = − 1

ki
Γγ0,γ1,γ2,γ3

.
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c) the guiding centres Ri move in circles of radius
√
−2epθR

/ki
2 about −JP /µ and

rotate (about the centre −JP /µ) by an angle ∆θR which, to leading order, is

given by

∆θR =
1

e
Γγ0,γ1,γ2,γ3

.

Proof. The first part of the theorem and item i) of the second part follow trivially from

an analysis of the Hamiltonian system (3.4.19). To prove item b) of the second part

note that

∆φi = φ+
i − φ−i =

∫ +∞

−∞

∂Heff

∂pφi

(qz(t), pz(t)) dt .

If E > E′, then

∆φi =

∫ +∞

−∞

∂Heff

∂pφi

dt

dqz
dqz . (3.4.23)

From (3.4.19), we obtain

∂Heff

∂pφi

= − G

ki (−2pθR
/e+ qz2)3/2

dqz
dt

= ±
(

2

m

(
E − V eff (qz)

))1/2

. (3.4.24)

From (3.4.23) and (3.4.24), we get

∆φi = −G
ki

∫ +∞

−∞

1

(−2pθR
/e+ qz2)3/2

(
2
m

(
E − V eff (qz)

))1/2
dqz . (3.4.25)

Making the change of variable qz = (−2pθR
/e)1/2 x in the integral on the right hand

side of (3.4.25), we obtain

∆φi = −γ1

ki

∫ +∞

−∞

1

(1 + x2)3/2
(
1 − γ2/ (1 + x2)1/2 + γ3/ (1 + x2)3/2

)1/2
dx ,

where

γ1 = − Ge

2pθR

√
m

2E

γ2 =
G

E

√
− e

2pθR

(3.4.26)

γ3 =
G

E

(√
− e

2pθR

)3(pφ1

k1
+
pφ2

k2

)
.
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With a similar procedure, if 0 < E < E′, we obtain

∆φi = γ1

∫ +∞

γ0

1

(1 + x2)3/2
(
1 − γ2/ (1 + x2)1/2 + γ3/ (1 + x2)3/2

)1/2
dx ,

where γi (i ∈ {1, 2, 3}) are still given by (3.4.26) and γ0 is given by

γ0 = qz
∗
√

− e

2pθR

.

The first part of item c) follows from (3.4.16), (3.4.17) and (3.4.18) and the recons-

truction map in theorem 3.2.1. To complete the proof we just need to evaluate

∆θR = lim
t→+∞

θR(t) − lim
t→−∞

θR(t) =

∫ +∞

−∞

∂Heff

∂pθR

(qz(t), pz(t)) dt .

Noting that

∂Heff

∂pθR

=
G

e (−2pθR
/e+ qz2)3/2

− 3G(pφ1
/k1 + pφ2

/k2)

e (−2pθR
/e+ qz2)5/2

,

neglecting the term of order O
((

−2pθR
/e+ qz

2
)5/2

)
and proceeding in the same way

as we did for the proof of item b) we obtain the required result.

Theorem 3.4.2. Let k1 + k2 6= 0 and k1k2 < 0 and assume that inequality (3.4.20)

is satisfied. Then, for every level set {Heff = E} of (3.4.19) such that E > 0 the

scattering map S is well–defined and we have that p+
z = p−z , |pz

±| = (2mE)1/2 and

q+z = −q−z . Let i ∈ {1, 2}. Whenever the scattering map is well–defined, it also has the

following properties:

a) there is no transfer of magnetic moment between the two particles, i.e. the norm

of the gyroradius |ρi|2 = 2(pφi
/ki)

2 is conserved and hence ρ+
i = ρ−i .

b) the asymptotic gyrophases φ+
i and φ−i are related by

∆φi = φ+
i − φ−i = − 1

ki
Γγ0,γ1,γ2,γ3

.

155



c) the guiding centres Ri move in circles of radius
√
−2epθR

/ki
2 about −JP /µ and

rotate (about the centre −JP /µ) by an angle ∆θR which, to leading order, is

given by

∆θR =
1

e
Γγ0,γ1,γ2,γ3

.

The proof of theorem 3.4.2 is identical to the proof of theorem 3.4.1 and so we

skip it.

Remarks We note that:

i) item i) in theorem 3.4.1 corresponds to “pass–through” behaviour (high energy)

while item ii) corresponds to “bounce–back” behaviour (small energy).

ii) in the case of two charges satisfying k1 + k2 6= 0 and k1k2 < 0 (as in theorem

3.4.2) the initial conditions that correspond to the scattering problem have energy

E > 0. To level sets with negative energies (bounded below by E′ given in

(3.4.21)) correspond bounded motions and hence, the scattering map is not well–

defined. In this case we have “molecule–like” behaviour in agreement with section

3.3.3.

iii) if E > |E′| then |γ2|, |γ3| < 1 and we can make the following estimate:

Γγ0,γ1,γ2,γ3
= γ1

∫ +∞

−∞

1

(1 + x2)3/2
dx+O (γ1γ2) .

