1,139 research outputs found

    Distinguishing noise from chaos: objective versus subjective criteria using Horizontal Visibility Graph

    Get PDF
    A recently proposed methodology called the Horizontal Visibility Graph (HVG) [Luque {\it et al.}, Phys. Rev. E., 80, 046103 (2009)] that constitutes a geometrical simplification of the well known Visibility Graph algorithm [Lacasa {\it et al.\/}, Proc. Natl. Sci. U.S.A. 105, 4972 (2008)], has been used to study the distinction between deterministic and stochastic components in time series [L. Lacasa and R. Toral, Phys. Rev. E., 82, 036120 (2010)]. Specifically, the authors propose that the node degree distribution of these processes follows an exponential functional of the form P(Îș)∌exp⁥(−λ Îș)P(\kappa)\sim \exp(-\lambda~\kappa), in which Îș\kappa is the node degree and λ\lambda is a positive parameter able to distinguish between deterministic (chaotic) and stochastic (uncorrelated and correlated) dynamics. In this work, we investigate the characteristics of the node degree distributions constructed by using HVG, for time series corresponding to 2828 chaotic maps and 33 different stochastic processes. We thoroughly study the methodology proposed by Lacasa and Toral finding several cases for which their hypothesis is not valid. We propose a methodology that uses the HVG together with Information Theory quantifiers. An extensive and careful analysis of the node degree distributions obtained by applying HVG allow us to conclude that the Fisher-Shannon information plane is a remarkable tool able to graphically represent the different nature, deterministic or stochastic, of the systems under study.Comment: Submitted to PLOS On

    Predictability: a way to characterize Complexity

    Full text link
    Different aspects of the predictability problem in dynamical systems are reviewed. The deep relation among Lyapunov exponents, Kolmogorov-Sinai entropy, Shannon entropy and algorithmic complexity is discussed. In particular, we emphasize how a characterization of the unpredictability of a system gives a measure of its complexity. Adopting this point of view, we review some developments in the characterization of the predictability of systems showing different kind of complexity: from low-dimensional systems to high-dimensional ones with spatio-temporal chaos and to fully developed turbulence. A special attention is devoted to finite-time and finite-resolution effects on predictability, which can be accounted with suitable generalization of the standard indicators. The problems involved in systems with intrinsic randomness is discussed, with emphasis on the important problems of distinguishing chaos from noise and of modeling the system. The characterization of irregular behavior in systems with discrete phase space is also considered.Comment: 142 Latex pgs. 41 included eps figures, submitted to Physics Reports. Related information at this http://axtnt2.phys.uniroma1.i

    Properties making a chaotic system a good Pseudo Random Number Generator

    Full text link
    We discuss two properties making a deterministic algorithm suitable to generate a pseudo random sequence of numbers: high value of Kolmogorov-Sinai entropy and high-dimensionality. We propose the multi dimensional Anosov symplectic (cat) map as a Pseudo Random Number Generator. We show what chaotic features of this map are useful for generating Pseudo Random Numbers and investigate numerically which of them survive in the discrete version of the map. Testing and comparisons with other generators are performed.Comment: 10 pages, 3 figures, new version, title changed and minor correction
    • 

    corecore