13 research outputs found

    Analysis of Spectrum Occupancy Using Machine Learning Algorithms

    Get PDF
    In this paper, we analyze the spectrum occupancy using different machine learning techniques. Both supervised techniques (naive Bayesian classifier (NBC), decision trees (DT), support vector machine (SVM), linear regression (LR)) and unsupervised algorithm (hidden markov model (HMM)) are studied to find the best technique with the highest classification accuracy (CA). A detailed comparison of the supervised and unsupervised algorithms in terms of the computational time and classification accuracy is performed. The classified occupancy status is further utilized to evaluate the probability of secondary user outage for the future time slots, which can be used by system designers to define spectrum allocation and spectrum sharing policies. Numerical results show that SVM is the best algorithm among all the supervised and unsupervised classifiers. Based on this, we proposed a new SVM algorithm by combining it with fire fly algorithm (FFA), which is shown to outperform all other algorithms.Comment: 21 pages, 6 figure

    Efficient spectrum occupancy prediction exploiting multidimensional correlations through composite 2D-LSTM models

    Get PDF
    In cognitive radio systems, identifying spectrum opportunities is fundamental to efficiently use the spectrum. Spectrum occupancy prediction is a convenient way of revealing opportunities based on previous occupancies. Studies have demonstrated that usage of the spectrum has a high correlation over multidimensions, which includes time, frequency, and space. Accordingly, recent literature uses tensor-based methods to exploit the multidimensional spectrum correlation. However, these methods share two main drawbacks. First, they are computationally complex. Second, they need to re-train the overall model when no information is received from any base station for any reason. Different than the existing works, this paper proposes a method for dividing the multidimensional correlation exploitation problem into a set of smaller sub-problems. This division is achieved through composite two-dimensional (2D)-long short-term memory (LSTM) models. Extensive experimental results reveal a high detection performance with more robustness and less complexity attained by the proposed method. The real-world measurements provided by one of the leading mobile network operators in Turkey validate these results

    A Belief-Based Decision-Making Framework for Spectrum Selection in Cognitive Radio Networks

    Get PDF
    This paper presents a comprehensive cognitive management framework for spectrum selection in cognitive radio (CR) networks. The framework uses a belief vector concept as a means to predict the interference affecting the different spectrum blocks (SBs) and relies on a smart analysis of the scenario dynamicity to properly determine an adequate observation strategy to balance the tradeoff between achievable performance and measurement requirements. In this respect, the paper shows that the interference dynamics in a given SB can be properly characterized through the second highest eigenvalue of the interference state transition matrix. Therefore, this indicator is retained in the proposed framework as a relevant parameter to drive the selection of both the observation strategy and spectrum selection decision-making criterion. This paper evaluates the proposed framework to illustrate the capability to properly choose among a set of possible observation strategies under different scenario conditions. Furthermore, a comparison against other state-of-the-art solutions is presented

    Modelo de propagación para un entorno urbano que identifica las oportunidades espectrales para redes móviles de radio cognitiva

    Get PDF
    El pronóstico de ocupación del espectro radioeléctrico es útil en el diseño de sistemas inalámbricos que aprovechan las oportunidades en el espectro como la radio cognitiva. En este documento se propone el desarrollo de un modelo de propagación, que a través del pronóstico de la potencia recibida, identifica las oportunidades espectrales en canales de una red móvil celular para un entorno urbano. El modelo propuesto integra un modelo de propagación a gran escala con un modelo neuronal wavelet, que combina las pérdidas promedio con las pérdidas instantáneas. Los resultados del modelo, obtenidos a través de simulaciones, son consistentes con el comportamiento observado en experimentos de este tipo de sistemas inalámbricos.Abstract. The forecast of the radioelectric spectrum occupancy is useful for wireless systems designs that take advantage of spectrum opportunities, such as cognitive radio. In this document the development of a propagation model is proposed, that through the forecasting of received power, identifies the spectral opportunities in channels of a cellular mobile network for an urban environment. The proposed model integrates a large-scale propagation model with a wavelet neural model, which combines the average losses with the instantaneous losses. The results of this model, which are obtained through simulations, are consistent with the behavior observed experimentally of this class of wireless systems.Doctorad

    Statistical spectrum occupancy prediction for dynamic spectrum access: a classification

    Get PDF
    Spectrum scarcity due to inefficient utilisation has ignited a plethora of dynamic spectrum access solutions to accommodate the expanding demand for future wireless networks. Dynamic spectrum access systems allow secondary users to utilise spectrum bands owned by primary users if the resulting interference is kept below a pre-designated threshold. Primary and secondary user spectrum occupancy patterns determine if minimum interference and seamless communications can be guaranteed. Thus, spectrum occupancy prediction is a key component of an optimised dynamic spectrum access system. Spectrum occupancy prediction recently received significant attention in the wireless communications literature. Nevertheless, a single consolidated literature source on statistical spectrum occupancy prediction is not yet available in the open literature. Our main contribution in this paper is to provide a statistical prediction classification framework to categorise and assess current spectrum occupancy models. An overview of statistical sequential prediction is presented first. This statistical background is used to analyse current techniques for spectrum occupancy prediction. This review also extends spectrum occupancy prediction to include cooperative prediction. Finally, theoretical and implementation challenges are discussed
    corecore