ORNL/TM-2002/183

Annual Report

Nuclear Energy Research and
Development Program
Nuclear Energy Research Initiative

NERI Proposal #2000-0109
Forewarning of Failure in Critical
Equipment at Next-generation NPP

August 2001- 2002

L. M. Hively
V. A. Protopopescu

December 2002



DOCUMENT AVAILABILITY

Reports produced after January 1,1996, are generdly available free viathe U.S. Department of Energy
(DOE) Informetion Bridge.

Web site http:mvww.ogti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source.

Nationa Technica Information Service
5825 Port Roya Road Springfield, VA 22161
Telephone 703-605-6(X X) (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntisfedworld.gov
Web site http:/www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from the
falowing source.

Office of Scientific and Technicd Information
P.O. Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@adonis.osti.gov
Web site http:/mww.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any
of their employees, makes any warranty, express or implied, or assumes any legd liability or
respongbility for the accuracy, completeness, or usefulness of any in- formation, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercia product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily congtitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




ORNL/TM -2002/183

Computational Sciences and Engineering Division

Annual Report

Nuclear Energy Research and Development Program
Nuclear Energy Research Initiative

NERI Proposal #2000-0109
Interoffice Work Order (IWO) MOSF 00-109
Forewarning of Failurein Critical Equipment at Next-Generation NPP

August 2001-August 2002

L.M. Hively
V.A. Protopopescu

December 2002

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
UT-BATTELLE, LLC
for the
U.S. DEPARTMENT OF ENERGY
Under contract DE-AC05-000R22725






CONTENTS

Page
ABSTRACT ettt bttt e e h e e b e e ehe e R e e e Re e R e et e naeenRe e ne e e nreens Vil
LIST OF TABLES ...ttt s b ettt b ettt b e neenae e iv
LIST OF FIGURES ... oottt sttt st b e b s be et ne e seeenneennans %
1. ADDITIONAL DATA ettt st b et b e et s ae et e e e e sbe e b e e e e nees 1
1.1 ANALYSSOF EPRI MOTOR POWER DATA: AIRGAP-OFFSET FAULT ............. 3
1.2 ANALY SIS OF EPRI MOTOR POWER DATA: BROKEN-ROTOR FAULT ............ 5
1.3 ANALY SIS OF EPRI MOTOR POWER DATA: TURN-TO-TURN SHORTS........... 6
1.4 ANALYSISOF DATA FROM POLYTECHNIC UNIVERSITY OF
VALENCIA ettt sttt st e b e st e e rbe e s ateebe e eaee e nreesnee e e 7
1.5 ANALYSISOF MOTOR DATA FROM PSU .....ccoiiiiiiieiieieeeie e 8
1.6 ANALYSISOF MOTOR DATA FROM PSU (RUN 33)......ccccunimrirrirnieenieeeeseenenseennes 9
1.7 ANALYSISOF MOTOR DATA FROM PSU (RUN 34)......cccriiirieienieneniesieseseseens 11
1.8 ANALYSISOF MOTOR DTAT FROM PSU RUN 35) ....cceeiirieeienieneenie e e nee e 11
1.9 ANALYSISOF TORSION DATA FROM PSU .....ccccoiiiiiiiniinieeiesee e 12
1.10 ANALY SIS OF BEARING DATA FROM PSU......cccciiiiiiiieiieeieeree e 13
2. DISCUSSION ...ttt st e e rbe e sae e e bt e sae e e beesbeeeabeesaeesaseesbeesnreenseesnnes 15
2.1 LESSONSLEARNED .....cooiiiiiiieeeee ettt st nb e 15
2.2 OTHER WORK ...ttt sttt et s be e st e e sae e e ateenaeesnne e 16
2.3 ISSUES/CONCERNS........c.coiiiiiinie sttt st et b enes 18
2.4 COST PERFORMANCGE ...ttt sttt s st sae s s sneesnne e 19
APPENDIX A: DESCRIPTION OF ANALYSISMETHODS........ccccoiiiiieeeee e 65
APPENDIX B: MDTB TEST PLAN ...ttt st 75
APPENDIX C: TEST PLAN FOR TORSION EXPERIMENT ......cocoiiiiiierieeree e 82
APPENDIX D: BEARING PROGNOSTIC TEST RIG .....ccooiiiiiieieeiesieeeeee e 89



LIST OF TABLES

Table Page
1. Summary of Contacts for Additional TESt Data..........ccceeeevveeieeiieiieesee e 2
2. First MOtOr SPECITICAIIONS .......cueeueeieeeeiesieste sttt se et sre b e e e 3
3. Genera Electric Motor SPECITICAIIONS..........c.ccveiiecieceiece et nne s 6
4. Da@ a0 FAIlUIES........ccoeeieeeeieee ettt ettt e b te s s e saeesesneesseentesseesseensesneensens 15
5. Further Details of new Data ACQUISTION SYSEEM........c.cciiiieiieriece e 17
6. Status Summary of NERI Tasks for First and Second Project Years........covvvveveneneneneeene 20



LIST OF FIGURES

Figure Page
1. Motor-bearing system (top), bearing details (bottom left), and bear assembly

(o0 10 0 01 (o ) OO PPR VSRRSO 21
2. Basdinedatavstimefromthe equipment iNFig. L.......coeeiieiicicce e 22
3. Two dimengond phase-space plots for acoustic datain top plot of Fig. 2.......ccoceveiireninennens 23
4. Typicd basdine datavstime fromthe Allis Chamers motor ...........ccceeeevecieveevecce e 24
5. Linear measuresfor theair-gap seeded-fault ...........oooovereiiiii e 25
6. Conventiond nonlinear measures for the air-gap seeded-fault .........ccccoeeeieciccc e, 26
7. Two-dimensona phase-space reconstructions for basgline power data...........ccccevevereneneenees 27
8. PSDM for the airgap-offset seeded-fault..............ccooeeeiieiecee e 28
9. Linear measuresfor the brokenrotor seeded-fault...........coccveveeieienenieseeee e 29
10. Conventiona nonlinear measures for the broken-rotor seeded-fault ..........cccocoveviiiienincnene 30
11. PSDM for the brokerrotor SEEAEd ...........cceeviiieiieieseseee e 31
12. Typica basdine datavstime from the GE MOLOr ...........ccoeoveieieeieee e 32
13. Linear measures for the turn-to-turn short seeded-fault ...........ccceveeiinieneeie e 33
14. Conventiona nonlinear measures for the turn-to-turn short seeded-fault ...........ccooceveveiiicennne. 34
15. PSDM for the turn-to-turn short seeded-fault ..........ccoocveierieie i 35
16. Conventiona detigtica measures vs dataset NUMDES .........ccoieriiiieninereee s 36
17. Traditiona NONliNEAr MEBSUIES VSTIME........ccieieiieieerieeie e eee st sttt sae e s neeeneenns 37
18. Unrenormalized PSDM VS dataset NUMDEY ........ccviiiiriieeee e 38
19. Mechanical Diagnostics Test Bed @ PSU/ARL ........couoeiiiiiiieeeeeeeeee s 39
20. Lnear measures of load torque from PSU/ARL MDTB.........ccooveiiieeneeie e 40
21. Cnventiona nonlinear measures of oad torque data ............oovverererenieeeee e 41
22. PSDM VS datasat NUMDES.......coueiieieiesie ettt sttt st sbe s 42
23. Raw tri-axial aCCElerOMEEr JalaL.........ccoveeereerieeie et sneeneeneennens 43
24. Conventiond datigtical measures of tri-axia aCcCaeration..........cocvvevereeienenenese e 44
25. Tri-axial aCCEErOmMELer POWEN VSTIME. ....c..iitiiiirierieeieeie ettt 45
26. Conventiond statistical measures of the accal erometer POWES ...........cooveeeveevieccecee e 46
27. Conventiona NoNliNEar MEBSUMES VS TITIE..........ceiveieiieieeee e sie e sree e e e see e sreesaeeeesneensens a7
28. PSDM VS Aatasaot NUMDES.......couiiieieiesiese sttt st sbe s 48
29. Maximum value 7 vs number (n) of sequential POINES............ceveeveeueveeeeeeereeeseeeeseesesseseesesseneeeas 49
30. Tri-axial acCEErOMEEr POWEY VSTIME. ... .iciecreciecie sttt st esneenesneennens 50
31. Conventiond statistical measures of accelerometer power vs dataset number ...........cocveeeeeeeee. 51
32. Conventiona NONlINEAr MEBSUNES VS TIMIE.......civiiuirierieieie ettt s 52
33. PSDM VS AaaSet NUMDEY.........eoiiceiecieie ettt s esne e sneenne s 53
34. Maximum vaue 7 vs number (n) of SEQUENtial POINES............ovrereeeeeieeeeeeseeeseeseeeseeseseesesessenens 54
35. Four data channels from PSU TORSION data..........ccovevrrierireieseeseeieseesieeee e e sseesseeseens 55
36. Conventiond datistica measures of DC motor power vs dataset nUMbEr ............cccccveveeiieiieennen. 56
37. Conventiona NoNliNEEr MEBSUMES VS TIMIE..........ceiieieiieereeiesee e eee e see e e ste e sreesseeeesneensens 57
38. PSDM (top four) and their sum (bottom) vs dataset NUMDES .............cccoveieiieerecce e 58
39. Accelerometer power from the PSU BEARING eXperiment ..........ccooeveeeeienenene e 59
40. Convertiond datistica measures of accelerometer power vs dataset number ...........ccccceveneeee. 60

\Y



41. Conventional NONIINEEN MEASUIES VSt ... et e e e et e e e e e e e e e ee e e e e e e e e s e e eeeeaeeeeeaaannnees 61
42. PSDM (top four) and their sum (DOLOm) VS dataset ..........ccovverererenireeeeeese e 62

LIST OF FIGURES (continued)

Figure Page
43. Maximum 7 vs the number () of SequUENtial POINES.............cveveveeeeeeeeceeeee et 63
44, Budget and SChEAUIE ........ooeeeeee ettt ne e e nne s 64



ABSTRACT

NERI Project #2000-0109 began in August 2000 and has three tasks. The first project year addressed
Task 1, namely development of nonlinear prognogtication for critical equipment in nuclear power
fadlities. That work is described in the first year's annud report (ORNLTM-2001/195). The current
(second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2- 3.
This report describes the work for the second project year, spanning August 2001 through August
2002, induding status of the tasks, issues and concerns, cost performance, and status summary of tasks.

The objective of the second project year’'s work is a compdling demondration of the nonlinear
prognodtication agorithm using much more data. The guidance from Dr. Maddine Feltus (DOE/NE-20)
is that it would be preferable to show forewarning of falure for different kinds of nuclear-grade
equipment, as opposed to many different failure modes from one piece of equipment. Long-term
monitoring of operationd utility equipment is possble in principle, but is not practicaly feesble for the
fallowing reason. Time and funding @ngraints for this project do not alow us to monitor the many
machines (thousands) that will be necessary to obtain even a few failure sequences, due to low falure
rates (<10°/year) in the operationa environment. Moreover, the ONLY way to guarantee a controlled
falure sequence is to seed progressively larger faults in the equipment or to overload the equipment for
accelerated tests. Both of these approaches are infeasible for operationd utility machinery, but are
graght-forward in a test environmert. Our subcontractor has provided such test sequences. Thus, we
have revised Tasks 2.1- 2.4 to analyze archiva test data from such tests.

The second phase of our work involves validation of the nonlinear prognostication over the second and
third years of the proposed work. Recognizing the inherent limitations outlined in the previous
paragraph, Dr. Feltus urged Oak Ridge Nationa Laboratory (ORNL) to contact other researchers for
additiond datafrom other test equipment. Consequently, we have revised the work plan for Tasks 2.1—
2.2, with corresponding changes to the work plan as shown in the Status Summary of NERI Tasks
(below). The revised tasks are asfollows.

Task 2.1: ORNL will obtain test data from a subcontractor and other researchers for various test
equipment. This task includes development of a test plan or a description of the historica testing, as
gopropriate: test facility, equipment to be tested, choice of fallure mode(s), testing protocol, data
acquistion equipment, and resulting data from the test sequence. ORNL will andyze this data for
quality, and subsequently viathe nonlinear paradigm for prognostication.

Task 2.2: ORNL will evauate the prognostication capahility of the nonlinear paradigm. The comparison
metrics for religbility of the predictions will include the true positives, true negatives, and the forewarning
times.

Task 2.3: ORNL will improve the nonlinear paradigm as appropriate, in accord with the results of

Tasks 2.1- 2.2, to maximize the rate of true positive and true negative indications of fallure. Maximal
forewarning time is aso highly desirable.

Vil



Task 2.4: ORNL will develop advanced dgorithms for the phase-space didtribution function (PS-DF)
pattern change recognition, based on the results of Task 2.3. This implementation will provide a
capability for automated prognogtication, as part of the maintenance decison-making.

Appendix A provides a detailed description of the analyss methods, which include conventiond
datigtics, traditional nonlinear measures, and ORNL’s patented nonlinear PSDM. The body of this
report focuses on results of thisandyss.



1. ADDITIONAL DATA

Dr. Fdtus suggested potentid contacts for additiona data. Oak Ridge National Laboratory (ORNL)
has pursued these and follow-on contacts as summarized in Table 1. To date, ORNL has obtained data
from severa researchers, as discussed next.

Don Jarrell (PNNL) sent information to ORNL via e mail on 10/2/01, including a description of pump
cavitation tests fom their NERI project. The specific data spanned 600- 1400 s for each of three
experiments. However, the sampling rate of 1 Hz was much too dow to alow andysis by our nonlinear
agorithm. No additiond data has been received from Don Jarrell.

ORNL obtained test data on CD-ROM from Dr. Amir Shirkhodaie (Tennessee State University,
Depatment of Mechanicd Engineering) on November 17, 2001. These tests involve a motor-bearing
system (Fig. 2 running a 900- 3500 rpm. Sixteen channels of data were recorded in each record,
induding a time gamp, twelve acceerations, two forces, and one acoustic reading. All data were
sampled at 10.8 kHz. Data qudlity analys's reveded one test sequence with only eight undocumented
channels. Other data had blank records, inadequate dataset lengths, or an inconsstent number of
channels across multiple datasets for the same test sequence. The data quality check was passed by
one test sequence for which typicd data segments are shown in Fig. 3 Only a single (acoudtic)
channd in this sequence see med to have an adequate smpling rate (top plot in Fig. 3 This test
involved an imbaance fault (130 grams) a 1500 rpm with data sampled at 10.8 kHz for 5 s (54,000
data points). Two such imbalance datasets were provided, aong with two normal datasets, one before
the imbalance tests and one afterward. However, the two basdline datasets have different features, just
by comparing the linear measures. minimum, maximum, absolute average deviation, Sandard deviation,
skewness, kurtoss, average number of time steps per cycle, and first zero in the auto-correlation
function. Unsurprisingly then, the nonlinear measures of dissmilarity between the basdine datasets are
large (>0.7 standard deviations from the mean) compared to the intra-dataset variability in those same
nonlinear dissmilarity measures €0.5 standard deviations from the mean). Comparison of both test
cases to the second basdine shows clear differences in the Inear measures by a factor of 2 2.5.
Nonlinear measures of dissmilarity between the second basdline and the test cases are 3- 5 standard
devidions from the mean, which is better than the linear measures. Figure 4 shows two-dimensond
phase-space portraits of this acoustic data, %, by plotting pairs of points (X, X)) that are connected by
draight lines for vdues of lag, 1 £ £ 20. The images resemble a cross, indicating  abrupt changes
due to an inadequate sampling. ORNL sent an e-mal to Dr. Shirkhodaie on November 12,
2001 with details of this andyss, questions, and a suggestion for increasing the data sampling rate. Dr.
Shirkhodai€' s response indicated this data was from initid  experiments, and that they are working
to dimnate the data qudity problems. Dr. Shirkhodaie sad in a subsequent e-mal exchange that
he would be glad to share additiond data with ORNL as it becomes avalable. No additiond
data has been received from Dr. Shirkhodaie.

