100 research outputs found

    Towards Enabling Critical mMTC: A Review of URLLC within mMTC

    Full text link

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Narrowband IoT: from the end device to the cloud. An experimental end-to-end study

    Get PDF
    This thesis is about a novel study and experimentation of a Cloud IoT application, communicating over a NB-IoT Italian network. So far there no been presented studies, which are about the interactions between the NB-IoT network and the cloud. This thesis not only fill this gap but also shows the use of Cognitive Services to interact, through the human voice, with the IoT application. Compared with other types of mobile networks, NB-IoT is the best choice

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    A Survey on platoon-based vehicular cyber-physical systems

    Get PDF
    Vehicles on the road with some common interests can cooperatively form a platoon-based driving pattern, in which a vehicle follows another one and maintains a small and nearly constant distance to the preceding vehicle. It has been proved that, compared to driving individually, such a platoon-based driving pattern can significantly improve the road capacity and energy efficiency. Moreover, with the emerging vehicular adhoc network (VANET), the performance of platoon in terms of road capacity, safety and energy efficiency, etc., can be further improved. On the other hand, the physical dynamics of vehicles inside the platoon can also affect the performance of VANET. Such a complex system can be considered as a platoon-based vehicular cyber-physical system (VCPS), which has attracted significant attention recently. In this paper, we present a comprehensive survey on platoon-based VCPS. We first review the related work of platoon-based VCPS. We then introduce two elementary techniques involved in platoon-based VCPS: the vehicular networking architecture and standards, and traffic dynamics, respectively. We further discuss the fundamental issues in platoon-based VCPS, including vehicle platooning/clustering, cooperative adaptive cruise control (CACC), platoon-based vehicular communications, etc., and all of which are characterized by the tight coupled relationship between traffic dynamics and VANET behaviors. Since system verification is critical to VCPS development, we also give an overview of VCPS simulation tools. Finally, we share our view on some open issues that may lead to new research directions

    A Systematic Review of LPWAN and Short-Range Network using AI to Enhance Internet of Things

    Get PDF
    Artificial intelligence (AI) has recently been used frequently, especially concerning the Internet of Things (IoT). However, IoT devices cannot work alone, assisted by Low Power Wide Area Network (LPWAN) for long-distance communication and Short-Range Network for a short distance. However, few reviews about AI can help LPWAN and Short-Range Network. Therefore, the author took the opportunity to do this review. This study aims to review LPWAN and Short-Range Networks AI papers in systematically enhancing IoT performance. Reviews are also used to systematically maximize LPWAN systems and Short-Range networks to enhance IoT quality and discuss results that can be applied to a specific scope. The author utilizes selected reporting items for systematic review and meta-analysis (PRISMA). The authors conducted a systematic review of all study results in support of the authors' objectives. Also, the authors identify development and related study opportunities. The author found 79 suitable papers in this systematic review, so a discussion of the presented papers was carried out. Several technologies are widely used, such as LPWAN in general, with several papers originating from China. Many reports from conferences last year and papers related to this matter were from 2020-2021. The study is expected to inspire experimental studies in finding relevant scientific papers and become another review

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin

    Design of Low Latency and High Reliable Industrial Wireless Lan System

    Get PDF
    Industrial wireless system, particularly Factory Automation (FA) system has been recognized as one of potential applications in machine type communication. A wireless system for an industrial network is preferable due to its primary advantages: flexibility for controlling mobile clients, low-complexity installation and low-cost maintenance by reducing physical connectivity in factory environment, and also applicable for hazardous sites. Several existing wireless technologies have been deployed for industrial wireless system, including Zigbee, WirelssHART and WLAN based system. However, the existing technologies have several limitations in terms of low throughput, poor reliability, as well as non deterministic. These drawbacks restrict the deployment of these technologies in critical industrial control system where low latency and high reliability are the primary requirements. In order to overcome the limitations of current technology, this thesis proposes low latency and high reliable industrial wireless LAN system, particularly for FA system. Specifically, two main topics are presented: (1) Design of high throughput of WLAN PHY transceiver for industrial wireless system. The first topic is presented to deal with fast transmission requirements. Typically, a WLAN system is deployed for home or office network scenarios. Since this scenario incorporates large data payload, throughput metric is higher priority than latency metric. Hence, to adopt WLAN based PHY transceiver for industrial wireless network, the issue of latency should be addressed as the top priority with respect to maintain reliability performance as well as low-complexity implementation. Therefore, as a first step, cross layer design approach is carried out in order to achieve optimum trade-off between QoS performance, implementation complexity, as well as lower power consumption. Later, the obtained PHY system parameters from cross layer design stage are employed for designing PHY transceiver system. In addition, several design optimizations are also incorporated during designing transceiver system that was conducted based on Model based RTL design. (2) Retransmission diversity based on channel selectivity scheme. The second part discusses performance improvement, specifically reliability performance in regard to low latency communication. The proposed work leverages frequency diversity that is available in the employed transmission bandwidth. A low complexity sub channel selection method by utilizing adjacent channel selection is considered. To confirm the effectiveness of this proposal, the performance results in terms of latency and reliability are evaluated, covering link level and system level performance of the FAWLAN system. Hardware implementation and verification result confirms that the designed PHY system achieves processing latency for about 13μs, corresponding to total transmission delay for about 85μs. This performance could satisfy the performance target in terms of FA WLAN protocol which requires transmission delay less than 100μs. Furthermore, the proposed PHY design also offers better normalize power consumption per transmitted bit (e.g. energy efficiency performance) for around 6.76 mJ/Mb. Moreover, the proposed retransmission scheme could also offer control duration per user (cycle time) from 52-63μs, improving the control duration per user for approximately 36% from the conventional system. Therefore, the proposed retransmission scheme is an sub-optimum method in terms of low complexity and low latency, as compared to CSI based retransmission. This could be potentially applied in industrial wireless system.九州工業大学博士学位論文 学位記番号:情工博甲第350号 学位授与年月日:令和2年9月25日1 Introduction|2 Overview of Low Latency and High Reliable Industrial Wireless System|3 Cross Layer Design|4 Low Latency and High Throughput PHY Design|5 High Reliable Transceiver System|6 Conclusion and Future Work九州工業大学令和2年
    corecore