Evaluating the integral above, we obtain

Γγ0,γ1,γ2,γ3
= 2γ1 +O (γ1γ2) = −Ge

pθR

√
m

2E
+O

(
G2
( m

2E3

)1/2
(
− e

2pθR

)3/2
)
.

Case k1 + k2 = 0

Let us consider again the Hamiltonian system (3.4.14). We change coordinates to

C =
1

2
(R1 + R2)

P =
1

2κ
J (R1 − R2) , (3.4.27)
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introduce signed gyroradius pφi
defined by

pφi
= kiρi

and reduce by the (extra) degree of freedom dEz ∧ dt corresponding to the coordinates

in the extended phase space obtaining the following one degree of freedom effective

Hamiltonian system

Heff =
pz

2

2m
+

G

(4κ2|P |2 + qz2)1/2
− G (pφ1

/k1 + pφ2
/k2)

(4κ2|P |2 + qz2)3/2
(3.4.28)

ω = dqz ∧ dpz + dCx ∧ dPx + dCy ∧ dPy + dφ1 ∧ dpφ1
+ dφ2 ∧ dpφ2

.

Using the weaker form (3.4.20) of condition (3.4.9) we obtain that 3 (pφ1
/k1 + pφ2

/k2) <

4κ2|P |2 from where we get that the effective potential in (3.4.28) satisfies:

• V eff is negative for all qz ∈ R (see figure (3.4.1b)). It is decreasing for qz < 0,

increasing for qz > 0 and has global minimum E′ given by

E′ =
G

2|κ||P | −
G (pφ1

/k1 + pφ2
/k2)

(2|κ||P |)3
(3.4.29)

at qz = 0. Furthermore limt→±∞ V eff = 0.

The next result summarizes some of the most relevant properties of the scattering

map (3.4.8) for the case of two widely separated charges (satisfying k1+k2 = 0) moving

under the action of a uniform magnetic field and a Coulomb interaction. Before stating

the results we need to introduce some notation. We define the asymptotic change for

k1 + k2 = 0, Γ0
γ0,γ1,γ2,γ3

, by

Γ0
γ0
1 ,γ0

2 ,γ0
3

= γ0
1

∫ +∞

−∞

1

(1 + x2)3/2 (1 − Uγ0
2 ,γ0

3
(x)
)1/2

dx ,

where Uγ0
2 ,γ0

3
(x) is given by

Uγ0
2 ,γ0

3
(x) =

γ0
2

(1 + x2)1/2
− γ0

3

(1 + x2)3/2
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and γ0
1 , γ0

2 and γ0
3 are given by

γ0
1 =

G

4κ2|P |2
√

m

2E

γ0
2 =

G

2|κ||P |E

γ0
3 =

G

8|κ|3|P |3E

(
pφ1

k1
+
pφ2

k2

)
.

Theorem 3.4.3. Let k1 + k2 = 0 and assume that inequality (3.4.20) is satisfied.

Then, for every level set {Heff = E} of (3.4.28) such that E > 0 the scattering

map S is well–defined and we have that p+
z = p−z , |pz

±| = (2mE)1/2 and q+z = −q−z .

Let i ∈ {1, 2}. Whenever the scattering map is well–defined, it also has the following

properties:

a) there is no transfer of magnetic moment between the two particles, i.e. the norm

of the gyroradius |ρi|2 = 2(pφi
/ki)

2 is conserved and hence ρ+
i = ρ−i .

b) the asymptotic gyrophases φ+
i and φ−i are related by

∆φi = φ+
i − φ−i = − 1

ki
Γ0

γ0
1 ,γ0

2 ,γ0
3
.

c) the distance between the guiding centres is conserved:

∣∣R1
+ − R2

+
∣∣ =

∣∣R1
− − R2

−∣∣ = 2|κ| |P | .

d) to leading order, the asymptotic guiding centres Ri
+ and Ri

− are related by

Ri
+ − Ri

− = 4κ2Γ0
γ0
1 ,γ0

2 ,γ0
3
P .

Proof. The first part of the theorem and item i) of the second part follow trivially from

an analysis of the Hamiltonian system (3.4.28). The proof of item b) is analogous to

the proof of item b) of theorem 3.4.1. Item c) follows from (3.4.27). To prove item d)

we invert (3.4.27) to obtain

R1 = C − κJP , R2 = C + κJP .
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Noting that

Ri
+ − Ri

− = lim
t→+∞

C(t) − lim
t→−∞

C(t) =

∫ +∞

−∞

∂Heff

∂P
(qz(t), pz(t)) dt

and proceeding in the same way as we did for the proof of item c) of theorem 3.4.1 we

obtain the result.