A third fruitful contact is Jan Stein (EPRI) who was the project leader for evauation of various
commercid diagnogtics for large motors, beginning in 1994. The project report is “Electric Motor
Predictive Maintenance Program,” TR-108773-V2 (1999), which ORNL bought from



Table1l. Summary of Contactsfor Additional Test Data

Contact’s Name e-mail address Phone number Suggested by Outcome

Leonard Bond (PNL) Lenorard,Bodn@pnl.gov 509-375-4486 Madeline Feltus (DOE) Check Don Jarrell

Belle Upadhyaya (UTK) bupadhya@utk.edu 865-974-5048 Madeline Feltus (DOE) Check Tom Byerly (UTK)
Frank Rahn (EPRI) frahn ri.com 650-855-2037 Madeline Feltus (DOE) Provided other contacts
Lance Agee (EPRI) lagee@epri.com 650-855-2106 Madeline Feltus (DOE) Check Frank Rahn

Nathan Siu (NRC) nos@nrc.gov 301-415-6952 Madeline Feltus (DOE) Provided other contacts
Steven Arndt (NRC) saa@nrc.gov 301-415-6502 Madeline Feltus (DOE) Provided other contacts
Bob Uhrig (UTK) ruhrig@utk.edu Steven Arndt (NRC) Check Wes Hines

Prof. Moran (Ohio State) 614-292-6064 Steven Arndt (NRC) Provided other contacts
Prof. Jack Collins (Ohio Sate) 614-292-6094 Prof. Moran (Ohio State) Unable to participate

Kent Hansen (MIT) 617-253-7384 Nathan Siu (NRC) Provided other contacts
George Apostolakis (MIT) apostola@mit.edu 617-252-1570 Kent Hansen (MIT) no suggestions

Jim Lynch (INPO) 770-644-8000 Kent Hansen (MIT) No response

Ken Barry (EPRI) 704-547-6040 Frank Rahn (EPRI) Check Frank Rahn

Ken Huffman (EPRI) 704-547-6055 Frank Rahn (EPRI) No response

Richard Wood (ORNL) wl15@ornl.gov 865-574-5578 Leonard Bond (PNL) Check Bel Upadhyaya (UTK)
Leonard Laoflin (EPRI) leloflin@epri.com 704-547-6010 Ken Barry (EPRI) Interested

Tom byerly (UTK/MCR) 865-974-9625 Belle Upadhyaya (UTK) Presentation to MRC at UTK
Wes Hines (UTK) hines@utkux.utcc.utk.edu 865-974-6561 Bob Uhrig (UTK) Sample rate too low

Darryl Cox (ORNL) Ray Holdaway (ORNL) No response

Al Wilks (Smart Signal) adwilks@smartsignal.com Presentation to MRC Interested

Bill Drake (Wilcoxon Res) bdrake@wilcoxon.com 301-216-3020 Presentation to MRC Interested

Bill Adams (Fuller) Presentation to MRC Interested

Sam Robinson (Y-12 Plant) 865-574-1838 Previous collaboration Check Al Akerman

Roger Kershaw (MachinExpert) 865-637-1760 Cecil Presnell (IdentiChem) Interested

Ken Piety (CSI) 865-675-2110 Ray Garvey (CSI) Only 4096-point datasets
Amulya Garga (PSU/ARL) 814-863-5841 Amir Shirkhodaie (Tn St) Check Karl reichard

Tim Rangongo (Iris Power) 416-620-5600 Madeline Feltus (DOE) Check Foster-Miller Tech.
Gordon Hirschman (FMT) fhirschman@fosmiltech.com Tim Rangongo (Iris Power) No response

Jan Stein (EPRI) jstein@epri.com 650-855-2390 Madeline Feltus (DOE) EPRI provided data on CD
Don Jarrell (PNL) Don.jarrell @pnl.gov 509-372-4096 Leonard Bond (PNL) Promised to provide data
Mark Linn (HFIR/ORNL) linnma@ornl.gov 865-574-4617 Dwayne Kilpatrick (ORNL) Provided motor specs
Amir Shirkhodaie (TSU) ashirkhodai e@tnstate.edu 615-963-5396 M ARCON2001 proceedings Provided data

Karl Reichard (PSU) kmrS@psu.edu 814-863-7681 Amir Shirkhodaie (TSU) Providing data

Al Akerman (ORNL) ima@ornl.gov 865-406-6589 Sam Robinson (Y-12 plant) Provided data




Maria Elena Otero (Spain)

memontes@ign.upv.es

Michael House (GE)

Raphael Peres (ORNL)

Provided data

Michael .house@ps.ge.com

518-385-4098

Jan Stein (EPRI)

Willing to share data




EPRI for $1,000. The report included a CD-ROM of actud data from the testing. We expect that
additional datawill be forthcoming. ORNL’ s andysis of the present EPRI dataiis provided below.

We obtained sample data from Dr. Maria Elena Montesno Otero (Universdad Politeckica de
Vaencia, Spain). Our analysis of this data also is described below.

Dr. Al Akerman (ORNL) kindly provided machine data on CD-ROM. The data were acquired from
vacuum pumps, blower motors, and purifiers in Building 9204-4 at the Oak Ridge Y-12 Plant. The
specific data included motor current, vibration, moisture, oxygen, and gas flow rate. Mogt of the data
were encoded in LabView™ binary files. RMS values of other dataare a 1 min intervas, which is very
under-sampled for our andysis. We are presently unable to pursue further analysis of this data.

1.1 ANALYSISOF EPRI MOTOR POWER DATA: AIRGAP-OFFSET FAULT

EPRI began a project in 1994, entitted “Electric Motor Predictive Maintenance Program.” Jan
Sen (EPRI) led the project, which evduated of various commercia diagnogtics for large motors.
Detals are reported in EPRI report # TR-108773-V2 (1999). The report included a CD-ROM of
actud data from the testing. That work involved collaboration by severd utilities and EPRI on seeded
faults in large eectric motors. The datasets were recorded in snap-shots of 1.5 s, sampled at 40 kHz
(60,000 totd time-serid samples), incduding three-phase voltages and currents, plus tri-axid
accelerations a inboard and outboard locations on the motor. Severd anomaies were introduced in the
motors to smulate the most common pre-falure in-service conditions. ORNL recelved data for three
different seeded faults via the CD-ROM that accompanied the EPRI report. Table 2 shows he
specifications of the first motor.

Table 2. First Motor Specifications

Manufacturer: Allis Chdmers Bearing Type: Secve
Rated voltage: 4160 Nameplate current: 100 amps
Rated hp: 800 Number of rotor bars. | 94
Winding type: Form wound Number of ator dots. | 94
Phases:. 3 Hertz: 60

Rpm: 710 Motor type: Induction
Insulation class. F Poles: 10
Enclosure: TEFC Bar configuration; copper

The test sequence initidly acquired data from the motor running in its nomind  state (first dataset). Two
different airgap-offset seeded-faults then were imposed via preingaled jackscrews. The  second
dataset involved an inboard argap offset of 8 mils from the nomina vaue of 30 mils The third
dataset retained the firgt fault, and added an additional seeded-fault outboard airgap offset by 20% in
the opposite direction from the inboard shift. This additiond fault



resulted in the rotor being skewed relative to the Sator. These offsets were static because neither varied
relative to the stator with the motor running.

We discuss details of the data next. All of the datasets on the EPRI CD-ROM had non-printable
characters at the beginning and end of the file that confounded norma input as ASCII data to the
FORTRAN andyss. Moreover, the ‘TYPE' utility in DOS could not display the nonprintable data.
However, the MATLAB™ editor was able to read these datasets. This editor was also able to write a
FORTRAN-readable ASCII file after adding, then deleting, a space a the beginning of the file, and
after the addition of a carriage-return/line-feed at the end of the file. The three datasets for this first test
sequence were concatenated into a sngle long dataset for ease of analyss. We converted three-phase
voltages (Vi) and currents (1;) into instantaneous motor power, P = S; 1;V;, where the sum runs over the
three phases, as shown in Fig. 5. The particularly noteworthy feature in Fig. 5 is tha the instantaneous
power (bottom subplot) displays rich dynamicd features, which are not a al gpparent from the
snusoiddly varying currents and voltages (upper six subplots) in Fig. 5. Consequently, we focus the
andysis on indantaneous power, rather than the individua currents or voltages. Closer examination of
the power reveds a dow, low-amplitude variation with a period of roughly 0.1 s. We removed this
atifact with ORNL’s patented zero-phase quadratic filter. Otherwise, this artifact confounds the
interpretation of our results. We split each of the three datasets into five subsets of 12,000 points each,
giving fifteen total subsats for andyds. This artifact-filtered data showed no data quality problems.

We next compare the condition change in linear, traditiona nonlinear, and phase-space dissmilarity
measures (PSDM). Figure 6 shows linear measures of artifact-filtered motor power. All of the linear
measures show an abrupt change with the onset of the airgap-offset faults, but no aher systemdtic
trends. Figure 7 shows the change in three conventional nonlinear measures. The mutud information
function (MIF) measures the average information (in bits) that can be inferred from one measurement
about a second measurement and is a function of the time delay between the measurements. Univariate
MIF measures predictability within the same data stream at different times. For the present analys's, we
use the fird minimum in the univariale MIF, My, to indicate the average time lag that makes P;
independent of P;. The top plot of Fig. 7 shows that M; decreases erraticaly from 13 to 11 time steps
during the first (nomind) dataset, then varies eraticaly between 10 to 12 time steps during the second
(8 mil ar-gap test) dataset, and findly rises even more erraticaly from 12 to 16 time steps during the
last (20% ar-gap test) dataset. The middle plot of Fig. 7 shows the maximum likelihood correlation
dimension O), which is roughly constant a 3.7 during the first dataset, then decreases to a second
roughly constant value at 1.4 for the second and third datasets. The bottom plot displays the maximum-
likelihood Kolmogorov entropy (K), which measures the rate of nonlinear information loss (bits's) in the
data. K rises eraticaly from 0.019 to 0.026 during the first dataset, then decreases to roughly constant
vaue of nearly zero for the second and third datasets. Figure 8 illustrates the two-dimensiond phase-
gpace recongtruction of the artifact-filtered nomind-state power for severa different time lags, showing
progressive “unfolding” of geometric representation for these dynamics.



A systematic search reveded a set of phase-gpace recongtruction parameters that are most sengitive to
the condition change for the air-gap seeded-fault test sequence, as shown in Fig. 9. Thisfigure showsan
amogt linear rise in the connected- phase- space dissmilarities (second from

the top and bottom plots) from near zero for the nomind state to gpproximately 20 for the double-
seeded air-gap fault. The rise in non-connected dissimilarity measures is monotonic, but little changed
between the two faulted states. Thus we find that condition change in this test sequence is detected to
some degree by dl of the linear, conventiona nonlinear, and PSDM; the connected-phase-space
dissmilarities show the progressvely worsening severity of the fault most dearly.

1.2. ANALYSISOF EPRI MOTOR POWER DATA: BROKEN-ROTOR FAULT

A second test sequence for this motor began with the same motor running in its nomind date (first
dataset), followed by progressvely more severe broken rotor bars. The second dataset involved a
amulated failure that was one rotor bar cross section cut 50% in half a the 11 o'clock postion. The
third dataset was for the same rotor bar rext cut through 100%. The fourth dataset was for a second
rotor bar cut 100% at the 5 o’ clock position, exactly 180° from and in addition to the first rotor falure.
Thefifth dataset was for two additiond rotor bars cut adjacent to the origind 11 o’ clock bar, with
one bar cut on each sde of the origind, yielding four bars completely open. The EPRI report says that
the data- collection personnd noted a definite growling sound and a pulsating vibration during this last
test. We concatenated the five datasets into a single long dataset for ease of andys's, and converted the
three-phase voltages and currents into ingtantaneous power, as before. We split each of the five
datasets into five subsets of 12,000 points each, giving 25 total subsets. The power has a dow, low-
amplitude variation with a period of roughly 0.1 s. As before, we removed this artifact, which otherwise
confounds the interpretation of our results. A check of this artifact-filtered data revealed no data qudity
problems.

We firg show linear measures of artifact-filtered motor power in10. The top plot in Fig. 10 illudrates
that the minimum, maximum and standard deviaion in motor power are essentidly flat until the aborupt
change during the last test (four cut rotor bars) in the sequence. Skewness and kurtosis (second plot
down) dso are flat until the lagt test, when they both change abruptly and in opposite directions. The
number of time steps per cycle in the motor power (third plot down) decreases dowly and very noisily
from 53 to 45 time steps per cycle (15% change). The first zero in the autocorrdation function varies
eraicaly between 32- 33 time steps during the nomina state, remains condtant at 33 time steps for the
firgt four faults, and then varies erratically again between 32- 34 time steps during the last test.

For additional comparison, we show the variation of three conventiond nonlinear messuresin FHg. 11.
The top plot of FHg. 11 shows that the firs minimum in the mutud informetion function, M, varies
erdicaly for the first four datasets, then rises to 14 time steps and remains there. The middie plot of
Fig. 11 shows that the maximum likelihood corrdation dimenson (D) dso varies eraticaly over the
whole test sequence. The bottom plot digplays the Kolmogorov entropy (K), which shows no consstent
trend.



We sysematicdly varied the phase-space reconstruction parameters to obtain the most monotonic
increase in condition change for the broken-rotor seeded-fault test sequence. Figure 12 shows
that the phase-space dissmilarity measures rise by ten-fold over the test

sequence. The parameters are: S = 88 (number of equiprobable phase-space symbols), d = 4 (number
of phase-gpace dimengions), | = 31 (time dday lag in time steps), and w = 550 (haf width of the
artifact filter window in time steps). The exponentid rise in the magnitude of the seeded faults (doubling
from 0.5t0 1.0 to 2.0 to 4.0) is mirrored in Fig. 12 by alinear rise in the logarithm of the dissmilarity
measures. We conclude that the conventiond datistical and traditiona nonlinear measures provide no
indication of condition change due to the brokentrotor bars. In sharp contrast, PSDM show condition
change that is a proportiond to the exponentidly increasing severity of the rotor-bar fault, providing
clear indication of the failure.

1.3 ANALYSISOF EPRI MOTOR POWER DATA: TURN-TO-TURN SHORTS
The EPRI dataincluded a Generd Electric motor, as specified in Table 3.

Table 3. General Electric Motor Specifications

Rated voltage: 4000 Bearing type: Seave
Rated hp: 500 Number of rotor bars: 84
Winding type: Form wound Number of stator dots: 108
Phases. 3 Hertz: 60

Rpm: 1185 Motor type: Induction
Insulation class, B Poles:. 6
Enclosure: Open Bar configuration: Copper rectangular

This sequence began with the motor running in its nomind date (first detaset). The second dataset had a
turn-to-turn (2.70 ohm) short by ingtdling a large screw between two turns. The third dataset had a
more severe turn-to-turn (1.35 ohm) short by ingtdling asmaler screw between two turns. These three
datasets were concatenated into a sngle long dataset for this andyss. The sequence for the
concatenation goes from largest turn-to-turn resistance (infinite resstance, corresponding to no short),
to smdler (2.7 ohms), to smalest (1.35 ohms), corresponding to increasing severity in the fault. As
before, the three-phase voltages and currents were converted into instantaneous power. The three
datasets were split into 5 subsets of 12,000 points each, giving 15 totd subsets. Figure 13 shows three-
phase voltages and currents, plus motor power for the nominal operating state. This data has a low-
amplitude, low-frequency artifact with a period of roughly 0.006 s. As before, we remove this artifact,
which would otherwise confound the interpretetion of our andyss. The artifact-filtered power data has
no data qudity problems.

