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Analysis of Spectrum Occupancy Using

Machine Learning Algorithms

Freeha Azmat, Yunfei Chen, Senior Member, IEEE, and Nigel Stocks

Abstract

In this paper, we analyze the spectrum occupancy in cognitive radio network (CRN) using different

machine learning techniques. Both supervised techniques (naive Bayesian classifier (NBC), decision

trees (DT), support vector machine (SVM), linear regression (LR)) and unsupervised algorithm (hidden

markov model (HMM)) are studied to find the best technique with the highest classification accuracy

(CA). A detailed comparison of the supervised and unsupervised algorithms in terms of the computa-

tional time and classification accuracy is performed. The classified occupancy status is further utilized to

evaluate the blocking probability of secondary user for future time slots, which can be used by system

designers to define spectrum allocation and spectrum sharing policies. Numerical results show that SVM

is the best algorithm among all the supervised and unsupervised classifiers. Based on this, we proposed

a new SVM algorithm by combining it with fire fly algorithm (FFA), which is shown to outperform all

other algorithms.

Index Terms

Fire fly algorithm, hidden markov model, spectrum occupancy and support vector machine.
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I. INTRODUCTION

A cognitive radio network (CRN) is composed of two types of users, namely, the licensed

primary users (PU’s) and the unlicensed secondary users (SU’s). The core idea behind CRN

is to allow unlicensed user’s access to the licensed bands in an opportunistic manner to avoid

interference with the licensed users. To achieve this, a realistic understanding of the dynamic

usage of the spectrum is required. The spectrum measurement is an important step towards

the realistic understanding of the dynamic spectrum usage. Various spectrum measurement

campaigns covering a wide range of frequencies have been performed [1]. These spectrum

measurement studies have found significant amount of unused frequency bands in the case of

normal usage due to the static spectrum regulations. This has led researchers to understand the

spectrum occupancy characteristics in depth for exploiting the free spectrum.

A. Problem definition

Many studies have been performed to understand the occupancy statistics. For instance, the

statistical and spectral occupation analysis of the measurements was presented in [2] in order to

study the traffic density in all frequency bands. In [3], auto-regressive model was used to predict

the radio resource availability using occupancy measurements in order to achieve uninterrupted

transmission of secondary users. In [4], the occupancy statistics were utilized to select the best

channels for control and data transmission purposes, so that less time is required for switching

transmission from one channel to the other in the case when the PU appears. Further, in [5],

[6], the bandwidth efficiency was maximized by controlling the transmission power of cognitive

radio using spectrum occupancy measurements.

In [7], different time series models were used to categorize specific occupancy patterns in the

spectrum measurements. In [8], a novel time-varying statistical model for spectrum occupancy is

proposed that uses real time wireless frequency measurements for predicting the arrival rate of

PUs in each frequency bin by assuming the Poisson distribution on the arrival rates of PUs and

the exponential distribution on idle durations. All of the aforementioned works have evaluated
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the spectrum occupancy models by using conventional probabilistic or statistical tools. These

tools are often limited due to assumptions required to derive their theories. For example, one

has to determine whether the value is a random variable or a random process in order to use the

probabilistic and statistical tools. On the other hand, machine learning (ML) is a very powerful

tool that has received increasing attention recently [9]. The machine learning algorithms are often

heuristic, as they don’t have any prerequisites or assumptions on data. As a result, in many cases,

they provide higher accuracy than conventional probabilistic and statistical tools. There are very

few works on the use of ML in spectrum occupancy. The ML works related to cognitive radio

(CR) in [10]- [24] discussed cooperative spectrum sensing and spectrum occupancy variation.

However, in this paper, we aim to provide a comprehensive investigation on the use of ML for

analyzing spectrum occupancy. The motivation is that different ML algorithms are often suitable

for different types of data. Thus, one needs to try different ML algorithms in order to find the

one that suits the spectrum data best, not just one ML algorithm.

