24,692 research outputs found

    A Comparison of CDMA and Frequency Hopping in a Cellular Environment

    Get PDF
    This paper compares the performances of direct sequence code division multiple access (CDMA) and frequency hopping (FH) schemes in a cellular multiuser environment. The multiuser channel model incorporates the effects of propagation, frequency selective fading, and interference among users in the presence of a constrained system bandwidth. This channel model is applicable for cellular mobile communications, as well as other forms of personal communications. The CDMA and FH systems are compared using BPSK modulation. The main point of contrast between these systems is that the orthogonal hopping patterns in a FH system result in a decreased additive interference power, however the frequency spreading nature of CDMA results in the ability to combat fading. An information theoretic analysis is presented, which shows that system capacities are far above the performances achieved using simple coding scheme

    Overlapping M-ary Frequency Shift Keying Spread-Spectrum Multiple-Access Systems using Random Signature Sequences

    No full text
    In this paper, a multiple-access spread-spectrum communication system using binary frequency shift keying (BFSK) or M-ary frequency shift keying (MFSK) and noncoherent demodulation is considered. In contrast to previous work typically assuming that the frequency shift keying (FSK) tones are nonoverlapping after direct-sequence (DS) spreading, here we consider a spread-spectrum multiple-access (SSMA) system under the assumption that the DS spread signals of different FSK tones are only orthogonal over the information symbol duration. Consequently, the frequency band of a spread FSK tone may be fully or partially overlapping with the other spread signals. An estimate of the variance of the multiple-access interference is obtained by assuming that the phase angles and time delays of the received signals are mutually independent random variables, provided that random signature sequences are employed for spreading. On the basis of the above assumptions, the bit error rate (BER) of our DS spread-spectrum multiple-access (DS-SSMA) and that of our hybrid DS slow frequency-hopping spread-spectrum multiple-access (DS-SFHSSMA) systems using FSK modulation is analyzed, when the channel impairments are constituted by a combination of additive white Gaussian noise (AWGN) and multiple-access interference. From our analysis and the numerical results, we concluded that, for a given system bandwidth and for a certain value of M, the system’s BER performance can be optimized by controlling the amount of overlapping and that the systems with optimized overlapping outperformed the systems using no overlapping. Index Terms—Frequency shift keying (FSK), slow frequency hopping, spread-spectrum multiple access

    Distributed Time-Frequency Division Multiple Access Protocol For Wireless Sensor Networks

    Get PDF
    It is well known that biology-inspired self-maintaining algorithms in wireless sensor nodes achieve near optimum time division multiple access (TDMA) characteristics in a decentralized manner and with very low complexity. We extend such distributed TDMA approaches to multiple channels (frequencies). This is achieved by extending the concept of collaborative reactive listening in order to balance the number of nodes in all available channels. We prove the stability of the new protocol and estimate the delay until the balanced system state is reached. Our approach is benchmarked against single-channel distributed TDMA and channel hopping approaches using TinyOS imote2 wireless sensors.Comment: 4 pages, IEEE Wireless Communications Letters, to appear in 201

    QF-MAC: Adaptive, Local Channel Hopping for Interference Avoidance in Wireless Meshes

    Full text link
    The throughput efficiency of a wireless mesh network with potentially malicious external or internal interference can be significantly improved by equipping routers with multi-radio access over multiple channels. For reliably mitigating the effect of interference, frequency diversity (e.g., channel hopping) and time diversity (e.g., carrier sense multiple access) are conventionally leveraged to schedule communication channels. However, multi-radio scheduling over a limited set of channels to minimize the effect of interference and maximize network performance in the presence of concurrent network flows remains a challenging problem. The state-of-the-practice in channel scheduling of multi-radios reveals not only gaps in achieving network capacity but also significant communication overhead. This paper proposes an adaptive channel hopping algorithm for multi-radio communication, QuickFire MAC (QF-MAC), that assigns per-node, per-flow ``local'' channel hopping sequences, using only one-hop neighborhood coordination. QF-MAC achieves a substantial enhancement of throughput and latency with low control overhead. QF-MAC also achieves robustness against network dynamics, i.e., mobility and external interference, and selective jamming attacker where a global channel hopping sequence (e.g., TSCH) fails to sustain the communication performance. Our simulation results quantify the performance gains of QF-MAC in terms of goodput, latency, reliability, communication overhead, and jamming tolerance, both in the presence and absence of mobility, across diverse configurations of network densities, sizes, and concurrent flows

    An access optimization approach for FFH-OCDMA system’s fiber bragg gratings encoder

    Get PDF
    Abstract: This paper suggests an adaptive 2-D Optical CDMA coding system based on one-coincidence frequency hopping (OCFH) code combined with an optical orthogonal code (OOC) in the format OCFH/OOC, suitable for the fast frequency hopping optical code division multiple access (FFH-OCDMA) channel, encoded by the Bragg gratings encoder with an aim to optimize the access network in terms of number of users and transmitted power. As wavelength hopping (WH) code, the OCFH code is herein adapted to the constraints of the encoder: the Bragg gratings chain put on the optical fiber..