As before, our anadyss compares the condition change in linear, traditiond nonlinear, and PSDM.
Figure 14 shows linear measures of artifact-filtered motor power. The minimum, maximum, and
average (plus or minus one standard deviation) in the power (top subplot in Fig. 14) are essentidly



constant during the entire test sequence. The same is true of the skewness and kurtos's (second plot
down in Fig. 14). The number of time steps per cycle varies erraticdly around 17 throughout the test
sequence. The firgt zero in the autocorrdation function aso varies erraticaly between 11 and 28 during
the first dataset, then is essentidly constant during the fault tests.

Figure 15 shows the change in the three conventiona nonlinear measures. The top plot of Fig. 15 shows
that M, varies erraticaly between 8 and 10 time steps during the nomina state, decreases eraticdly to
7 time steps during the second dataset, and is roughly congtant at 7- 8 time steps during the last dataset.
The middle plot of Fig. B shows the maximum likdihood corrdation dimenson O), which varies
eraticaly between 3.7 and 4 during the nomind Sate, varies erraticaly between 3.6 and 4.2 during the
second dataset, and shifts from 4.08 down to a plateau of roughly 3.8 during the last dataset. The
bottom plot displays the maximum:-likelihood Kolmogorov entropy (K), which varies erraticaly between
0.043 and 0.079 during the firgt (nominal) dataset, varies between 0.06 and 0.1 during the second
datasets, and is even more erratic (between 0.05 and 0.14) during the last dataset.

Systematic variation of the phase-gpace recongtruction parameters reveded vaues that are most
sengtive to the condition change for the turn-to-turn seeded-fault test sequence. Figure 16 showsthet dll
four of the PSDM rise monotonicaly over the test sequence. The parameters arel S = 129 (number of
equiprobable phase-space symbols), d = 3 (number of phase-space dimensons), | =1 (timedday lag
in time steps), and w = 221 (hdf width of the artifact filter window in time steps). The linear rise in the
magnitude of the seeded faults (from 2.7- 1.35 ohms) is mirrored in Fig. 16 by alinear rise in the
dissmilarity measures. We conclude that the conventional atistics and traditional nonlinear measures
provide no indication of failure for the turn-to-turn shorts. In sharp contrast, the nonlinear dissmilarity
measures show condition change that is a proportiond to the increasing severity of the rotor-bar fault,
providing clear forewarning of the falure.

1.4 ANALYSISOF DATA FROM POLYTECHNIC UNIVERSTY OF VALENCIA

Dr. Maia Elena Montesno Otero (Univerddad Politeckica de Vdencia, Spain) sent nine digitd
datasets via email to ORNL on April 19, 2002. Each ASCII data file contained 16,384 points of uni-
axid accelerometer data with corresponding time stamps. The data were sampled a 600 Hz from a
three-phase, ¥+~hp motor running a& 18 Hz with a progressvely larger imbadance fault. ORNL
concatenated the nine datasets into one long data file for subsequent andysis. A check of the data
qudity revealed no data gaps (based on the time stamps) or other problems.

Figure 17 displays the conventional datisticad measures for this data. Figure 17a shows a monotonic
increese in the magnitude of the minimum, maximum, absolute average deviation, and the sample
standard deviation. Figure 17b shows no corrdation of the skewness with the dataset number. Figure
17c dso shows a monotonic increase in the magnitude of the (negative) kurtosis with dataset number.
The number of time steps per cycles aso increases monotonicaly (Fig. 17d) over datasets 1- 6, and
then is flat for the remainder of the test sequence. The firgt zero in the auto-correlation function (Fig.
17¢) is congdant at eight time steps over the entire test sequence. Thus, some (but not dl) of the
conventional statistical measures are corrdated with the increaaing fault severity for thistest sequence.



Fgure 18 illustrates the three conventional nonlinear measures for this data. The top subplot in Fig. 18
shows that correlation dimension (D) decreases monotonicaly with the dataset number. The middle plot
in Fig. 18 depicts such a noisy decrease in Kolmogorov entropy (K) vs dataset number, so that
essentidly no corrdaion exigs Thefirg minimum of the mutua information

function (bottom plot of Fig. 18) is congtant a eight time steps, rising briefing to nine for dataset #7.
Thus, only the corrdation dimension has a clear relation with the increasing severity of the fault in this
test sequence.

A sysematic search determined the set of phase-space reconstruction parameters that are most
sengitive to the condition change for this test sequence. Figure 19 shows the corresponding results with
anealy linear rise in dl four of the (non)connected-phase-space dissmilarities. The dissmilarity for the
first dataset is not shown, because it's dways zero, due to comparing the basecase with itsdf. The
(non)connected phase-space dissmilarities clearly show the progressvely worsening severity of the
unbaance faullt.

1.5 ANALYSISOF MOTOR DATA FROM PSU

The Pennsylvania State Universty (PSU) operates the Applied Research Laboratory (ARL). Their
facilities include the Mechanicd Diagnostics Test Bed (MDTB), a motor-drive-tran-generator test
gtand, as shown in Fig. 20 (upper picture). The gearbox is driven at a set input speed usng a 30 hp,
1750 rpm AC (drive) motor, and the torque is applied by a 75 hp, 1750 rpm AC (absorption)
motor. The maximum speed and torque are 3500 rpm and 225 ft-|bs respectively. The speed variation
is accomplished by varying the frequency to the motor with a digital vector drive unit. The variation of
the torque is accomplished by a smilar vector unit capable of controlling the current output of the
absorption motor. The system speed and torque set points are produced by andog input sgnds (0- 10
VDC) supplied by the Data Acquisition (DAQ) Computer and a D/A board. The MDTB is highly
efficient because the dectrical power that is generated by the absorber is fed back to the driver motor.
The mechanica and eectrica losses are sustained by asmdl fraction of wall power. The MDTB hasthe
capability of testing sngle and double reduction industrial gearboxes with ratios from about 1.2:1 to 6:1.
The gearboxes are nomindly n the 5 20 HP range. The system is szed to provide the maximum
versdtility to speed and torque settings. The motors provide about 2 5 times the rated torque of the
selected gearboxes, and thus the system can provide good overload capability. The use of different
reduction ratios and gearboxes than listed above is possible if gppropriate consderation to system
operation is given. The motors and gearbox are hard-mounted and aigned on a bedplate. The bedplate
is mounted using isolation feet to prevent vibration transmission to the floor. The shafts are connected
with both flexible and rigid couplings. Torque limiting clutches are used on both sdes of the gearbox to
prevent the transmisson of excessve torque as could occur with gear jam or bearing saizure. In
addition, torque cells are used on both sides of the gearbox to directly monitor the efficiency and the
loads transmitted. Appendix B provides further test detalls.



The test protocol involved: (i) alinear increase in motor speed from zero to the operationd speed, (ii)
maintenance of this congtant speed for some chosen period, (iii) alinear decrease in motor speed from
(ii) to zero, (iv) sampling of the gearbox oil for particulates as a measure of gear wear. The cycle of
(i)- (iv) was repeated many times under the test load until the gearbox failed, meaning that one or more
gear teeth broke, causing the experiment to stop. The present andlys's uses only the flattop data from (i)
of the test cycle, for which 44 datasets were available for each data channel, each containing 10 s
of test data. Measurements included acceleration,

acoustic sounds, temperature, torque, rotation speed, input and load power, and RMS currents. Much
of this data (emperature, rdative oil dielectric) are sampled much too dowly (eg., 1 Hz) to be useful
for the present andysis. Other data (rotationa speed, drive power, load power, drive current, load
current, and coil temperatures) were sampled a 1 kHz, but fail the data quaity check aso due to
inadequate sampling speed. The present andysis focuses on load torque, which was sampled a 1 kHz
and which passes dl of the data qudity tests. Thus, each 10 sdataset has 10,000 data points, al of
which were concatenated seridly into asngle datafile for ease of andyss. Figure 20 (Ilower plot) shows
a one second sample of typical load torque data, which is quasi-periodic with complex, nonlinear
features. Figure 21 shows the erratic variation over the test sequence of the linear measures of thisload
torque data. Skewness (solid curve in the second subplot down) decreases gradudly (but very
irregularly) from 0.3 to —0.2, and is the only linear measure that shows any systemétic change. Thefirst
zero in the autocorrdaion function (bottom subplot of Fig. 21) rises in datasets #26- 27 and 30, with
the falure occurring in dataset #44. Fgure 22 digplays the traditiona nonlinear measures of the load
torque, none of which has any systematic trend as the test sequence progresses. Figure 23 displaysthe
PSDM for this test sequence, with low vaues (below 0.875) for datasets #1- 29. All four dissmilarity
measures rise abruptly, beginning a dataset #30, and remain above 0.894 for the remainder of the test
sequence. These results show that only the PSDM provide forewarning of the impending falure.

1.6 ANALYSI SOF MOTOR DATA FROM PSU (RUN 33)

ORNL decided to engage PSU (Dr. Karl Reichard) under subcontract to acquire test data for this
project, based on the data andyss in the previous section. This test sequence was designated
“RUNS3,” and dso involved the MDTB, as described in App. B. Measurements included acceleration,
acoustic sounds, temperature, torque, rotation speed, input and load power, and RMS currents. ORNL
chose to focus on the tri-axiad acceleration, based on andyss of severd initid PSU sample datasets.
ORNL obtained the data eectronicaly via FTP from a passworded-account on a PSU server. Each
data file contained test data for one accelerometer channdl. The data were obtained at 10 min intervas
through the test sequence, sampled a 102.4 kHz. The totad amount of data was 4.5 GB (three
accelerometer channds, times 401 snapshots for atota of 1203 files) in MatLab binary format. ORNL
seridly concatenated 100,000 data points from each of the data files into a single three-channd
dataset for ease of anaysis (1.6 GB). Each 100,000-point sngpshot was divided into ten 10,000- point
subsets for this andysis, the results were then averaged over these 10 cutsets to obtain atypica vaue
for the entire sngpshot. Figure 24 shows typical data for each accderometer channd with quas-
periodic, complex, nonlinear features. Figure 25 shows conventiona datistical measures throughout the
RUNSS3 test sequence. The top plot shows noisy, gradua increases in the magnitudes of the minimum
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(An), maximum (Ay), absolute average deviation @), and sample standard deviation ) for each
accderation signal. The aher conventiona datistical measures in Fig. 25 show no clear trend through
the test sequence. Figure 25 aso reveds two datasets (#119 and 266) with abruptly lower sgnd,
where the operator did not stop the data acquisition system during diagnostic shutdowns of the test. This
ggnd loss does not invalidate the remainder of the data, so we ignore these two datasetsin subsequent
andyss.

The use of three orthogona accelerations has a unique and important advantage, as follows.
Accderation is athree-dimengond vector, A, that can be integrated once in time to give velocity vector,
V = 0A dt. Mass times acceleration (vector) isforce vector, F = mA. The vector dot-product of force
and velocity is power (scaa), P = F - V. Thus three-dimensionad acceleration data can be converted
into ascalar power via draight-forward methods of calculus and mechanics. ORNL previoudy used this
approach to analyze tri-axid accderation datafrom ameta cutting (lathe) operation. That andyss found
that the resulting three-dimensiona accelerometer power captured the relevant dynamics and had more
information about the process than any single accelerometer channd. We used this same approach to
obtain power usng the tri-axia acceerometer data from the PSU MDTB test sequence. Figure 26
shows a sample of the RUN33 power data, which displays very complex, nonlinear features. Figure 27
shows conventiona dtatistical measures of the RUN33 accelerometer power data. The top plot shows
noisy, gradud increases in the magnitudes of the minimum (P,), maximum @,), absolute average
deviation (@), and sample standard deviation (s) for the accelerometer power. The other conventional
datisticd measures of accelerometer power show no clear trend through the test sequence. Failure
onset begins at dataset #394. Figure 28 shows the corresponding traditional nonlinear measures, none
of which sow forewarning of the fallure. We conclude that only a few of conventiond datistics
(minimum, maximum, a, and s) provide forewarning trends, but none of the traditiond nonlinear
measures provide indication of the impending machine falure.

In sharp contrast to the previous unclear trends, Fig. 29 shows asystemdtic risein dl four renormdized
measures of dissmilarity, with an additiona abrupt rise at the onset of falure. We obtained thisresult by
congtructing a composite measure, C;, of condition change, namey the sum of the four renormalized
measures of dissmilarity for each of the datasets in the test sequence. This approach shows both the
risng dissmilarity as the test progresses and an indication of falure onset. We usad the following
agorithm to obtain this result. Firgt, we construct the composite measure for the i-th dataset:

Ci=U(c) +U(cd) + U(L) + U(Ly). (1)

Second, we fit C; to a draght line via least-squares over awindow of m datasets (#194-393 in this
case):

y, = al +b. 2

Third, we obtain the variance of C; about the straight-linefit from step 2:
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$:°=S; (i — C)(m-1). 3

Fourth, we determine the ¢ statistic from this straight-line fit for datasets #394-400:

c?=S (yi—C)¥s.2 (4)

Fifth, we maximize the value of ¢? from step 4 over the parameters (d, S, | ). Thevariance, s, in step
3 meaaures the variability of C; about the straight-line fit over the window of m datasets (#194-393).
The dtatistic, ¢?, in step 4 measures the variability of datasets #394-400 from the straight-line fit. The
vaue from sep 4 is ¢? = 180.42, which is inconsigtent with a norma digtribution for 7 degrees of
freedom, and is a srong indication of the fallure onset. Indeed, Fg. 30 shows a clear datiticd

indication of falure onset. The bottom plot (labeled “normd didribution’) in Fg. 30 depicts the
maximum value of the ¢? statistic for n sequential values out of 200 samples from a guassian (normal)
distribution with zero mean and a unity sample standard deviation. The middle curve in Fg. 30 isthe
maximum value of the c? statistic, using step 4 above, for n sequential values of the composite measure,
Ci, over the window of m = 200 datasets that span the graght-line fit (datasets #194- 393). This
middle curve is inconsgstent with the normd digtribution (bottom curve). The upper curve in Fig. 30 is
the c? gtatistic, also using step 4 above, for n sequential values from datasets #394- 400. This upper
curve (labded “falure onst”) deviates markedly from the lower curves after two datasets (#394- 395),
with overwhelming indication for three and more datasets. We conclude that the PSDM provide
consgtent indication of condition change, as well as clear indication of the failure onset.

1.7 ANALYSISOF MOTOR DATA FROM PSU (RUN 34)

PSU repeated the MDTB experiment (RUN34) with the same experimenta parameters as RUN33.
The sampling frequency was 51.2 kHz, based on our findings from RUNS33. The raw data conssted of
560 datasets in MatLab binary format for each of the three orthogona accelerations for atotd of 3.2
GB, which PSU sent to ORNL on aDVD disk. ORNL seridly concatenated 150,000 data points from
each of the data files into a sngle three-channel dataset (2.1 GB) for ease of analyss. The tri-axid
acceleration data was converted into one channel of accelerometer power, as described above. Each
150,000-point snapshot was divided into ten 15,000-point subsets for analys's; the results were then
averaged over these 10 subsets to obtain a typicd vaue for the entire snapshot. Data quaity andysis
showed that the 51.2 kHz sampling frequency was adequate. However, the experimental record of
RUN34 showed numerous annotations of bad datasets, due to known experimenta problems.
Omission of these bad datasets reduced the total number of useful datasets by 37% to 355. In addition,
eratic and inconssent variations exised in the data amplitude. RUN34 was rejected from further
andyss, due to these qudlity problems.