B. Contributions

The contributions of this work can be listed as follows:

1. We propose the use of ML algorithms in spectrum occupancy study. Both supervised and

unsupervised algorithms are used. In [10] and [11], ML was used for cooperative spectrum

sensing. However we use ML for spectrum occupancy modelling that may be used in all CR

operations, including spectrum management, spectrum decision and spectrum sensing. In [12],

authors have discussed call-based modelling for analyzing the spectrum usage of the dataset

collected from the cellular network operator. However, we use ML to model spectrum occupancy

in time slots for all important bands.

2. We have utilized four supervised algorithms, naive Bayesian classifier (NBC), decision trees

(DT), support vector machine (SVM), linear regression (LR), and one unsupervised algorithm,

hidden markov model (HMM), to classify the occupancy status of time slots. The classified

occupancy status is further utilized for evaluating the blocking probability. In [13], HMM was
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used to predict the channel status. Our supervised algorithms and modified HMM all perform

better than HMM. In [24], LR was used to investigate the spectrum occupancy variation in time

and frequency. Our approach outperforms LR as well.

3. We propose a new technique that combines SVM with fire fly algorithm (FFA) to outper-

forms all supervised and unsupervised algorithms.

The rest of the paper is organized as follows: Section II explains the system model, followed

by the detailed explanation of classifiers in Section III. The numerical results and discussion are

presented in Section IV.

II. SYSTEM MODEL

A. Measurement setup and data

We have measured the data from 880 MHz to 2500 MHz containing eight main radio frequency

bands for approximately four months (6th Feb-18th June 2013) at the University of Warwick

using radiometer. The eight bands are: 880-915 MHz, 925-960 MHz, 1900-1920 MHz, 1920-1980

MHz, 1710-1785 MHz, 1805-1880 MHz, 2110-2170 MHz and 2400-2500 MHz. The number

of the frequency bins in each band varies. For example, the band 925-960 MHz contains 192

frequency bins, each occupying a bandwidth of 0.18 MHz, while the band 1710-1785 MHz

contains 448 frequency bins, each occupying a bandwidth of 0.167 MHz. The data is arranged

in a two dimensional matrix (ti, fj) for each band; where each row ti represents the measured

data at different frequencies in one minute while each column fj represents the data at different

time instants of each frequency bin. As we have measured the data for four months which

constitute 131 days (188917 minutes), the numbers of rows are 188917 while the number of

columns varies according to the number of the frequency bins in a particular band.

B. SU Model

In a network of licensed users, SU is allowed to access the licensed band without causing

any harmful interference to the PU. Let i denote the time slot and j denote the frequency bin,
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where i = 1, 2, ..n, j = 1, 2, ...k, n represents the total number of time slots and k represents

the total number of frequency bins. Using energy detection [15], if yi(j) is the sample sensed

at the ith time slot in the jth frequency bin. One has

yi(j) = xi(j) + wi(j) (1a)

or yi(j) = wi(j) (1b)

where xi(j) represents the received PU signal and wi(j) represents the additive white Gaussian

noise (AWGN) with zero mean and variance σ2
w. Each sample is compared with a threshold (γ).

The selection of γ is very important because small values of γ will cause false alarms while large

values will miss spectrum opportunities. The computation of γ was explained in [16]. In our

approach, the threshold is dynamic and its selection is explained in Section IV-B. The spectrum

status is given as

Si(j) =















1, yi(j) > γ

0, yi(j) < γ.

(2)

The occupancy for the ith time slot is defined as

OC i =

∑k

j=1 S
i(j)

k
. (3)

For example, a three-minute interval for the band 880 - 890 MHz having 9 frequency bins

as shown in Fig.1, where each bin occupies 1 MHz. For each frequency bin, Si(j) is decided.

Once Si(j) is evaluated, the occupancy OC i is calculated using (3). It is observed that more

frequency bins are occupied for the first minute than for the second and third minutes, so SU

has less chance to transmit in the first minute. Following the discussion above, we need to set

the criteria for quantifying this chance based on the occupancies.
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Fig. 1. Occupancy for different time slots in the band.