    Carrier Sense Random Packet CDMA Protocol in Dual-Channel Networks

    Get PDF
    Code resource wastage is caused by the reason that many hopping frequency (FH) sequences are unused, which occurs under the condition that the number of the actual subnets needed for the tactical network is far smaller than the networking capacity of code division net¬working. Dual-channel network (DCN), consisting of one single control channel and multiple data channels, can solve the code resource wastage effectively. To improve the anti-jamming capability of the control channel of DCN, code division multiple access (CDMA) technology was introduced, and a carrier sense random packet (CSRP) CDMA protocol based on random packet CDMA (RP-CDMA) was proposed. In CSRP-CDMA, we provide a carrier sensing random packet mechanism and a packet-segment acknowledgement policy. Furthermore, an analytical model was developed to evaluate the performance of CSRP-CDMA networks. In this model, the impacts of multi-access interference from both inter-clusters and intra-clusters were analyzed, and the mathematical expressions of packet transmission success probability, normalized network throughput and signal interference to noise ratio, were also derived. Analytical and simulation results demonstrate that the normalized network throughput of CSRP-CDMA outperforms traditional RP-CDMA by 10%, which can guarantee the resource utilization efficiency of the control channel in DCNs

    Hard-input-hard-output capacity analysis of UWB BPSK systems with timing errors

    Get PDF
    The hard-input-hard-output capacity of a binary phase-shift keying (BPSK) ultrawideband system is analyzed for both additive white Gaussian noise and multipath fading channels with timing errors. Unlike previous works that calculate the capacity with perfect synchronization and/or multiple-access interference only, our analysis considers timing errors with different distributions, as well as the interpath (IPI), interchip (ICI), and intersymbol (ISI) interferences, as in practical systems. The sensitivity of the channel capacity to the timing error is examined. The effects of pulse shape, the multiple-access technique, the number of users, and the number of chips are studied. It is found that time hopping is less sensitive to the pulse shape and that the timing error has higher capacity than direct sequence due to its low duty of cycle. Using these results, one can choose appropriate system parameters for different applications

    Insights into Frequency Diversity from Measurements on an Indoor Low Power Wireless Network Testbed

    Get PDF
    International audienceRecent wireless medium access control techniques, such as the Timeslotted Synchronized Channel Hopping (TSCH) and Deterministic & Synchronous Multi-channel Extension (DSME) modes in the IEEE802.15.4-2015 standard, use frequency diversity to cope with external interference and multipath fading. The result is wire-like reliability in a network built from unreliable wireless links. Yet, the impact of using multiple frequencies on the medium access control layer is still not perfectly understood, and virtually all channel hopping solutions use "blind" channel hopping, i.e., hopping over all frequencies equivalently. The goal of this work is to improve our understanding of the behavior of the wireless medium when using multiple frequencies, which will enable the design of more efficient protocols in the future. We collect a large dense connectivity dataset over the USC Tutornet Internet of Things Testbed, with dozens of low-power wireless nodes deployed in an office building. This publicly-available dataset offers complete traces of link quality across frequency, time and space. We analyze the data and extract meaningful and practical insights on the wireless medium when using multiple frequencies

    Introducing Microcells into Macrocellular Networks: A Case Study

    No full text
    Abstract?The performance in terms of signal-to-interference ratio (SIR), teletraffic, and spectral efficiency of a combined macrocellular and microcellular network is investigated when either both types of cells share the same channel set, or when the channel set is partitioned between the macrocells and the microcells. The analysis is for time-division multiple access (TDMA) with frequency hopping, power control, and discontinuous transmission, and the radio channel is composed of an inverse fourth-power path loss law with log-normal fading. We commence by introducing a single microcell into a hexagonal cluster of macrocells before considering clustered microcells. Both omni-directional and sectorized cells are examined. We find that high reuse factors are required when channel sharing is employed. When channel partitioning is used, no co-channel interference occurs between the microcells and the macrocells allowing them to be planned independently. The reuse factors in the microcells and macrocells therefore do not need to be increased beyond conventional values. The outcome is that by opting for channel partitioning, the improvement in spectral efficiency compared to channel sharing is two to three times greater. Index Terms?Co-channel interference, land mobile radio cel-lular systems, time division multiaccess
    corecore