1.8 ANALYSISOF MOTOR DATA FROM PSU (RUN 35)
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PSU repeated the MDTB experiment for a third time (RUN35) with the same experimenta
parameters as RUN33. The sampling frequency was 51.2 kHz. The raw data consisted of 845 datasets
in MatLab binary format for each of the three orthogond acceeration directions, which PSU provided
on a DVD disk (5GB). ORNL seridly concatenated 200,000 data points from each of the data files
into asingle three-channel dataset for ease of anadlysis. The tri-axia acceleration data was converted into
one channd of accelerometer power, as described above (1.8 GB). Figure 31 shows sample plots of
this quas-periodic, complex data. Each 200,000-point snapshot was divided into ten 20,000-point
subsets for analyss, the results were then averaged over these 10 subsets to obtain atypica value for
the entire sngpshot. Data quality andysis reveded datasets

with a zero sgnd or abrupt shifts, not unlike the previous test sequences. Consequently, we diminated
these bad datasets, as indicated by gapsin the Fig. 32 curves. We further note from Fig. 32athat only
the monotonic rise (fdl) in the maximum (minimum) vaues of power give clear forewarning of the fallure
onset, beginning with dataset #838. Figure 33 shows the corresponding traditional nonlinear measures.
Correation dimenson and Kolmogorov entropy provide no forewarning of fallure. The monotonic fal
in the firg minimum of the mutua information function before failure is unique and appearsto be avaid
(but weak) forewarning of the falure.

The top four subplots of Fig. 34 dislay the PSDM, usng the same phase-space parameters as PSU
Run33 for a demongration of repestability. We find a systematic rise in the PSDM, beginning at dataset
#480, with an additiona abrupt monotonic rise a the onset of falure, beginning at dataset #320. We
obtained this result by congtructing the same composite measure, C;, of condition change, usng the five-
step process of Egs. (1)- (4). We chose awindow of 100 cutsets for Eq. (2) over datasets #720- 819.
We computed the c? gatistic, beginning with dataset #820. As before, Figure 35 depicts the maximum
vaue of the c? datistic for n sequential values out of 100 samples from aguassian (normél) distribution
with zero mean and a unity sample standard deviation. The middle curve in Fg. 35 isthe maximum vaue
of the c? gtatistic, using step 4 above, for n sequentia values of the composite measure, Ci, over the
window of m=100 datasets that span the straight-line fit over datasets #720- 819. Thismiddle curveis
inconsstent with the normal digtribution (bottom curve). The upper curve in Fig. 35 isthe c? statidtic,
aso using step 4 above, for n sequentia vaues from datasets #820- 845. This upper curve (labeled
“falure onst”) deviates markedly from the lower curves after Sx datasets, with overwheming indication
for seven or more datasets. We conclude that the phase-gpace dissmilarity method gives clear
indication of condition change, as well as forewarning of falure

1.9 ANALYSISOF TORSION DATA FROM PSU

PSU peformed a second type of expeiment to show falure forewarning in turbo-machinery.
Specificdly, this experiment smulated the effects of shifting turbine blade oscillation frequencies as a
fatigue crack develops and grows. Appendix C provides details of the experiment. Figures C.1- C.2
show eght equally spaced threaded rods that smulate the blades, which are rotated about a horizontal
axis by aDC motor. Previous PSU work on this experiment showed that aljustment of lock nut
locations aong the threaded rods can smulate the frequency shift, which can be sensed and tracked by
measurement of the systemi's torsgona vibration. The present experiment extended the previous PSU
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work by smulaing a crack at the base of one of the threaded rods via a progressvely deeper 0.010
in. wide dot usng dectric discharge machining, in lieu of moving the nuts. Test data were acquired for
each depth of cut. The data were sampled a 12.8 kHz and included: motor current and voltage, two-
axistrandationd acceleration on one bearing pillow block, and torsona vibration of the shaft. Figure 36
illustrates a representative sample of this data at three different time scaes, showing complex, quas-
periodic dynamics in dl channes. Our previous experience has shown that al three acceleration axes
are needed to capture the machine dynamics adequately. Consequently, the two-axis acceleration data
were not pursued further. Comparison of the plots in right two columns of Fig. 36 shows that the
dynamica properties of the AC-coupled motor power are

different from the DC-coupled motor power. Thus, the latter data was used as the best representation
of the machine dynamics for al subsequent andyss.

Figure 37 shows the conventiond datisticad measures of the DC-coupled motor power as afunction of
the progressvely larger dot depth. The top plot shows no systematic change in the minimum (P,),
standard deviation (s), absolute average deviation @), and maximum (P,). The second plot from the
top shows that both skewness and kurtosis are nearly constant vs dot depth. The third plot down from
the top digplays a series of amdl rises and fdls in the number of time steps per cycle vs dot depth. The
bottom plot illustrates a single decrease in the firgt zero of the autocorrdation function, followed by a
constant vaue thereafter. Consequently, conventiona Statistical measures provide no forewarning.

Plots of the traditional nonlinear measures are shown in FHg. 38 The corrdaion dimension (top plot)
decreases from 2.4 for the first dataset, to 2.2 for the third dataset, then rises gradualy over the next
four datasets to 2.35. The Kolmogorov entropy (middie plot) has a decrease-increase-decrease
sequence that is likewise non-predictive. The first minimum in the mutua information function is congtant
at 6 time steps, then decreases to 5.95 at dataset 6, then rises again to 6 at the last dataset. Thus, the
traditional nonlinear measures provide no failure forewarning.

Fgure 39 shows that al four PSDM rise monotonicaly from near zero to large vaues. This result was
obtained by combining the four PSDM into a sngle composite measure, C;, as described by Eq. (1).
An exhaudtive search then was performed over the parameter space of the number of phase-space
dimensons (d), the number of phase-gpace symbols (S), and the time-delay lag ( ). The search
reveded a single set of parameters that give the monotonic rise in C;. The meaning of these parameters
is explaned in App. A. We conclude that he PSDM show a systematic predictive trend for the
progressvefalurein this experiment.

1.10 ANALYSISOF BEARING DATA FROM PSU

PSU peformed a third type of experiment to show forewarning of bearing falure. The Bearing
Prognostic Test Rig uses a pair of double row spherica roller support bearings to support a shaft on
which the test bearing is held in place by a bearing holder between the two support bearings. The test
rig was configured to test deep groove bl 1 1/8 in. test bearings, but is configurable to other types of
bearings. A load jack and load cell were mounted directly behind the test bearing and have aradiad load
cagpacity of 1,000 |bsin phase with the outer ring. The system is driven by a SCR motor with an integra
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tachometer fitted to the motor. The motor is coupled to the test shaft with a flexible coupler to reduce
transmitted vibration from the motor. Piezoelectric accderometers are currently utilized with frequency
ranges between 10 and 100KHz. Data were collected on a 48 channel Nationd Instrument 4472 PXI
system. The test ran continuoudy in the overloaded date, with data acquired at periodic intervas until
the bearing findly failed. Appendix D provides details of the test plan and experimental setup.

We describe the data andyds next. Fve channes of datawere sampled at a frequency of 51.2
kHz, induding tri-axia acceleration at the test bearing, as well as motor current and motor voltage. PSU
provided this data to ORNL on DVD disks, in the form of MatLab™ binary files

(5.6GB). ORNL seridly concatenated 500,000 data points from each of the data files into a sngle
three-channd dataset with 895 segments of three-channel accelerometer data (16.4GB). The tri-axid
acceleration data were converted into one channe of accelerometer power, as described above
(5.7GB); the 500,000 data points in each segment were subdivided into ten cutsets of 50,000 points
each for the subsequent analyss. Figure 40 shows time-serid samples of the accelerometer power,
which has a very complex, nonlinear waveform with rises and fals in envelop amplitude over 200 ms.

Figure 41 displays the conventiona datistical measures of the accderometer power. The minimum and
maximum (top plot) are variable about a series of plateaus, risng and fdling without a clear trend.
Skewness (bottom curve in the second plot from the top) is roughly constant during the entire sequence.
Kurtoss (top curve in the second plot from the top) is moderately variable during the first one hundred
cutsets, more varigble and dightly larger over cutsets #100- 300, then smdler and much less varigble for
cutsets #300- 810, and findly larger and more variable for cutsets #811- 895. The average number of
time steps per cycle (third plot from the top) decreases gradualy but erraticaly from 16 to 13. Thefirg
zero in the autocorreation function (bottom plot) decreases erraticaly from five to four over cutsets
#1- 300, and then is congtant at four thereafter. All of these conventiona datistics display an abrupt
spike at cutsets #104- 105. These conventiond dtatisticl measures provide no clear forewarning of
falure

Figure 42 depicts the traditiona nonlinear measures of accelerometer power. Corrdation dimenson
(top plot) is moderately variable over the entire sequence with a clear spike at cutsets #104- 105.
Kolmogorov entropy (middle plot) is very variable over the whole sequence without a clear trend. M;
(bottom plot) fals abruptly from 4.7 to 4 at cutset #104, then remains constant at four theresfter. These
traditional nonlinear measures give no falure forewarning.

The top four subplots of Fig. 43 display the four PSDM, with the same spikes as the other measuresin
datasets #104- 105 and #200. Ignoring these spikes, the PSDM rise sysematicaly, beginning at dataset
#600. An additiond abrupt rise occurs a falure onset, beginning at dataset #795. We used the five-
step process of Egs. (1)- (4) to obtain this result. We chose a window of one hundred cutsets for Eq.
(2) over datasets #695- 794. We computed the ¢? satistic, beginning with dataset #795. As before, the
bottom curve in Fig. 44 depicts the maximum vaue of the ¢? statistic for n sequential values out of 100
samples from a Gaussian (norma) distribution with zero mean and a unity sample standard deviation.
The middle curve in Fig. 44 isthe maximum vaue of the ¢ satistic, using step 4 above, for n sequential
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vaues of the composite measure, C;, over the window of m = 100 datasets that span the straight-line
fit over datasets #95- 794. This midde curve is inconggent with the normd digtribution (bottom
curve). The upper curve in Fig. 44 is the c? statistic, also using step 4 above, for n sequentia vaues
from datasets #795- 819. This upper curve (labeled “falure onset”) provides clear indication of fallure
onset after three or more consecutive datasets. We conclude that the PSDM gives dear indication of
condition change, aswell asforewarning of failure.
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2. DISCUSSION

The objective of this phase is a compelling demondration of the phase- space dissmilarity approach for
forewaning of falures. Thus, we dudied a variety of falures and different data Table 4 below
summarizes the present results. The right-most column shows the measures that we tested for falure
forewarning. conventiona datisticd measures [CSM] (data maximum [MX], data minimum [MN],
absolute average deviation [a], standard deviation [s], skewness [SK], kurtosis [KT], average number
of time steps per cycle [TY]), traditiond nonlinear measures [TNM] (correation dimension [CD],
Kolmogorov entropy [KE], first minimum in the mutud information function [M;], and PSDM.

Table4. Dataand Failures

Data Equipment and Type of Falure Diagnogtic Data Measuresto Forewarn
Provider of Fallure

EPRI Electric motor airgap offset Motor power CSM TNM PSDM
EPRI Electric motor broken rotor Motor power PSDM

EPRI Electric motor turn-to-turn short Motor power PSDM

Otero Electric motor imbalance 1D acceleration MN asMX KT CD
(Spain) PSDM

PSU/ARL | Overloaded gearbox Load torque SK PSDM
PSU/ARL | Overloaded gearbox (RUN 33) Accelerometer power | MN asMX PSDM
PSU/ARL | Overloaded gearbox (RUN 35) Acceerometer power | MN MX M; PSDM
PSU/ARL | Crack in rotating blade Motor power PSDM

PSU/ARL | Motor-driven bearing Accelerometer power | PSDM

Only the PSDM provide forewarning of the machine failures across dl of these test sequences. This
forewarning indication is present for severd different kinds of equipment failures, as well as for different
types of diagnostic data. Moreover, this work developed a Satigtica criterion for the determination of
falure onset, based on the sum-of-squares deviation from a straight-line fit to the rigng trend in PSDM.
A god for the third project year is extensgon of this datistical criterion into a Satistical test for
forewarning of falure. A second god is publication of thiswork in a peer-reviewed technica journd.

2.1 LESSONSLEARNED

Data exchange during this second project year typicdly involved >10MB for each test sequence.
Conseguently, we were unable to use email attachments, as in the first project year. We found FTP
(file transfer protocol) transfers were dow (many hours), and frequently failed due to network or server
problems. The mogt reliable method consisted of compressing the dataiinto ZIP-files, writing the filesto
CD-ROM or DVD disks, and sending the disks via over-night mail. This laiter method was used for
most of the PSU/ARL data, and dl of the EPRI data

A low data sampling rate was used for acquiring some of the data (Otero/Spain and the first PSU test
sequence). Consequently, the PSDM displayed undesirable variability, but dill provided forewarning of
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the fallures. ORNL obtained severd trid datasets from PSU after initiating their subcontract to assure
that the data qudity (especidly the data sampling rate) was adequate for our andysis. ORNL andysis of
these sample data showed that a sampling rate of >50 kHz provided adequate data quality. Moreover,
this andyss determined that current and voltage from a digitally controlled eectric motor was not
appropriate for PSDM anaysis. For such tests, we focused instead on 3D accelerometer power.

One lesson-learned from the first project year of thiswork isthat a higher data- sampling rate (>50 kHz)
is needed for the nonlinear analysis. Tests during the first project year used a PAMA Emax system,
which is a ruggedized laptop computer for data acquisition with amaximum sampling rate of 12,288 Hz
for eech of sx channds Consegquently, ORNL procured hardware and software from Nationa
Instruments Corporation during the first quarter of this second project year with the cgpability of
sampling eech of sx channds a 208 kHz. The system components include a data acquisition board
(PCI-MI0-16E-1), connector block, cable, and companion software (LabView™) at atotal cost of
$4,180. Table 5 provides further details. ORNL ingtalled and tested this data acquisition system on the
desktop PC that was procured for this project during PY 1.

2.2 OTHER WORK

Dennis Strickler of Computationa Science and Engineering Divison worked with Lee Hively to port the
nonlinear analysis code to ORNL'’s 184-node IBM SP compuiter, cdled “Eagle.” Code changes used
the Message-Passing Interface (MPI) for pardldization Measures of dissmilarity for each channd of
sample data were computed independently on multiple processors. Initia results gave an improvement in
computationd time by a factor of three. Further improvements are possible by paralelizing the base
cae cdculations and implementing shared memory pardle programming techniques in individua
modules.

We submitted a patent gpplication (PA) to the U.S. Patent Office (USPO) on March 8, 2000, seeking
protection of the connected phase-gpace dissmilarity gpproach. The USPO issued an office action on
January 16, 2002, which was received by the ORNL legal department on February 4, 2002. We sent
our response to the USPO on May 15, 2002. The attorney of record on this response was a
subcontractor, Michad McGovern of Quarles and Brady LLP (Milwaukee, Wisconsn). The USPO
responded in July 2002 with a notice that alowed dl of our revised clams.

Our research has developed improvements to the phase- space dissmilarity methodology, as described
in a more recent invention disclosure (ERID #0885), dated October 17, 2000. This ID was elected for
converson into a PA on December 19, 2000. We have added further improvements to the
methodology, and submitted the PA to the USPO on July 12, 2002, aso in collaboration with Michadl
McGovern.
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Table5. Further Details of New Data Acquisition System

Brief Description of [tem Cost ($) | Additional Details
1) PCI-MIO-16E-1 Multichannel IO Board | 1,795 Resolution =12 hits
(part number 777305-01) Sampling Rate =1.25 MHz tota or 208 kHz for each of 6 channdls
Voltage range = +/- 10V maximum or +/- 0.05V minimum
Absolute accuracy < 0.045%
Input impedance =100 Gohmsin parale with 100pF
Warmup time = 15min
Cdibration interva = lyear
Operating temperature = 0- 55°C
Storage temperature = -20- 70°C
Rdative humidity = 10-90% noncondensing
2) SH68-68-EP (1 meter shielded cable) 95 Provide connection from item #1 to item #3
(part number 184749-01)
3) SCB-68 Shielded 10 connector block 295 Provide connection points for current and voltage probes
(part number 776844-01)
4) LabView™ full development software 1,995 For Windows 2000/NT/Me&/9x (English)
(part number 776670-03) Graphica user interface and programming environment for data
acquigtion/andyss
TOTAL COST 4,180
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ORNL received an e-mal request on June 11, 2002 from Marty Martinez (Enegetics, Inc.) for a brief
annua report to be included in an FY02 NERI program summary. We prepared two pages of  text
plus one figure in the prescribed format and sent it to Martinez via e-mall on June 18, 2002.
We recelved a draft PDF verson of our summary from Martinez via emal on August 7, 2002 for
our comments, which we provided to him on August 12, 2002 aso viae-mall.