C. PU Model

As per our approach, the status of PU (P i) for the ith time slot can be decided using the

following rules:

P i =































































1, OC i > Uoc (Condition 1)

1, Loc <= OC i <= Uoc AND coni < B (Condition 2)

0, Loc <= OC i <= Uoc AND coni >= B (Condition 3)

0, OC i < Loc (Condition 4)

(4)

where Uoc and Loc represent the maximum and minimum values of occupancy for all n time

slots, coni represents the number of consecutive free frequency bins in the ith time slot and

B represents the maximum value of coni, when PU is considered present. Each condition is

explained as follows:

1. Condition 1 and Condition 4: The values of Uoc and Loc vary with the frequency band, the
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day and the threshold. Our test show that Uoc should not be less than 75% and Loc should not be

greater than 40%. For fixed frequency band and day, we have evaluated Uoc and Loc for different

thresholds in Section IV-B. In order to guarantee PU protection and ensure SU transmission,

when the values of OC i lie in the range between Loc and Uoc, further criterion is applied.

2. Condition 2 and Condition 3: It is difficult to apply Condition 1 and Condition 4 when

Loc <= OC i <= Uoc, so we evaluate coni for each time slot. If coni > B for Loc <= OC i <=

Uoc , there exists at least B consecutive free frequency bins in the ith time slot; thus SU can

transmit and vice versa when coni > B. The value of B is selected to provide PU protection.

This will be explained in Section IV-B.

D. Machine Learning Framework for SU and PU Model

ML constructs a classifier to map Si to P i, where Si = [Si(1), Si(2), ..Si(k)] represents the

feature vector and P i is the corresponding response to the feature vector. There are two steps

for constructing a classifier:

1) Training: Let Sitrain = [Si(1)train, S
i(2)train..., S

i(k)train]
T denote the training spectrum

status and P i
train represent the training PU status for the ith time slot, respectively, where i =

1, 2, ..n1 and n1 represents the number of training time slots fed into the classifier.

2) Testing: Once the classifier is successfully trained, it is ready to receive the test vector for

classification. Let Sitest = [Si(1)test, S
i(2)test..., S

i(k)test]
T denote the testing spectrum status and

P i
test represent the testing PU status for the ith time slot, respectively, where i = n1+1, n1+2, ..n2

and n2 represents the length of testing sequence. It is assumed that n = n1+n2. For our proposed

approach, the matrix of size n ∗ k is divided into 15% training data matrix of size n1 ∗ k and

85% testing data matrix of size n2 ∗ k. The value P i
test is not used during the testing but as a

reference for computing the classification error.

3) Classification Accuracy (CA): Let P i
eval denote the PU status determined by the classifier

for the ith time slot. The classifier categorizes the testing vector Sitest as ’occupied class’ (i.e.,

P i
eval = 1) or ’unoccupied class’ (i.e., P i

eval = 0). Therefore, the PU status is correctly determined,
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when P i
eval= P i

test, giving CAi = 1. The misdetection occurs when P i
eval = 0 and P i

test = 1,

while false alarm occurs when P i
eval = 1 and P i

test = 0, both giving CAi = 0.

E. Blocking Probability

Let Pieval be a vector evaluated by each classifier, and P i
eval represent the presence/ absence

of PU for the ith time slot. When P i
eval = 0, SU is allowed to utilize the ith time slot. Define

outsu as the minimum value of consecutive free time slots required by SU for transmission. The

blocking probability measures the chance when SU cannot find outsu consecutive free time slots

for transmission given as [17]:

P (SUblocking) = 1− P (SUtransmit) (5a)

where

P (SUtransmit) =

C
∑

c=1

P (FBc) (5b)

where FBc is the block of free consecutive time slots of length outsu, c = {1, 2, ..C} and C

represents the total number of free blocks in Pieval. The probability for a free block starting at

index, say r, in Pieval is evaluated using the following equation

P (FBc) =

r+outsu
∏

i=r

OC i. (5c)

III. PROPOSED ALGORITHMS

In the proposed approach, five machine learning algorithms are utilized to predict the future

PU status using the occupancy data, which is a function of time, frequency and threshold.