Remark We note that:

i) in the setting of theorem 3.4.3, to level sets with negative energies (bounded

below by E′ given in (3.4.29)) correspond bounded motions and the scattering

map is not well–defined. In such energy regimes the dynamics exhibit “molecule–

like” behaviour in agreement with section 3.3.3. Otherwise, in level sets with

positive energies the dynamics exhibit “unbounded” behaviour (more precisely,

“pass–trough” behaviour).

ii) if E > |E′| then |γ2|, |γ3| < 1 and we can make the following estimate:

Γ0
γ1,γ2,γ3

= γ1

∫ +∞

−∞

1

(1 + x2)3/2
dx+O (γ1γ2) .

Evaluating the integral above, we obtain

Γγ0,γ1,γ2,γ3
= 2γ1 +O (γ1γ2) =

G

2κ2|P |2
√

m

2E
+O

(
G2

8|κ|3|P |3
( m

2E3

)1/2
)
.

We should note that theorems 3.4.1, 3.4.2 and 3.4.3 apply only to the averaged

systems (3.4.19) and (3.4.28). Furthermore, the error of approximation caused by the

derivation of such Hamiltonian systems has not been analysed.

3.4.2 Transfer of energy

In the previous section we have done our analysis in a frame moving with the vertical

centre of mass and did not observe any transfer of energy between the two particles.

In this section we will see that in the original fixed frame there is a transfer of energy

between the particles in the case of “bouncing–back” behaviour.
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Assume the conditions of theorem 3.4.1 and recall that there exists E′ > 0

such that for every level set {Heff = E} of (3.4.19) with 0 < E < E′ we have that

pz
+ = −pz

−, |pz
±| = (2mE)1/2 and qz

+ = qz
−, i.e. the particles “bounce–back”

during an interaction.

Let i ∈ {1, 2} and let us denote by p+
zi

(respectively p−zi
) the limit of pzi

(t) as

t→ +∞ (respectively t→ −∞). By the reconstruction map in theorem 3.2.1 we obtain

that

p±z1
=
m1

M
Pz + pz

± , p±z2
=
m2

M
Pz − pz

± .

Thus, the change on the vertical kinetic energy of the first particle is given by

∆KE1 =
1

2m1

(
p+

z1

2 − p−z1

2
)

=
2

M
pz

+Pz .

Similarly, we obtain that the change on the vertical kinetic energy of the second particle

is given by

∆KE2 =
1

2m2

(
p+

z2

2 − p−z2

2
)

= − 2

M
pz

+Pz . (3.4.30)

Hence, if the vertical z–component of the centre of mass of the two particles moves

with non–zero velocity Ċz = Pz/M there is a transfer of vertical kinetic energy when

the two particles “bounce–back”.

3.4.3 Chaotic scattering: some numerical results

In this section we provide some numerical results that give strong evidence in favour of

the existence of chaotic scattering for the problem of two charges moving in R
3 under

the action of a uniform magnetic field and a Coulomb interaction when the averaging

assumptions of the previous subsection are not satisfied.
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Procedure

We numerically integrate Hamilton’s equations associated with the reduced Hamiltonian

system given in theorem 3.2.1 under the following conditions: we fix the values of the

parameters

e1 = 1 , m1 = 1 , e2 = −3 , m2 = 5 ,

c = 1 , B = 1 , ǫ0 = 0.1 ,

the initial conditions

pr(0) = 0 , φ(0) = 0 , pφ(0) = 1

and the level sets of the conserved quantities

pθ = 1 , Pz = 0 .

Furthermore, if the energy E > 0 and the initial conditions r(0) = R and qz(0) = h > 0

are fixed, we obtain the value of the remaining initial condition pz(0) as a function of

E, R and h:

pz(0) = ±
(

3E

2
− 49

64R2
− 25R2

64
− 5

8

(
R− 7

5R

)
+

75

4π (R2 + h2)1/2
+

21

32

)1/2

.

For a given h > 0 choosing pz(0) ≤ 0 will make the particles move towards each other,

interact and then move apart again.

We now fix the values of the energy E and initial relative vertical position qz(0) =

h and let TE,h(R) be the bigger instant of time needed for the particles starting with

horizontal distance r(0) = R (and corresponding pz(0)) to reach a vertical distance of

absolute value h before escaping to ∞ when subject to a Coulomb interaction and let

T 0
E,h(R) be the time needed for the particles starting with the same initial conditions to

reach a vertical distance qz

(
T 0

E,h(R)
)

= −h when moving freely in a uniform magnetic

field. In the case of zero interaction the particles move with constant velocity in the

vertical direction (equal to (2E/m)1/2) and hence we obtain

T 0
E,h(R) = 2h

√
m

2E
.
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We define the time difference map τE,h : R
+ → R by

τE,h(R) = TE,h(R) − T 0
E,h(R) ,

and define the sign map σE,h : R
+ → {+,−} by

σE,h(R) = sign (qz (TE,h(R))) ,

where sign(x) denotes the sign of x ∈ R. The sign map σE,h(R) associates to each

orbit the sign + if the particles “bounce–back” during the interaction and the sign − if

the particles “pass–through”.