ORNL’s nonlinear paradigm is applicable to forewarning of biomedica events, as wel as forewarning
of mechine falures. Specificaly, we are usng the phase-space dissmilarity approach to andyze scap
EEG to forewarn of epileptic seizures. Recent results are documented in a paper to the journd, |EEE
Transactions on Biomedical Engineering, for a focus issue on epileptic seizure prediction. We
received the reviewers comments on July 15, 2002. We revised the paper in accord with the
reviewers suggestions, and sent the revised paper and our response to TBME on Augugt 6, 2002.
Since this work is presently unfunded, we recently submitted proposas to two potential sponsors. We
have aso submitted two proposasto andyze EKG data for forewarning of cardiac events.

Lee Hively was contacted by Diana Tdlett (Program Adminidrator for the Nuclear Safety and
Technology Product Line at Pacific Northwest Laboratory) on October 8, 2001, regarding the tota
dollar vaue of the present NERI project. Since the abstract for thiswork is available on the NERI Web
gte (neri.nedoe.gov), Hively provided the total amount ($1.117M) to Ms. Tallett, who confirmed
receipt of thisinformation in an October 9, 2002 e-mall.

On March 28, 2002, Lee Hively was contacted by Richard Wood (in ORNL’s Nuclear Science and
Technology Divison), who is a collaborator on a different NERI project. Wood requested a short (two
paragraph) summary of our work for the Nuclear Regulatory Commissoners, which we provided that
same day.

2.3 ISSUESICONCERNS

Lee Hivey’'s PII-400MHz PC failed late in the afternoon of Friday, July 12, 2002, and was diagnosed
on Monday, July 15, 2000 with a harddrive crash. This computer was approaching four years old, and
consequently was replaced with a new computer under ORNL’s Managed Hardware Program
(procurement initiated on July 16, 2002 with inddlation on July 30, 2002). The total cost of this
procurement was $4,813, plus $1,300 for an upgrade to MatLab™ (version 6.5) and $384 for an
upgrade to Compaq Visua FORTRAN™ (version 6.6). Hively’'s second office PC was inadequate for
compute-intensve anadlysis and had been out of commisson since May 2002 for upgrades. The first
motherboard/CPU upgrade failed repeatedly and reproducibly when loaded with a compute-intensve
problem. Replacement hardware faled in the same way, and adso was returned to the vendor. The
second set of replacement hardware was provided by PC support to Hively on July 18, 2002, and
successfully reproduced sample results. No subsequent failures have occurred. The tota cogt of this
upgrade was $6,108. These failures did not impact the work progress, because in the intervening two
weeks (dly 15-30, 2002), Hivdy used a PC a home (2GHz P4-Xeon'™, 1GB memory, two
73GB SCSl harddrives) for data
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andysis via Compag™ Visud FORTRAN, visudization via MatLab™, and report preparation via
MS-Word™.

2.4 COST PERFORMANCE

We received $157,000 for the first project year and $481,000 for the second project year. Totd
project spending through the fourth quarter d the second project year (through the fisca month of
Augugt 2002) is $580,761. Our work is onschedule and within the budget, asshownin Fig. 44
and Table 6.

Subcontract work by Dr. Karl Reichard (Applied Research Laboratory, Pennsylvania State University)
has proceeded within budget ($90K) and on schedule by providing test sequence datato ORNL. The
FY02 subcontract payments to PSU were as folows $8,376.24 on March 19, 2002,
$22,336.46 on April 25, 2002, $15,544.31 on May 16, 2002, $19,742.81 on June 19, 2002, and
$23,974.18 on Ay 15, 2002 for atotal of $89,974.00. ORNL is pleased with PSU’s performance,
and plansto use themfor FY 03 work for this project.

During the first project year, we demonstrated the PSDM approach for two test sequences, costing
$157K, or $78.5K /test. During this second project year, we gave a compelling demondration of the
method with nine test sequences for $481K, or $53.4K/test. These values correspond to an efficiency
improvement of (78.5/53.4) — 1, or nearly 50%.

Severd factors have contributed to this efficency improvement. One innovation is the satistical criterion
for failure onsat (Egs. 1 4), as an eadly computable objective function for the best choice of phase-
gpace parameters. We included this criterion in our most recent patent application. The present
subcontractor (ARL/PSU) is the second contributor to this success by providing high-quality data for
the test sequences that we have presented here. A third factor is the consstent use of a key lesson+
learned from the first year of this project, namey requiring a sufficiently high sampling rate as a crucid
parameter in the data quaity. A fourth factor involves refinement of the research-class FORTRAN
software implementation of the methodology by adding new high-leve routines for partia autometion of
the PSDM andysis, rewriting modules for clear dgorithmic flow, and combining related modules. A find
reason for this accomplishment involves development of MatLab™ m-files to automate the search
through PSDM results for many different parameter choices, and aso to provide publicationqudity
plots of the results. These improvements led to a much more efficient use of the anays’ stime.

The specific gods for the third year’ swork are as follows. First, we will work with our subcontractor to
acquire and analyze additiond test-sequence data for further demondration of the technology for
forewarning of machine failure. Second, we will work with the subcontractor to assess the impact of this
technology, in terms of enhanced safety at next-generation nuclear power plants and corresponding cost
reductions. Third, we will collaborate with operators at ORNL’s High-Flux Isotope Reactor (HFIR) to
acquire and analyze operationd data for representative nuclear-grade equipment. HFIR currently
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experiences severd falures per year in this equipment, so forewarnings of falure dso would
provide an immediate safety benefit to

HFIR. A fourth task addresses the PSDM andyss over many different phase-space parameters,
presently requiring lengthy runs on modern desktop PCs. We will pursue various improvements in the
andyss to reduce this time subgtantialy, and expect that these additional enhancements will provide
even better cost efficiency.

Notwithstanding past and future efficiency improvements, the present forewarning paradigm is limited by
the centra ole of he human andys. An advanced gpproach is needed to automate many different
agpects of human expertise. These features include, but are not limited to: (1) assessment of data qudity
indicators, (2) choice of the best data type; (3) comparison of conventiona datitics, traditiond
nonlinear measures, and PSDM; (4) development of new nonlinear measures, and (5) statistical test(s)
for falure forewarning. While the mplementation of these steps in fully automated formis beyond the
scope of the present project, we think that such an approach should be pursued in the future.

Table6. Status Summary of NERI Tasksfor First and Second Project Years

Planned Actual

Milestone/task description completion | completio
date n date
Task 1.1: ORNL set subcontract in place for DE&S 09/00 10/00
DE& S provide preliminary test datato ORNL 09/00 02/01
DE& S congtruct test plan for accelerated testing 11/00 04/01
DE& S provide datasets to ORNL 01/01 06/01
Task 1.2: ORNL anayze qudity of DE& Stest data 02/01 06/01
DE& S provide replacement datasets for any found inadequate 02/01 06/01
Task 1.3: ORNL perform condition change analysis on data 08/01 08/01
Task 1.4: ORNL construct library of nonlinear condition change Sgneatures 08/01 08/01
Task 1.5: ORNL correlate condition change to approaching failure 08/01 08/01
Task 1.6: ORNL procure new computer 08/01 05/01
ORNL implement nonlinear analys's software on new PC 08/01 06/01
Task 2.1: PSU provide test data for several seeded-fault sequences 06/02 06/02
Task 2.2 ORNL evauate prognostication capability of nonlinear paradigm 08/02 08/02
Task 2.3: ORNL improve nonlinear paradigm as appropriate 08/02 08/02
Task 2.4: ORNL develop dgorithm for pattern change recognition 08/02 08/02
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Fig. 1. Motor-bearing system (top), bearing details (bottom left), and bear assembly (bottom
right).
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Fig. 5. Linear measuresfor the air-gap seeded-fault. Top plot shows various linear measures of
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function. See text for discusson
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Fig. 9. Linear measures for the brokenrotor seeded-fault. Top plot shows various linear
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and kurtosis (- -) in the instantaneous power. Third plot down shows the number of time steps per cycle
in the ingtantaneous power. Bottom plot shows the lag in time steps, corresponding to the first zero in
the autocorrelation function. See text for discussion.
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Fig. 11. PSDM for the brokenrotor seeded-fault. Dataset #1 is for the nomind (no fault) Sate.
Dataset #2 is for the 50% cut in one rotor bar. Dataset #3 is for the 100% cut in one rotor bar. Dataset
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the seeded faults is shown as an dmogt linear rise (solid ling) in the logarithm of dl four dissmilarity
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Fig. 13. Linear measures for the turn-to-turn short seeded-fault. Top plot shows various linear
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in the ingtantaneous power. Bottom plot shows the lag in time steps, corresponding to the first zero in
the autocorrelation function. See text for discussion.

35



I 1 T T T T T

s

[}
T
My

M, (TIMESTEPS)
e
el
.

4.4

43 } .
PR
4 B
o S / > I 7 il T
S N A -
:|Z..-f l ] h, § . 1 ]

3.8 -

3.4 N

Du‘E T T T T T

014

B

0,12

x AN

K (BITS/E)
e

0.04

=~
.-"f’ -
N
{
.
iy
1

0.04

0.02 ! ! ! !
4] 0.5 1 135 2 25 3

DATASET #

Fig. 14. Conventional nonlinear measuresfor turn-to-turn short seeded-fault. Top plot shows
the location (in time steps) of the first minimum in the mutua information function. The middle plot shows
the corrdation dimenson (D). The bottom plot shows the Kolmogorov entropy (K). Error bars in the
middle and bottom plots correspond to the 95% confidence interval. Seetext for discussion
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Fig. 15. PSDM for the turn-to-turn short seeded-fault. Dataset #1 is for the nomina (no fault)
state. Dataset #2 is for the 2.7-ohm short. Dataset #3 is for the 1.35-ohm short. The monotonicrisein
the severity of the seeded faults is shown as an dmod linear rise (s0lid line) in the four dissmilarity
measures (*) for the chosen set of phase-space parameters.
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Fig. 17. Traditional nonlinear measures vs time. Results are for the Polytechnic University of
Vdenda imbaance test. (Top) corrdaion dimenson (D); (middle) Kolmogorov entropy (K); (bottom)
location of the fird minimum (in time geps) in the mutud information function (M,). See text for
discusson.
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Fig. 18. Unrenormalized PSDM vs dataset number. Results are for the Polytechnic Universty of
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B in each subplot correspond to the dope and y-intercept for the least-squares sraight line. See text
for discussion.
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Fig. 19. Mechanical Diagnostics Test Bed at PSU/ARL. Top picture shows (from l€ft to right)
the 30 hp drive motor, torque cell, gear box, second torque cell, and 75HP eectrica generator (load).
Lower plot shows atypica segment of data for load torque (in arbitrary units) vstime from the MDTB,
sampled at 1 kHz.
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Fig. 20. Linear measures of load torque from PSU/ARL MDTB. Top plot shows various linear
measures of instantaneous torque, T: minimum (T,,) as the bottom curve, maximum (T,) as the top curve,
average plus one standard deviation (T + s 1) asthe middle top curve, and average minus one standard
deviation (T - st) asthe middle bottom curve. Second plot down shows skewness (solid) and kurtos's
(- -) in the ingantaneous torque. Third plot down shows the number of time steps per cycle in the
torque. Bottom plot shows the lag in time steps, corresponding to the first zero in the autocorrelation
function, which varies from zero to 539. See text for discusson.
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Fig. 21. Conventional nonlinear measures of load torque data. Top plot shows the location (in
time gteps) of the first minimum in the mutud information function. The middle plot shows the corrdation
dimenson O). The bottom plot shows the Kolmogorov entropy (K). Error bars in the middle and
bottom plots correspond to the 95% confidence interval. See text for discussion.
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Fig. 22. PSDM vs dataset number. Reaults are for the PSU/ARL MDTB test sequence \s
dataset number. Datasets #1- 5 are the basecases. These results are for the following phase-space
recongtruction parameters. d=16, S=3, and | =61. See text for discussion.

45



A0 A02 A0

AMPLIALY
o N s @

AMPLAU)
)

b bk o oa M os =

& b
i
o

G G G

4 4 A 4
o wab | bl s
2 2 ML A2
=0 0 | = 0
= = =
=2 =2 -2

4 -4 U -4

-5 -5 -6

o} 2 4 a] 2 4 4] 2 4

& & &

4 4 4
= 2 _}HIIL ||| = 2 {1 =2z
= “"lu = __|1n.r')'"'|u|
= ¥ 'l =< e " ! i \ I
Soh WU g o M s z° \ﬁMMH...JWT“‘W
- 2 W 'ﬂ'.\-n'h' = .2 k j K = .z

-4 4N/ -4

-5 -5 =&

0 02 04 06 08 0 02 04 06 08 0 02 04 06 08

TIME({ms) TIME(rms) TIME(ms)
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Fig. 24. Conventional statistical measures of tri-axial acceleration. The subplots are asfollows:
(top row) minimum (A,), absolute average deviation (a), sample standard deviation (s ), and maximum
(Ay); (second row from top) skewness (-) and kurtosis (- -); (third row from top) number of time steps
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Fig. 26. Conventional statistical measures of the accelerometer power. Subplots are for
RUNS33 of the PSU MDTB test sequence are as follows: (& minimum (P,), maximum (P,), absolute
average deviation (a), and standard deviation (s); (b) skewness, (c) kurtosis, (d) number of time steps
per cycle; (e) firgt zero (Z;) in the autocorreation function. See text for discussion.
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Fig. 27. Conventional nonlinear measures vstime. Subplots for RUN33 of PSU MDTB test
sequence are as follows: (top) corrdation dimenson (D); (midde) Kolmogorov entropy (K); (bottom)
location (in time geps) of the fird minimum in the mutud information function (M;). See text for
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Fig. 28. PSDM vs dataset number. Results are for RUN33 of the PSU MDTB gearbox failure
sequence for d=2, S=274, and | =1. Results for the two bad datasets (#119 and 266) have been
replaced by locally averaged vaues. Seetext for discusson.
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Fig. 29. Maximum c?vsnumber (n) of sequential points. Results are obtained for samples from
(bottom curve) anorma digtribution with zero mean and unity sample standard deviation; (middle curve)
composite measure, C;, of condition change from the 200 datasets that span the straight-line fit; (top
curve) composite measure, C;, of condition change during failure onset (datasets #394- 400). The
middle and top curves use the same andysis parameters asin Fig. 29. See text for discusson.
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Fig. 30. Tri-axial accelerometer power vs time. Reaults are for RUN35 of the PSU MDTB
experiment at four successvely fagter time scales. See text for discussion.
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Fig. 31. Conventional statistical measures of accelerometer power vs dataset number.
Reaults are for RUN35 of the PSU MDTB test sequence: (@) minimum (P,), maximum (P,), absolute
average deviation (@), and standard deviation (s) of accelerometer power; (b) skewness of time-serid
power; (C) kurtoss of power; (d) number of time Steps per cycle (e) firs zero (Zy) in the
autocorreation function. See text for discussion.
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Fig. 32. Conventional nonlinear measures vs time. Reaults are from RUN35 of PSU MDTB
test sequence: (top) corrdation dimension (D); (middle) Kolmogorov entropy (K); (bottom) location (in
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sequence for d=2, S=274, and | =1. Seetext for discussion.
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(middle curve) composite measure, C;, of condition change from the 100 datasets that span the straight-
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Fig. 35. Four data channelsfrom PSU TORSION data. Results are at three successvely faster
time scdes (left two columns) horizonta and vertical acceleration; (third column from the left) AC-
coupled motor power; (right-most column) DC-coupled motor power. See text for discussion.
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Fig. 36. Conventional statistical measures of DC motor power vs dataset number. Results
are for the PSU TORSION experiment: (top) minimum (P,,), maximum (P,), absolute average deviation
(a), and standard deviation (s ); (second from top) skewness and kurtosis of power; (third from top)
number of time steps per cycle; (bottom) first zero (Z,) in the autocorrelation function. See text for
discusson.
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Fig. 37. Conventional nonlinear measuresvstime. Resultsare from PSU TORSION
experiment: (top) correlation dimension (D); (middle) Kolmogorov entropy (K); (bottom) location (in
time seps) of the firg minimum (M,) in the mutud information function. See text for discussion.
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Fig. 38. PSDM (top four) and their sum (bottom) vs dataset number. Results are for the test
sequence for PSU TORSION experiment for d=4, S=2, and | =245. Seetext for discussion.
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Fig. 39. Accelerometer power from the PSU BEARING experiment. Results are shown at
three successvely fagter time scales. See text for discussion.
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Fig. 40. Conventional statistical measures of accelerometer power vsdataset number.
Reaults are for the PSU BEARING experiment: (top) minimum (P,), maximum (P,), absolute average
deviation (a), and standard deviation (s); (second from top) skewness and kurtosis of power; (third
from top) number of time steps per cycle; (bottom) first zero (Z;) in the autocorrelation function. See
text for discussion.
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Fig. 41. Conventional nonlinear measuresvstime. Redtsarefor PSU BEARING experiment:
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Fig. 43. Maximum c? vs number (n) of sequential points. Results are obtained from the sample
digtribution for (bottom curve) anormd digtribution with zero mean and unity sample standard deviation,;
(middle curve) composite measure, C;, of condition change from the 100 datasets that span the straight-
line fit; (top curve) composite measure, C;j, of condition change during fallure onset (datasets

#795- 804).
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APPENDIX A: DESCRIPTION OF ANALYSISMETHODS

This Appendix is organized as follows. Section A.1 describes the method for remova of artifacts from
the data. Section A.2 discusses conventiona datistica measures for ime-serid andlysis. Section A.3
describes three traditiond nonlinear measures for our analysis. Section A.4 explains ORNL’s nonlinear
PSDM.

