22 research outputs found

    Epilepsy Forewarning Using A Hand-Held Device

    Full text link

    Failure Forewarning in NPP Equipment NERI2000-109 Final Project Report

    Full text link

    EEG Signal Classification for Epilepsy Seizure Detection Using Improved Approximate Entropy

    Get PDF
    Epilepsy is a common chronic neurological disorder. Epilepsy seizures are the result of the transient and unexpected electrical disturbance of the brain. About 50 million people worldwide have epilepsy, and nearly two out of every three new cases are discovered in developing countries. Epilepsy is more likely to occur in young children or people over the age of 65 years; however, it can occur at any age. The detection of epilepsy is possible by analyzing EEG signals. This paper, presents a hybrid technique to classification EEG signals for identification of epilepsy seizure. Proposed system is combination of multi-wavelet transform and artificial neural network. Approximate Entropy algorithm is enhanced (called as Improved Approximate Entropy: IApE) to measure irregularities present in the EEG signals. The proposed technique is implemented, tested and compared with existing method, based on performance indices such as sensitivity, specificity, accuracy parameters. EEG signals are classified as normal and epilepsy seizures with an accuracy of ~90%

    Epileptic Seizure Classification Using Image-Based Data Representation

    Get PDF
    Epilepsy is a recurrence of seizures caused by a disorder of the brain in over 3.4 million people nationwide. Some people are able to predict their seizures based off prodrome, which is an early sign or symptom that usually resembles mood changes or a euphoric feeling even days to an hour before occurrence. Consequently, the natural instincts of the body to react to an upcoming attack lends credence to the existence of a pre-ictal state that precedes seizure episodes. Physicians and researchers have thus sought for an automated approach for predicting or detecting seizures. In this research, we evaluate the image-based representation of EEG as a basis for classification and training of machine learning algorithms. We explore only the raw EEG data for images in lossless image file formats, though there are other forms including symbolized and noise-filtered that can be explored. Furthermore, we evaluate different color mapping schemes (symbolized, default, chromatic, and binned) that assign EEG data values to Red-Green-Blue (RGB) pixel values. We report the performance of machine learning algorithms such as Random Forest to accurately classify EEG-based images as either event (with a seizure) or non-event (without a seizure)

    Annual Report for NERI Proposal No.2000-0109 on Forewarning of Failure in Critical Equipment at Next-Generation Nuclear Power Plants

    Full text link
    corecore