Note that the definition given for the time difference map avoids the problems

related with the unboundedness of the logarithmic term associated with the general time

difference map (i.e. h = ∞) by making h finite. However, we still have that τE,h → ∞
as h→ ∞.

Simulations

The plots for the maps σE,h(R) and τE,h(R) that we show below were made for h = 500

and values of energy E = 20, E = 10, E = 5 and E = 1.

1

−1

0

2 4 6 8
R

σ20,500

(a)

200

400

0
2 4 6 8

R

τ20,500

(b)

Figure 3.4.2: Plots of σE,h(R) and τE,h(R) for E = 20 and h = 500. The motion
is regular: the only type of dynamical behaviour observed is “pass–through” behaviour
and the time difference map is reasonably smooth.
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σ10,500
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1

1000

2000

3000

0
2 3 4 5

R

τ10,500

(b)

Figure 3.4.3: Plots of σE,h(R) and τE,h(R) for E = 10 and h = 500. The motion is
still mostly regular but there is already a small number of choices of initial horizontal
distance that lead to a “bouncing–back” behaviour. The time difference map is still
very regular.
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1

−1

0

2 3
R

σ5,500

(a)

1

1000

500

0
2 3
R

τ5,500

(b)

Figure 3.4.4: Plots of σE,h(R) and τE,h(R) for E = 5 and h = 500. Although the
dominant dynamical behaviour is “pass–through” there is already a large amount of
“bouncing–back” behaviour. The time difference map loses much of its regularity.
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Figure 3.4.5: Plots of σE,h(R) and τE,h(R) for E = 1 and h = 500. Chaotic scattering:
both dynamical behaviours are observable and small changes in the initial horizontal
distance might lead to each one of the observed behaviours. The time difference map
is very irregular.

Note that large energies lead to either a large vertical relative velocity or a large

horizontal displacement between the two particles. For large vertical relative velocities

the interaction time between the two particles is small while for large horizontal dis-

placements the interaction strength is small. This is the main reason for the regularity

of the dynamics for large energies and the lack of it for small energies.

3.5 Conclusions

We have proved that the Hamiltonian system (3.1.5) can always be reduced to one

with three degrees of freedom. Moreover, we have proven that it can be reduced to

one with two degrees of freedom for the special case of same sign charges when the

particles have equal gyrofrequencies (equal ratio of charge to mass) and on some special

submanifolds. Furthermore, we explicitly computed the reduced Hamiltonian systems

and corresponding reconstruction maps for the reduced dynamics, enabling us to lift the

dynamics from the reduced spaces and hence obtain a description for the dynamics on

the initial phase space.

Assuming that the interaction potential is Coulomb we have identified an inva-

riant submanifold where the reduced dynamics are just the reduced dynamics associated
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with the interaction of two particles moving in a plane under the action of a uniform

magnetic field (orthogonal to the plane of motion). In this invariant plane we obtain

that the system always reduces by a further degree of freedom which leads to an inte-

grable system in the case of two particles with equal gyrofrequency (and some special

submanifolds). As a consequence of the results in chapter 2 we obtain that in the case

of particles with opposite sign and non–zero gyrofrequencies sum, the system contains a

suspension of a non–trivial subshift of finite type on level sets of high energy and hence

it is non–integrable.

We have studied the scattering map associated with this problem in the limit

where the two particles trajectories are widely separated. We have obtained that the

magnetic moment is conserved and that the guiding centres either rotate about a fixed

centre during an interaction in the case of two charges whose sum is not zero or drift

in a direction determined by the linear momentum if the two charges sum is zero. We

give explicit formulas for rotations and drifts in this regime. In the frame moving with

the vertical centre of mass we showed there is no transfer of energy between the two

particles in this regime. In a fixed frame, however, energy is transferred between the

particles in the case of “bounce-back”, unless the vertical centre of mass speed is zero.

This extends the results in [2, 11, 12] from the case of infinite to finite magnetic field.

To compute energy transport in a temperature or density gradient, however, one would

also need to take into account the effects of the interaction–induced horizontal rotation

(or drift) of the guiding centres that we have found, which move energy and particles

horizontally in all cases of scattering.

We have also made a numerical study of the scattering map without using the

assumption that the two particles trajectories are widely separated. We observed regular

behaviour for large energies and chaotic scattering for small positive energies.
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