A.1 ARTIFACT REMOVAL

Data frequently include artifacts, such as snusoidd variations in three-phase voltage and current. We
remove essentidly al of these artifacts with a novel zero-phase quadratic filter.” This filter uses a
moving window of 2w + 1 points of raw data, e, with the same number of data points, w, on ether side
of a central point. We fit the data to a quadratic equation, F(t;) = a,T;> + a,T; + ag, with T; = t; —t,
and t. the time at the central point of the moving window. We obtain the best fit to the data by
minimizing the function, ¥ =S; [F(t) — e]> The sum is over the 2w + 1 points in the moving window.
Theminmumin Y isfound from the condition Y /flax = O, which yidlds three linear equations in three
unknowns. The window-averaged sgnd is the fitted vaue at the centrd point, F(t. = t;) = as. The sums
over odd powers of T; are zero; symmetric sums over even powers of T; (over i from—w to w) can be
converted to sums from 1 to w, giving awindow-averaged solution for the artifact sgnd,

F(t =to) = [3(3W* + 3w — 1)% B4c— 155vi i”g+d / (4W? + 4w —3)(2w + 1). (A.1)

The sums in this last equation are over | from —w to w, with sums over even powers of i explicitly
evaluated with standard formulas for S; i2and S; i* (ref.2). The effort to evaluate Eq. (A.1) can be
reduced further by computing the sums initidly with ¢ = w + 1, and then using recursions theresfter for
c>w+ 1 (ref. 1). Applicaion of thisfilter to the N-point set of raw data, e, yidds N — 2w points of
atifact data, f; = F(t; = t;). Theresdue, x; = g — f;, has essentidly no artifact content. Subsequent
andyss uses only the artifact-filtered machine data, x;.

A.2 CONVENTIONAL STATISTICAL MEASURES

Andysis of time serid data begins with the collection of a process-indicative scdar sgnd, x, from a
dynamicd sysem whose dimengondlity, structure, parameters, and regime are usudly unknown. This
sgnd is sampled & equa time intervas, t, Sarting a the initid time, to, and yields a sequence of N

points, X; = X(to + it). Severd linear measures are useful for characterizing the gross features of this
data Thefird isthe mean, x , or average over the N data points.

N
X =Sx/N. (A.2)
=1
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The second is the sample standard deviation (s ), which follows from Eq. (A.2):

2

s?=a(x- x)/(N-1).

Qo=

1l
[y

(A.3)

Equation (A.3) is the second moment about the mean, implying thet higher moments are avallable.
Thus, athird linear measure is the third moment about the mean, cdled skewness, s.

N
s=a (% -_x)3/ Ns®.
i=1

(A4
A fourth linear measure is the fourth moment about the mean, caled kurtoss, k:
C')\l 4 4
k=a(x-x)/Ns*-3
i=1 (A.5)

Typica process data have significant vaues for skewness and kurtoss, but Gaussian random processes
have values that are not significantly different from zero® A large positive (negative) vaue of skewness
corresponds to a longer, fatter tail of the data didtribution about the mean to the right (left). Kurtoss
measures the amount of flattening (negative k) or excess peakedness (positive k) about the mean.

Another measure gpplies to both linear and nonlinear sysems, and involves counting the number of

times, n,, tha the sgnd crosses the mean vdue. More specificdly, one-haf of a wave period is
delimited by two successve mean crossings. For n. >>1, the average number of time deps per wave
cycle(m) as:

m = N/[(ne - 1)/2] = 2N/(ne—1) » 2N/n .
(A.6)

This last measure indicates the average periodicity in the signd, or the inverse of the average frequency.
Andysis of typicd data shows that these measures provide little, if any, discrimination for detection of
condition change. We include these measures for the sake of completeness and to show that linear
measures are inadequate for prognostication.

A.3TRADITIONAL NONLINEAR MEASURES

Nonlinear analys's uses the same sequence of time serid data, X, to reconstruct the process dynamics.
In particular, phase-space (PS) reconstructiort uses d-dimensond time-delay vectors, y(i) = [Xi, Xis1 , -

. Xix@y ], for a system with d active varigbles and time lag, | . The choice of lag and embedding
dimengion, d, determines how well the PS recongruction unfolds the underlying dynamics from afinite
amount of noisy data. Takens® found that, for a d-dimensional system, A + 1 dimensions generaly
results in a Smooth, nor-intersecting reconstruction.  Sauer et a.® showed that, using idedl data (i.e., no
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noise and infinite precison), the firgt integer greater than the corrdaion dimension is often sufficient to
recongruct the sysem dynamics, this result has been confirmed by computing the embedding
dimenson via the fase nearest-neighbors

method.”®° However, too high an embedding dimension can result in over-fitting for red datawith finite
length and noise. We further note that different observables of a sysem contain unequa amounts of
dynamica information,™ implying that PS reconstruction could be easier from one varigble, but more
difficult or even next to impossble from another. Our andys's seeks to baance these caveats within the
condraints of finite-length noisy data

Various nonlinear measures have been defined to characterize process dynamics udng the PS
reconstruction."*** We choose three of these nonlinear measures, against which we compare the
dissmilarity indicators. In paticular, we use: the fird minimum in the mutua information function as a
measure of de-correlaion time, the correlation dimension as a measure of dynamic complexity, and the
Kolmogorov entropy as a measure of predictability. For the reader’s convenience, we briefly describe
these three measures next.

The mutud information function (MIF) is a nonlinear version of the (linear) autocorrdaion and cross-
correlation functions and was origindly developed by Shannon and Weaver™ with subsequent
gpplication to time series andysis by Fraser and Swinney.** The MIF messures the average information
(in bits) that can be inferred from one measurement about a second measurement and is a function of the
time delay between the measurements.  Univariate MIF measures predictability within the same data
dream a different times. Bivariate MIF measures predictability of one data channd, based on
measurements in a second signd at different times. For the present andyss, we use the firg minimum in
the univariate MIF, My, to indicate the average time lag that makes x; independent of x ;. The MIF,
I(q,r), and system entropy, H, are defined by

I(q,r)=1(r,q)=H(q)+H(r)- H(r,q), (A7)

H(@)=- 4 P(@)lod P(q)],
i (A.8)

H(q.,r)=- & P(q,r;)lod P(q,.r,)] -
B (A.9)

For awindow of N points, we denote the Q set of data measurements by o, Gz, . . ., Qn, With
associated occurrence probabilities P(qy), P(Q2), . . . , P(On). Risasecond set of measuremernts, ry,
r,. . ., In, Withatime ddayrdativeto the g vaues, with occurrence probabilities P(ry), P(r2), . . .
, P(rn). The function P(q;, r;) denotes the joint probability of both states occurring smultaneoudy. H
and | are expressed in units of bitsif the logarithm is taken in base two.

The maximum:likelihood corrdaion dimension, D, is™>*°
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:(1MMahﬂd/%-dM%ﬂaw%mgﬁ
i ﬁ (A.10)

where M is the number of randomly sampled point pairs; d;; is the maximum-norm distance between the
(randomly chosen) i —j point pairs, as defined in Eq. (A.12) below. The distance (scale length) d,, is
associated with noise as measured from the time serid data. Note that the distances are normalized with
respect to a nomind scae length do, which is chosen as a baance between sensitivity to loca dynamics
(typicdly a do £8a) and avoidance of excessve noise (typicdly a do = a). Here, the symbol a denotes
the albsolute average deviation as arobust indicator of variability™ in the data,

aﬂUMéM-& (A.11)

where x isthe mean of x; over thewindow of N points. The distances d;; are defined by

ij O£k£m 1)§+k ]+k ’

(A12)
where m isthe average number of points per cycle, as determined by Eq. (A.6).

The Kolmogorov entropy, K, measures the rate of information loss per unit time, or (equivaently) the
degree of predictability. Pogtive, finite entropy is generdly consdered a clear demondration that the
time sries and its underlying dynamics are chaotic. A very large entropy indicates a stochastic
(nondeterministic) and therefore totally unpredictable phenomenon. The K-entropy is estimated from the
average divergence time for pairs of initialy close orbits. More precisdy, the entropy is obtained from
the average time for two points on an atractor to go from an initia separation d £ d, to a separation of
more than that distance (d > d ). We use the maximum-likelihood K-entropy of Schouten et d.,*”

= - f_loy(1- 1/b), A3

D=(1/M)5.h, A1)

with b; as the number of time steps for two points, initidly withind £ do, todivergetod > d,. The
symbol f denotes the data- sampling rate.

There are saverd problems associated with the use of these measures for detection of dynamical
change. The most serious is that these nonlinear measures are expressed as a sum or integra over (a
region of) the PS, thus averagng out al dynamica detals into a sngle number. Two (very) different
dynamica regimes may lead to very close, or even equa measures. The Situation is even murkier for
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noisy dynamics, in which case reliable determination of the nonlinear measures is next to impossible.
The second difficulty arises from the definitions of K-entropy and corrdation dimension in the limit of
zero scae length. However, dl red data have noise and even noisdess model data is limited by the
finite precison of computer arithmetic. Thus, we choose a finite scae length that is somewhat larger
than the noise (do = 2a), a which to report the

vauesof K and D, corresponding to finite-scale dynamic structure. Consequently, the calculated vaues
of K and D have smdler vaues than expected for the zero-scae-length limit do ? 0) and cannot
capture dynamicd complexity a length scdes smdler than do. A third difficulty arises from the definition
of these nonlinear measures as functionds of the digtribution functions. Some of these functionas do not
saidy dl the mathematica properties of adistance. In particular, for some of them, symmetry and the
triangle inequality may be violated® Therefore, these messures cannot define a metric in the
mathematicd sense. They may indicate change, athough only in a sense that has to be made precise for
each gtuation.

A.4 PHASE-SPACE DISSIMILARITY MEASURES

The traditiona nonlinear measures described in the previous section characterize globa fesatures of the
dynamics, and can clearly digtinguish between regular and chaotic dynamics. However, they do not
reved dight dissmilarities between dynamica sates. The same is true for other globa indicators, such
as fractd dimenson, Lyapunov exponents, etc. This lack of discrimination occurs because such
traditiona measures are based on averaged or integrated features of the dynamics over the attractor,
which provide aglobd picture of long-term dynamica behavior.

Greater discrimination is possble by more detailed anadlyss of the recongtructed dynamics. The naturd
(or invariant) measure on the attractor provides a more refined representation of the reconstruction,
describing the vistation frequency of the system dynamics over the PS. We obtain a useful discrete
representation of the invariant measure from time serid data as follows. We firdt represent each sgnd
vaue, x;, asasymbolized form, s, thet is, one of Sdifferent integers, 0,1, . . . , S,

0£§ = INT[S(X - Xpin) /(X = Xin)] £ S- 1. (A.15)

Here, the function (INT) converts a decima number to the closest lower integer, and Xmin aNd Xpex
denote the minimum and maximum vaues of x;, respectively, over the base case (reference data). We
previoudy used™®?# the minimum and maximum values over both the base case and test case (data to
be tested for departure from the base case). However, in red- or near-real-time andyses, only base
case extrema are actualy known. We require that s(Xi = Xmex) = S— 1 in order to maintain exactly S
digtinct symbols. Consequently, Eq. (A.15) creates symbols that are uniformly distributed between the
minimum and maximum in sgnd amplitude (uniform symboals).

An dternative is equiprobable symbols. These symbols are formed by ordering the base case time-
serid data from the smalest to largest value. The firg N/S of these ordered data values correspond to
the first symbol (0). Ordered data vaues (N/S)+1 through 2N/S correspond to the second symbol (1),
and so on up to the last symbol, S-1. Consequently, equiprobable symbols have nort uniform partitions
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in the signa amplitude so that each symbol has the same occurrence frequency (N/S) of x; vaues.
Much dructure is inherent in uniform symbols before beginning the PS recondtruction, but no PS
dructure arises from equiprobable symbols. Thus, a key advantage of  equiprobable symbols is
that dynamica dructure arises only from the phase-space

recongtruction, as described below. Large negative and large positive vaues of x; have little affect on
equiprobable symbolization, but drametically change the partitions for uniform symbols. Moreover,
information theoretic measures of the PS-DF (e.g., mutud information function) are a smooth function of
the recondruction parameters for equiprobable symbols, but are noisy functions of these same
parameters for uniform symbols. We find that equiprobable symbols provide better discrimination of
condition change than uniform symbols,

The phase-space is partitioned into S hypercubes or bins by the symbolization process. We then count
the number of PS points occurring in each bin to obtain the digtribution function (DF) as a discretized
dengty on the attractor. We denote the population of the ith bin of the distribution function, Q,, for the
base case, and R for a test case, respectively. For infinitely precise data, this representation has been
used in Grebogi et d.?? The choice of parameters (S, N, and d) depends not only on the system, but
aso on the specific data under consderation. In the preliminary phase of the analys's, we systemaicaly
varied each parameter with the others fixed, to obtain optimum sengtivity of the measures to changesin
system dynamics for each class of data. After achieving optima sengtivity, the vaues of the parameters
were kept fixed.

Initid andyss used an embedding window, M; = (d — 1)I , based on the firs minimum in the mutua
information function, My (ref. 14). This choice of time delay provides maxima information for the
recongtruction of the phase space dynamics. Then, we set | = INT[0.5 + MJ/(d — 1)] to obtain an
integer vaue for the lag when M, is nat evenly divisble by d — 1. The recongtruction requiresthat | =
1, thus condraining the largest vaue of dimensondity to d = 2M; + 1 from the above formula
Subsequently, we have found that this choice of time-delay lag is not the best for fallure forewarning.
Rather, we vary | asone of severd parameters that determine the goodness of the PSDM in providing
forewarning of failure.

