491 research outputs found

    A new partial image encryption method for document images using variance based quad tree decomposition

    Get PDF
    The proposed method partially and completely encrypts the gray scale Document images. The complete image encryption is also performed to compare the performance with the existing encryption methods. The partial encryption is carried out by segmenting the image using the Quad-tree decomposition method based on the variance of the image block. The image blocks with uniform pixel levels are considered insignificant blocks and others the significant blocks. The pixels in the significant blocks are permuted by using 1D Skew tent chaotic map. The partially encrypted image blocks are further permuted using 2D Henon map to increase the security level and fed as input to complete encryption. The complete encryption is carried out by diffusing the partially encrypted image. Two levels of diffusion are performed. The first level simply modifies the pixels in the partially encrypted image with the Bernoulli’s chaotic map. The second level establishes the interdependency between rows and columns of the first level diffused image. The experiment is conducted for both partial and complete image encryption on the Document images. The proposed scheme yields better results for both partial and complete encryption on Speed, statistical and dynamical attacks. The results ensure better security when compared to existing encryption schemes

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table

    Medical image encryption techniques: a technical survey and potential challenges

    Get PDF
    Among the most sensitive and important data in telemedicine systems are medical images. It is necessary to use a robust encryption method that is resistant to cryptographic assaults while transferring medical images over the internet. Confidentiality is the most crucial of the three security goals for protecting information systems, along with availability, integrity, and compliance. Encryption and watermarking of medical images address problems with confidentiality and integrity in telemedicine applications. The need to prioritize security issues in telemedicine applications makes the choice of a trustworthy and efficient strategy or framework all the more crucial. The paper examines various security issues and cutting-edge methods to secure medical images for use with telemedicine systems

    Recent Trends in Image Encryption: A Review

    Get PDF
    Security of multimedia data is gaining acceptance owing to the growth and acceptability of images in various applications and in telecommunication. Encryption is one of the ways to ensure high security of images as they are used in many fields such as in secure medical imaging services, military intelligence, internet and intranet communication, e-banking etc. These images are stored or transmitted through a network; hence the security of such image data is important. In this work, recently developed encryption techniques are studied and analyzed to promote further development of more encryption methods to ensure additional security and versatility. All the techniques reviewed came into existence within the last five years (2011-2015) and are found to be useful for the present day encryption applications. Each technique is unique in its own way, which might be suitable for different applications. As time goes on, new encryption techniques are evolving. Hence, fast and secure conventional encryption techniques will always be needed in applications requiring high rate of security

    A Non-adaptive Partial Encryption of Grayscale Images based on Chaos

    Get PDF
    AbstractResearch papers published in recent times have focused towards different kinds of image encryption techniques. Image encryption based on Chaos became very popular for cryptography since properties of Chaos are related to two basic properties of good cipher-Confusion and Diffusion. In this paper, A Non-adaptive Partial Encryption of Grayscale Images Based on Chaoshas been proposed. In Partial encryption speed and time is the main factor. We decompose the original grayscale image into its corresponding binary eight bit planes then encrypted using couple tent map based pseudorandom binary number generator (PRBNG). The four significant bit planes, determined by 5% level of significance on contribution of a bit-plane in determination of a pixel value, are encrypted using keys which are obtained by applying the recurrence relation of tent map based PRBNG. Then the four insignificant bit planes along with encrypted significant bit planes are combined to form the final cipher image. In order to evaluate performance, the proposed algorithm was measured through a series of tests to measure the security and effectiveness of the proposed algorithm. These tests includes visual test through histogram analysis, measures of central tendency and dispersion, correlation-coefficient analysis, key sensitivity test, key space analysis, information entropy test, Measurement of Encryption Quality – MSE, PSNR, NPCR, UACI. Experimental results show that the new cipher has satisfactory security and efficient

    9/7 LIFT Reconfigurable Architecture Implementation for Image Authentication

    Get PDF
    Considering the information system medical images are the most sensitive and critical types of data. Transferring medical images over the internet requires the use of authentication algorithms that are resistant to attacks. Another aspect is confidentiality for secure storage and transfer of medical images. The proposed study presents an embedding technique to improve the security of medical images. As a part of preprocessing that involves removing the high-frequency components, Gaussian filters are used. To get LL band features CDF9/7 wavelet is employed. In a similar way, for the cover image, the LL band features are obtained. In order to get the 1st level of encryption the technique of alpha blending is used. It combines the LL band features of the secret image and cover images whereas LH, HL, and HH bands are applied to Inverse CDF 9/7. The resulting encrypted image along with the key obtained through LH, HL, and HH bands is transferred. The produced key adds an extra layer of protection, and similarly, the receiver does the reverse action to acquire the original secret image. The PSNR acquired from the suggested technique is compared to PSNR obtained from existing techniques to validate the results. Performance is quantified in terms of PSNR. A Spartan 6 FPGA board is used to synthesize the complete architecture in order to compare hardware consumption

    Hybrid chaos-based image encryption algorithm using Chebyshev chaotic map with deoxyribonucleic acid sequence and its performance evaluation

    Get PDF
    The media content shared on the internet has increased tremendously nowadays. The streaming service has major role in contributing to internet traffic all over the world. As the major content shared are in the form of images and rapid increase in computing power a better and complex encryption standard is needed to protect this data from being leaked to unauthorized person. Our proposed system makes use of chaotic maps, deoxyribonucleic acid (DNA) coding and ribonucleic acid (RNA) coding technique to encrypt the image. As videos are nothing but collection of images played at the rate of minimum 30 frames/images per second, this methodology can also be used to encrypt videos. The complexity and dynamic nature of chaotic systems makes decryption of content by unauthorized personal difficult. The hybrid usage of chaotic systems along with DNA and RNA sequencing improves the encryption efficiency of the algorithm and also makes it possible to decrypt the images at the same time without consuming too much of computation power
    • …
    corecore