After recondruction (unfolding) of the dynamics, the test case is compared to the base case. Diks et
d.% measured differences between delay vector distributions by the square of the distance between two
DFs. Schreiber®*? measured dissmilarity via the Eudlidean distance between points of the attractor.
These measures of dissmilarity only account for the geometrica shape and location of the attractor.
Manuca and Savit?*?” described dissmilarity via ratios of the correlation integral over the DF. Thisis
essentidly the corrdation dimengon, as discussed above. Moreover, these papers discuss dissmilarity
measures from the perspective of nondationarity, while our focus is on quantification of condition
change. In particular, we measure the difference between Q with R by the ?* tatistics and L, distance,

c’=a(Q- R)/Q +R),
i (A.16)

L:é:HQ'-R" (A.17)
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where the summations in both equations run over al of the populated PS cdls. The choice of these
measures is based on the following considerations. The ?* satistic is one of the most powerful, robust,
and widdly used datigtical tests to measure discrepancies between observed and expected frequencies.
The ?* ddtigtic is obvioudy symmetric, but does not dways satisfy the

triangle inequdity, o it does not define a distance in the mathematicd sense. The L, distance isthe
natura metric for distribution functions since it is directly related to the tota invariant measure on the
attractor and does define a bona fide distance. Therefore, these measures account for changes in the
geometry, shape, and vidgtation frequency of the attractor and can be viewed as somewhat
complementary. Obvioudy, caculation of these measures in a congstent fashion, requires that the base
case and test case contain the same number of points, identically sampled; otherwise the didtribution
functions have to be properly rescaled.

We extended the previous andysisin amanner that is naturaly competible with the underlying dynamics.
By connecting successive PS points as prescribed by the dynamics, y(i) ® y(i + 1), we obtain a
discrete representation of the process flow.”®  Thus one can form a 2d-dimensiona vector, Y(i) = [y(i),
y(i + 1)], by adjoining two successve vectors from the d-dimensiond recongructed PS, livesin a 2d-
dimensional space, that we cal the connected phase space (CPS). As before, Q and R denote the CPS
DFs for the base case and test case, respectively. We define the measures of dissmilarity between
these two CPS DFs, as before, viathe L;-distance and 7 statistic,**%%%%

x'=8(q - R) /(@ +R)
: (A.18)

L :é. 1Q; - R |-

L (A.19)
The subscript ¢ indicates the connected digtribution function measure. We note that the value | =1
resultsin d — 1 components of y(i + 1) being redundant with those of y(i), but we alow this redundancy
to accommodate other data such as discrete points from two-dimensona maps. The CPS measures
have a higher discriminating power than their non-connected counterparts. Indeed, we can prove that
the measures defined in Egs. (A.16)—(A.19) satisfy the four inequalities® c?£ L, cZ £ L, L £ L., ad
c?£ ¢l Alternativeformsare c2£ L £ Lcand c? £ ¢ £ L.

The c? datistic requires statistical independence between various samples.  However, the PS points
depend on one another due to reconstruction from time delay vectors with dynamica sructure®  The
resllting datigtica bias is avoidable by averaging contributions to EQs. (A.16)- (A.19) over
vaues of y(j) or Y(j) which satisfy | —j| < L (ref. 23), where L issome largest typicad corrdation time
lag. Wetested the biasin typicd data by sampling every L -th connected phase space point for 4=1L =
23, reaulting in L different samples for the base case (Q) and for each cutset (R). We then averaged
the sampled ¢? values over the L ? different combinations of distribution functions for the base case and
test case cutsets. As expected, a decrease proportionad to 1/L occurs in the sampled c? vaues,
because the number of data points contributing to ¢? decreases in the same proportion. The trend over
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time in sampled ¢? valuesis the same asin ¢? values without sampling, showing that no biasis present.
Thus, we use unsampled c? vaues for the remainder of thiswork as arelaive measure, rather than asan
unbiased statistic for accepting or rejecting anull satistica hypothesis™

Use of the dissmilaity measures on finite length, noisy data requires a consdent datidtica
implementation ad interpretation. We use the first B non-overlapping cutsets as base cases. The
choice of the number of basecase datasets, B, should strike a judicious balance between a reasonably
short base case period to capture quasi-dationary, “normad” dynamics and a sufficiently long period for
datidicd sgnificance. We have chosen B = 10 for noisy machine data to provide a sufficient datigtica
sample.

The digparate range and variahility of various nonlinear measures are difficult to interpret (especidly for
noisy data), so we need a consstent means of comparison. Thus, we renormdize the nonlinear
measures.**?!  For each nonlinear measure, V = {D, K, My, L, L., ¢? and c¢3, we define V; asthe
vaue of the nonlinear measure for the ith cutset. As before, V is the mean vadue of that nonlinear
measure over the non-outlier base cases, with a corresponding sample standard deviation s, as
described above. No averaging is needed for D, K, and M; since the caculation of these measures
involves only one cuset at the time. The renormalized form is then U(V) = |V; — V|/s, which measures
the number of standard deviations that the test case deviates from the base case mean. Severa
successve occurrences above threshold provide a clear indication of condition change. Alternatively, a
systematic rise in the PSDM will indicate a clear departure from the base case dynamics, and provides
forewarning of falure.
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I ntroduction

This appendix describes testing that was performed on the PSU (Pennsylvania State University)
Mechanical Diagnostics Test Bed (MDTB) in support of work a Oak Ridge Nationa Laboratory
(ORNL) under the U.S. Department of Energy NERI2000-109 (Nuclear Energy Research Initiative)
project. This test plan describes the MDTB, the equipment that will be tested, instrumentation and data
acquisition equipment, and the conditions and procedure under which the equipment will be tested.

Test Bed

Figure B.1 shows the MDTB, which was built as an experimental research station for the study of fault
evolution in mechanical gearbox power transmisson components. The gearbox is driven at a set input
speed using a 30 HP, 1750 RPM AC (drive) motor. A mechanical load (torque) is applied to the gearbox
by a 75 HP, 1750 RPM AC (absorption) motor. The maximum speed and torque are 3500 RPM and 225
ft-1bs respectively. Speed variation is accomplished by varying the frequency to the motor with a digital
vector drive unit. The variation of the torque is accomplished by a similar vector unit capable of
controlling the current output of the absorption motor. The system speed and torque set points are
produced by analog input signds (0-10 VDC) supplied by the data acquisition controller computer. The
MDTB is capable of paralld or right angle gear motor mounts.

30 HP Drive Torque Gear Torque 75 HP Load
Cell Box Cell

FigureB.1: Mechanical Diagnostics Test Bed

The MDTB has the capability of testing single and double-reduction industrial gearboxes with gear ratios
from about 1.2:1 to 6:1 and with ratings that can range from 5 to 20 HP. Duty cycle profiles can be
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prescribed for varying speed and load. Drive line speeds for tests to date have been fixed at 1750 RPM
with variable load profiles that step up to maximum vaues of 2 to 5 times the rated torque of the test

gearbox. The motors and gearbox are hard-mounted to minimize vibration transmission, and are precison
aligned using laser technology. The shafts can be connected with either flexible or rigid couplers. Torque
limiting clutches are used on both sides of the gearbox excessve torque that could occur with gear
jamming or bearing seizure. Also, torque cells are used on both sides of the gearbox to directly monitor
the loads transmitted and efficiency. The vector drives control the drive and load motors, providing output
signals, which are sampled and stored. Output data include: input power to the drives, root-mean-square
(RMS) currents, winding temperatures, motor speed, and generator torque. These signals alow
automation and shutdown of motors directly through the controller PC.

Equipment to be Tested

The MDTB was designed to perform run-to-failure testing on gearboxes. To date, only single-reduction
gearboxes have been tested on the MDTB. The intent under this program is to use the MDTB to collect
data on single-reduction gearboxes. Table B.1 describes the characteristics of two candidate gearboxes.
The first two sets of data from the MDTB will be collected on Dodge gearboxes. Future sets may be
collected using the SEW* Eurodrive gearboxes. Table B.2 and Table B.3 show the bearing and gear mesh
frequencies for the Dodge gearbox at rated input speed.

Table B.1: Candidate Gearboxes

Brand Dodge (R86001) Dodge (R86005)

Model Number APG Size 3 APG Size 3
Description Single Reduction Helical Single Reduction Helical
Rdio 15 3.38

Rated Input Speed 1750 RPM 1750 RPM

Rated Output Torque | 530 Ib-in 555 Ib-in

Potentia Failure Gear Shaft

The Dodge gearboxes have the advantage that they have aready undergone extensive (over 25 runs) on
the MDTB. Our previous experience with the Dodge gearboxes means that we should be able to induce
predictable failure modes during different runs (shaft failure, input gear failure, output gear failure, etc.).
The SEW Eurodrive gearbox is a precison gearbox that uses AGMA -rated gears (American Gear
Manufacturers Association).

! SEW (Siiddeutsche-Elektromotoren-Werke) was the name of the original German company, which was founded by
Christian P&hr in 1935.
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Table B.2: Dodge Gearbox Bearing Frequencies (at rated input speed)
Bearing Input and Output Frequencies— 1.5 & 3.3 Gearbox Ratio

Description Ball Bearing Ball Bearing Tapered Roller | Taper  Roller
(outer) (inner) Bearing (inner) | Bearing (outer)
Part Number 6307 6309 #15520/15578 | #2520/2581
Input Freq (H2)
29.1667 29.1667 16.0715 16.0715
(OUTFREQ)
FTF (H2) 10.76 11.07 8.03 7.85
(OUTFREQ)
BPFO (Hz) 86.06 88.57 128.56 126.08
(OUTFREQ)
BPFI (H2) 147.27 144.77 175.97 178.46
(OUTFREQ)
BSF (Hz) 51.77 57.03 59.64 52.82

TableB.3: Dodge gearbox Gear Mesh Frequency (at rated input speed)
Gear Frequency
Gearbox Size3 — Ratio 1.5 875.5 Hz
Gearbox Size 3 — Ratio 3.3 613.0 Hz

I nstrumentation and Data Acquisition Equipment

Data will be collected using a National Instruments PX1 measurement system. Figure B.2 shows a picture
of an example NI system. This data acquisition system is composed of a backplane, a processor and
control module, and separate data acquisition modules. The MDTB testing will use NI4472 dynamic signal
acquidition and analysis modules (Figure B.3). Module operating characteristics are given in Table B.4.
Each module has 8 andog inputs with smultaneously-sampled, 24-bit, Sgma-delta A/D converters. The
maximum sample rate for each channel is 102.4 kHz. The interna digital anti-aliasing filters in the sgma-
ddta A/D’s are designed to have the following dynamic characteristics (per National Instruments
specification sheet for the data acquisition module):

Alias-free bandwidth (passband): DCto 0.4535f,
Stop band:
0.5465 f
Aliasregection:
110dB

These specifications are consistent with comparable sgma-delta A/D systems. We intend to acquire data
at 51.2 kHz sample rate, which should provide an alias-free bandwidth of DC to 23 kHz. Note that the
mounted resonance frequency of the accelerometers that will be used for vibration measurementsis above
70 kHz, well outside the bandwidth of the proposed measurements.

The following data will be collected:

3-phase input motor voltages
3-phase input motor currents
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3-axis acceleration measurement on gearbox housing
input and output torque

All channels will be sampled at approximately 50 kHz in 10 second snapshots. The data will be saved to a
computer hard disk drive. Operating specifications for the tri-axial accelerometer are given in Table 5.
Additional sensor measurements may be added on open data acquisition channels to provide cons stency
with earlier gearbox tests. The full sensor list will be provided in the post-run test description along with a

drawing showing sensor placement.

Figure B.2: National Instruments PXI Data Acquisition System

Figure B.3: National Instruments Dynamic Data Acquisition Module

TableB.4: DAQ Module Specifications

Channels per module 8
A/D resolution 24 bits
Dynamic range 120 dB
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| Measurement bandwidth | DC-45 kHz |
| Coupling | AC/IDC |

TableB.5: Accelerometer Specifications

Sensor Name IAccelerometer

Sensor Make PCB Piezotronics, Inc
Quartz Shear ICP

Sensor Model # 356B08

Sensor Seria # 8052

Sensor Type Shear Piezoelectric

Sensor Volt Sengtivity 100 mV/g

M easurement Range +50 9

Frequency Range (£5%) 1 to 10 000 Hz

Mounted Resonant Frequency > 70 kHz

Broadband Resolution 0.005 g rms (0,05 m/s2 pk)

Conditioner Make PCB Piezotronics, Inc.

Conditioner Modd # 481A02

Conditioner Gain 2

Data For mat

Data will be provided in a documented binary format. MatLab mfiles were aso provided to read the
header information and data from the files. Data were delivered to ORNL on either CDR or DVDR.
The anticipated total size for a one, 10s snapshot containing 11 sensor channels is 22.5 MB (10 seconds x
51.2 k samples/s x 4 bytes/sample/channel x 11 channels/snapshot). If each channel is saved into a
separate file, the size per channel per snapshot would be roughly 2.2 MB per file.

Test Conditions and Procedure

The test procedure that will be followed is described below:

1) Disassemble gearbox and drain out oil;

2) Take images of both pinion and gear teeth,

3) Index gear if possible;

4) Place tooth identification numbers on gesr;

5) Mark mating pinion/gear teeth with alarge dash;

6) Assembly gearbox using mating dash and refill with manufacturer gear ail;
7) Mount the gearbox to the test stand and laser dign;

8) Attach all sensors to the gearbox and set up data acquisition system;

9) Cdibrate al sensors and save results, with time stamps to correlate with oil data;
10) Run Test Matrix until failure;

11) Disassemble gearbox and take images of both pinion and gear teeth;

12) Index gear if possible.



The intended test conditions are shown below in Table B.6. Data will be collected until failure of the
gearbox or until the damage to the gearbox threatens to induce damage in other system components.

Table B.6: Test Condition Matrix
Test Speed | Torque | Length of | Snapshot | Ground Truth
Condition | (RPM) Condition | Rate Information
1 1750 100% of | 1 hour 15 mins Send data to ORNL for qudity
rated check
ARL verify quality of data
Oil sample
Borescope gears
2 1750 300% of | Until 30 mins** | Borescope gears if changes are
rated failure (nom.) detected via agorithms
Oil samples every 24 hours
Send data to ORNL for quality
check and analysis
** Sample rates will change from 30 minutes to 1-10 minute intervals as a gorithms detect changes.

The test protocol involves: (i) a linear increase in motor speed from zero to the operational speed, (ii)
maintenance of this constant speed for some chosen period, (iii) alinear decrease in motor speed from (ii)
to zero, (iv) sampling of the gearbox oil for particulates as a measure of gear wear. The cycle of (i)-(iv)
was repeated many times under the test load until the gearbox failed, causing excessive vibration, which
triggered termination of the experiment. ORNL anaysis uses only the flattop data from (ii) of the test

cycle.
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Appendix C: Test Plan for Torsion Experiment

PENNSTATE

Title: Seeded Crack Fault Test of Laboratory Bladed Disk Assembly

Personnel: Brian Resor, Martin Trethewey, Ken Maynard

Test Description

One falure mode in a turbo-machine begins with a crack at the base of a rotating blade, eventualy
causing blade loss. This Appendix describes an experiment to smulate such afailure. PSU conducted the
experiment on the Torsional Vibration Test Rig during May of 2002. Figure C.1 shows the test rig. The
objective was detection of dynamical changes with increasing crack size, thus smulating the change in
dynamical frequencies due to crack initiation and growth.

Motor current and voltage
transducers

Angstrom resolver and
fiber optic probes

- e i

Pl LRl R
Figure C.1. Motor testing equipment setup
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PSU work to date has smulated the crack growth by changing the lock-nut locations aong the threaded
rods. Figure C.2 shows the rotor assembly, which has eight equally spaced threaded rods to ssimulate the
blades. A fractiona horsepower DC motor rotates the blades. The present experiment is an extension of
this earlier PSU work, involving a sequence of tests with a progressively deeper machined “crack” to
change the rod frequencies, instead of moving the lock nuts. The seeded crack was placed in one of the
threaded rod “blades’ by using a wire éectric discharge machining (EDM) to cut a 0.010 in wide dot.
Test data a each depth of cut included motor voltage, motor current, two-axis trandationd vibration on
one bearing pillow block, and torsiona vibration of the rotor shaft. A description of the data files is shown
a the end of this Appendix. Additiona details can be found in the 2002 PSU Masters Thesis by Brian
Resor.

The test protocol was as follows:
1 Acquire test data (items 3-5, below) for the no-cut (nomind) state of the

rotor assembly.

Pace an initia 0.010-inch cut in one rod.
Measure the bending natural frequency of the seeded fault rod.
Place the rotor assembly in the torsiona vibration test stand.
Run the test stand and acquire the time-seria data from the system sensors.
Remove the rotor assembly and increment the ot depth another 0.010 inch by EDM.
Repeat steps 2 and 6 until a*“failed” state is achieved (after six successve EDM cuts).

Nooah~wd

Ddliverables for this experiment include:
1. Datafor each of the seven tests of the rotor (one nominal state, plus six cuts).
2. Experimental characterization of each test state.

The motor that spins the rotor is a smal 10,000 RPM DC motor made by Bodine Electric Company.
Typica motor supply is on the order of 4 Volts and 2 Amps (depending on the load that is being spun).
This particular motor is not manufactured anymore. The DC power supply is by Sorenson Power Supplies,
a Raytheon Company (part number DCR150-12B).

The transducer that was used for measuring motor input voltage was a LEM Voltage Transducer CV 3
200. The current was measured using a LEM Current Transducer LTS 6-NP. Both are contained in the
box that is pictured in Fig. C.1.

The vice is used to hold the rotor assembly, while
the “blade” static frequency is measured by placing
the tip of the fiber optic probes very close to the end
of the blade and plucking the blade. The probes
sense the size of the gap between their tip and the
tip of the blade. This signa is analyzed in the DSA
in order to determine the blade frequencies.

Accelerometers were mounted on a pillow block to
measure vibration in both horizontal and verticd
directions.

Figure C.2. Smulated bladed disk assembly
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The angstrom resolver is the instrument that converts the signal from the optic probes into a voltage
which is then fed to the compuiter.

The data acquisition system is a Hewlett Packard VXI Mainframe with an E1433A 8channel data
acquisition board with tachometer inputs. Data is sent from the VXI Mainframe to a desktop PC using the
HP EB491A firewire card.

The desktop PC used a software package called HP DAQ Express to manage the data acquisition. Using
this software along with the E1433 card, it was possible to acquire 3 smultaneous channels of data at 12.8
KHz sample rate.

Results of Crack Simulation

The seeded defect for these tests was a small “crack” at the base of one of the eight blades of the rotor,
as shown in Fig. C.3. Wire EDM cutting was used to poduce the smallest possible cut to smulate a
crack. The diameter of the wire that was used for these cuts was 0.010 inches and the over burn is
approximately 0.001 inches. This adds up to a total cut width of 0.012 inches. The cut depth can be
controlled to within about 0.0005 inches.

Wire EDM Cut

-

. 1.:"'.-; et
FigureC.3

. Picture of blade cut

The cut location was as close to the blade root as was practical. A fixture was created for use in the
Wire EDM machine to which the whole bladed assembly (excluding shaft) is mounted. Using computer
controlled tooling, the cut location and depth can be carefully controlled for each cut. The depth of the
first cut was measured from the point that the 0.010 inch wire came in contact with thread surfaces at the
deepest point of the thread.

The origina tuned frequency of all the blades was set at 205 Hz (within +/- 0.25 Hz). Cuts were made to
each of the depths found in Table C.1 and the static frequencies were recorded. Static frequencies for
firs bending modes in both axes were recorded. The “soft” datic frequency corresponds to the
frequency that couples with shaft torson and is measured by the torsiona vibration measurement
technique.
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Table C.1: Torsond test results summary

. Soft static Stiff static st Dynamic st Dynamic

cut | SPec d (_:ut blade blade Coupled | 1°" Shaft Rogue Blade Speed = Coupled | 1°" Shaft Rogue Blade Speed
depth (i) frequency (Hz) frequency (Hz) Mode Mode Frequency (RPM) Mode Mode Frequency (RPM)

0 205 205 213.5 268.5 not visible 2941 195 233 not visible 2930

1 0.024 203 205.25 213.5 266.5 not visible 2858 198.5 240.75 207.25 3032
2 0.032 201.75 205 213.5 265.5 206 3019 198.5 239.5 206 3014
3 0.037 201.5 205.25 214 264.25 205 2988 198.25 240 206 3039
4 0.042 198.5 204.5 213 264.5 203 3029 197.25 235.25 203.5 2986
5 0.047 195 203.75 212.5 264.25 200 2959 197 241 201.75 3022
6 0.049 193.75 203.5 211.5 261.8 199.1 2994 193.3 233.8 200.7 3004

Figure C.4 shows the relationship between cut depth ratio and percentage degradation in blade frequency.
Cut depth ratio is defined as cut depth L to pitch diameter D of the threaded rod (D is about 0.016 inches).
Note that the trend in frequency degradation very nicely follows a definite trend except for one point that
corresponds to Cut 3. The rig was probably not mounted quite right for this cut and therefore the cut
depth might not have been created accurately.

0.99 ~ .
0.98
0.97 .
0.96 A
0.95 A ¢
0.94 +
0.93 A

0.92 T T T
0 0.1 0.2 0.3 04
L/D

F/Fo

Figure C.4. Cut depth versus frequency change

The rotor was assembled in the torsional rig and it was spun at approximately 2900-3000 rpm. The
running speed was maintained approximately the same for al tests so that effects of aerodynamic
excitation and centripetal speed stiffening are equa throughout.

In some of the motor voltage and current and acceleration data there may be evidence of speed
fluctuations. During some of the testing it was difficult to keep the rig running a a constant speed for
some unknown reason. The motor speed would often cycle by about 50 RPM every 15-20 seconds. This
problem was not experienced in the past.
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Torsional M easurements

Torsona data was acquired by detecting zero crossings from a striped tape encoder that is installed on the
shaft of the rotor. Measured zero crossings are compared to imaginary zero crossings that would be

observed with no torsiona vibration in order to determine the phase shift of the carrier wave. When
rotating speed is known, shaft twist is directly related to phase shift. See the 2002 PSU Masters Thesis by
Brian Resor for more information on this technique.

The torsiona data from this testing is the actua shaft twist time waveform in the form of degrees of twist
versustime. The times that are reported are the exact sample times (which are not spaced constantly due
to the nature of this technique). The shaft twist is calculated from the measured zero crossings from a
159 pulse-per-revolution striped tape. The data is corrected for errors that are present in the striped tape.
A 1% order digita Butterworth high-pass filter with 50 Hz cutoff is also applied in order to remove the
effects of very gradua shiftsin running speed.

The torsiona spectra for this experiment are the logarithm of torsional displacement versus frequency.
For example, a value of —3.5 on the vertical scale corresponds to a peak vibration amplitude of 10°°
degrees = 0.000316 degrees.

Torsional Results

For each cut depth, data was acquired with the rig in two different configurations. Setup 1 is the typical
setup that has been dudied in dl the previous work on torsiond vibration monitoring for turbine blade
hedlth. The location of the coupled mode (See Figure C.5) is 510 Hz higher than the rogue blade mode.
In this configuration, as a rogue blade deteriorates it appears to separate and grow away from the large
coupled mode peak. Figure C.66 shows the torsiona results of this portion of the test.

257 Coupled Mode
3 Shaft Mode

-3.5 1

Log 10(Degrees)

-4.5 1

_5.5 T T T T T T T
0 50 100 150 200 250 300 350 400

Frequency, Hz

Fgure C.5: Important torsional peak locations
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Magnitude, Logio(Degrees)

190 195 200 205 210 215 220 225 230
Frequency, Hz

Figure C.6: Rogue blade cascade for Setup 1

Setup 2 is adifferent configuration in that the coupled mode is about 10 Hz lower than the rogue blade
mode. This configuration is achieved by smply moving the masses on the shaft by a smal amount.

Results for testing in Setup 2 are found in C.7.
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Figure C.7. Rogue blade cascade for Setup 2
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The coupled-mode pesk appears in dightly different locations in each case due to difficulties associated
with disassembly and reassembly of the shaft components for each cut. These effects are insignificant.
This experiment shows that the rogue blade mode behaves as expected, moving away from the tuned
frequency die to coupling with the shaft torson. The rogue blade vibration amplitude increases as the
frequency change increases. Moreover, this test shows that a very fine cut shifts the rotor-blade
frequency that is detectable via the torsional vibration measurement.

Data File Descriptions

PSU provided four MatLab'"-formatted binary data files for each wire EDM cut of a blade. Their
contents are shown in the table below. The designation, “xx,” corresponds to a set of data (examples:
Base, Cut0l1, ... Cut06). Both DC and AC-coupled motor data were provided, with a corresponding
change in the A/D voltage range. Additionally, two different setups were used to acquire data. Setup 1
contained torsional natura frequencies at 213 Hz and 265 Hz. Setup 2 contained torsiona natural
frequencies at about 195 Hz and 240 Hz. Blade frequencies are visible in the torsiona spectrum within

the range of 199-207 Hz.

Sample length of  A/D voltage
Filename Variable name Description rate (Hz) block (N) range (V)

xX_motor_dc.mat Motor data, DC coupled

fs sample frequency 1

Motor_current  Motor current 12,800 1536000 5

Motor_voltage  Motor voltage 12,800 1536000 5

Tach 1 PPR tach signal 12,800 1536000 10
XX_motor_ac.mat Motor data, AC coupled

fs sample frequency 1

Motor_current  Motor current 12,800 1536000 0.05

Motor_voltage  Motor voltage 12,800 1536000 0.01

Tach 1 PPR tach signal 12,800 1536000 10
xX_accel.mat Acceleration data

fs sample frequency 1

Vert_accel vertical acceleration 12,800 1536000 1

Horz_accel horizontal acceleration 12,800 1536000 0.1

Tach 1 PPR tach signal 12,800 1536000 10
XX_torsion.mat Torsional data

Torsion Digital demodulated 7770.98 830139 na

torsional vibration signal
SampleTimes  sample times of the 19.66x10"6 830139 na
torsioinal signal
fs average sample 1

frequency of torsional

Motor voltage, current, and acceleration were supplied as a pure voltage signad. Conversion of these
voltagesto standard units requires scaling factors as listed in the following table:
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Conversion Ratio

Motor Voltage 200 Vin/10 Vout

Motor Current 2.5+(0.625*Ip/Ipn) V
Ip = input current
Ipn = 6A

Vertical Accleration 1008 mV/g
Horizontal Acceleration 104.4 mV/g
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APPENDIX D: BEARING PROGNOSTIC TEST RIG
Teri A. Merdes
May 7, 2002

INTRODUCTION

The Bearing Prognostic Test Rig (BPTR) provides bearing transtion-to-failure data that supports
development of diagnostic and prognogtic dgorithms. These agorithms can benefit a wide range of
gpplications and industries, since nearly al rotating machines rely on some type of bearing. With rigorous
demands being placed on their loading capacity, bearings are among some of the most important
components in rotating machines. There is a trend toward increased reliability requirements. Today
rolling bearings have developed into a particular branch of engineering research.

This research enables calculation of bearing life with considerable accuracy, in order to correlate the
bearing life with the service life of the machines involved. Unfortunately, a bearing sometimes does not
attain its calculated rating life. There may be many reasons for this. inadequate or unsuitable lubrication,

heavier loading than has been anticipated, ineffective sealing, careless handling, or insufficient interna

bearing clearance. Each fault type produces a particular type of damage, leaving a unique imprint on the
bearing itself. Therefore, a growing need exists for agorithms to detect progression of these failures
before costly teardown and inspection processes are implemented.

DEFINING BEARING LIFE

Bearing life is defined as the number of revolutions by the bearing before the first signs of fatigue failure
appear. Under norma conditions, the working surfaces of a bearing generaly are subjected to very high
aternating stresses due to the continuous action of the rolling eements (number of revolutions and
magnitude of the load). Specifically, cyclical shear stresses appear immediately below the load-carrying
surface, eventualy causing cracks which extend out to the outer bearing surface. Asthe rolling elements
pass over these cracks, the surface materials break away in a relatively long, drawn-out process. This
fault condition is known as spalling or flaking, which causes increased noise and vibration in the bearing.

DEEP GROVE BALL BEARINGS

These bearing types are the most widely used of al for general applications, incorporating deep,
uninterrupted raceways which makes the bearing suitable for many different loads types: radia loads or
radia and axid loads in ether direction. Due to the optimum size of the balls and their conformity with
raceways, the bearings have a comparatively high load carrying capability and are suitable for high-speed
operations and have some misalignment capacity. The bearings are manufactured with evenly spaced
bals insde a one or two-piece cage around the raceways, and may be shielded and sealed.

THE EXPERIMENT

The Bearing Prognostic Test Rig uses a pair of double row spherical roller support bearings to support a
shaft on which the test bearing is held in place by a bearing holder between the two support bearings. The
test rig was configured to test deep groove ball 1-1/8” test bearings, but is configurable to other types of
bearings. A load jack and load cell were mounted directly behind the test bearing and have aradia load
capacity of 1,000 Ibs in phase with the outer ring. The system is driven by a SCR motor as shown in
Table D.1, with an integral tachometer fitted to the motor. The motor is coupled to the test shaft with a
flexible coupler to reduce transmitted vibration from the motor. Piezoel ectric accelerometers are currently
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utilized with frequency ranges between 10 and 100KHz. Data is collected on a 48 channdl Nationa
Instrument 4472 PX| data processing system. The system was run continuoudy in the

overloaded state, with data acquired at periodic intervals until the bearing findly failed. The objective of
this test was acquisition of data throughout the entire test sequence as a quantitative indicator of the failure
progression. The deliverables are the data and their historical characterization.

TableD.1. dc Variable Speed Motor

M otor Base Arm Arm Approx
kW Rpm Vdc FLAmMps Kgs
15 3000 180 10.0 315

Deep Groo*-fe Eall DonIe Row Spherical Load Jack
1 18" Test Foller Support and Load
Eearing Eearings Cell

Figure D.1. Bearing Prognostic Test Rig

TableD.2: Tri-axial Accelerometer Description

Test Condition Speed Radial L oad
1 2500 rpm 500 Ibs
2 1250 rpm 500 Ibs
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CURRENT EQUIPMENT REQUIREMENTS

For this experiment, the BPTR required the purchase of the following:

A new stainless stedl shaft for $65.00, involving machine shop work as shown in Figure D.2.
Each test deep groove ball bearing from ESI Bearing Distribution costs $5.50.

Rick Horner 5-8708
Project# 9923
62° .25” Stock Material:
/ Type 303 1-1/4 inch Stainless Rod

A and B key slot
locations

[ 2.25”
<1 - |—|_17 > e——— 5000 ——»
e e I e e N R e ——— T
| E— T R — T
. S, 1.1816” +.0003 Dia. 1.125" Dia.
1.125” Dia. 1.25” Dia. - 0000
| | ! l foee-
———— 475" ——————pe— 165 Les" /
Key Slot 1/8 inch deep X % inch wide
8.25" 1-1/4 inch long Location not important

Figure D.2. BPTR Stainless Steel Shaft

Two tri-axial accelerometers were ingdled,

as described in Table D.2; Sensor Directory
s N Triaxial
. ensor Name |
One on the top center test bearing Aocerome!
support hous ng Sensor Make PCB
One. on the outsde roller support | o . vodel # 456503
bearing
Sensor Serial # 8052
Current and voltage were acquired from the | sensor Type Icp
DC eectric motor. All data were sampled at o
. . Sensor Volt Sensitivity 100 mV/g
512 kHz sample rate using Nationa
Instruments 24-bit A/D data acquisition HW
(same data acquisition system used on | Bit Resolution 24
MDTB gearbox tests) Sample Count 5120
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