Among them, four are supervised learning algorithms: NBC, DT, SVM and LR, while one is an

unsupervised algorithm, HMM. The motivation to use five different algorithms is to find the best

machine learning algorithm for predicting future status as they have different characteristics.
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A. Naive Bayesian Classifier

A naive Bayesian classifier is a generative model based on the Bayes theorem. It is also called

’independent feature model’ because it does not take dependency of features into account. The

feature vector for the ith time slot in our model contains all the samples which are independent of

each other, since every feature represents a specific frequency bin. For example, the status vector

of the ith time slot is given as Si = Si(1), Si(2), Si(3), .., Si(k), where Si(1) is independent of

Si(2). However, the response variable in our approach i.e. PU status (P i) is a dependent variable

which is affected by each frequency bin.

The probability of Si belonging to the class P i evaluated using the Bayes theorem is formally

defined as [18]

p(P i, Si) = p(P i) ∗ p(Si|P i). (6)

When P i = 0, Si will be classified as ’idle’ class, while when P i = 1, Si will be classified

as ’occupied’ class. The goal is to find the class with the largest posterior probability in the

classification phase. The classification rule is given as

classify(Ŝi) = argmaxSi{p(P i, (Ŝi)} (7)

where Ŝi = { ˆSi(1), ˆSi(2)... ˆSi(k)}. NBC is sensitive to the choice of kernel and the prior

probability distribution of classes. This will be explained in Section IV-B.

B. Decision Trees

Decision tree builds classification or regression models in the form of a tree structure. The

decision trees used in this approach are classification trees whose leaf represents the class labels.

Unlike NBC, it can handle feature interactions and dependencies. In DT, the decision is made

on each internal node, which is used as a basis for dividing the data into two subsets while leaf

nodes represent the class labels (in the case of classification trees) or the real numbers (in the

case of regression trees). Data come in the form:
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(Si, P i) = (Si(1), Si(2), Si(3).., Si(k), P i). (8)

where P i is the dependent variable representing the class label of the ith time slot. The class

labels P i are assigned by calculating the entropy of the feature, as [19]

Entropy(t) = −
Z
∑

id=0

p(id|t) log2p(id|t). (9)

Where p(id|t) denote the fraction of records belonging to class id at a given node t and Z

represents the total number of classes. In our approach, Z = 1. The smaller entropy implies that

all records belong to the same class. It will be discussed in Section IV-C on how fraction of

records per node affects the classification accuracy of DT.

C. Support Vector Machines

SVM is a discriminative classifier with high accuracy. The phenomenon of over fitting 1 often

happens in DT, however SVM tends to be resistant to over-fitting and can be used for online

learning 2. There are two types of classifiers in SVM: linear SVM for separable data 3 and

non-linear SVM for non-separable data . Linear SVM is used in our approach.

The training feature and response vectors in our system is represented as D = (P i, Si) where

P i ∈ {0, 1}. Following the definition of linear SVM, the two classes are separated by defining a

hyper plane H , represented as w.Si = ρ, where w represent the normal vector and ρ represents

the constant separating occupied and idle classes (P i ∈ {0, 1}) given as [22]:

P i = +1 when w.Si > ρ (Occupied class) (10a)

1It is a condition when the ML model fits the training set very well but fails to generalize to the unseen examples [20].

2It is learning scenario in which training data is provided one example at a time, as opposed to the batch mode in which all

examples are available at once. [21].

3 Two sets of points A and B are linearly separable if there exists n real numbers w1, w2, w3, .., wn, such that every point

ai ∈ A satisfies
∑n

i=1
wi.ai > ρ and every point bi ∈ B satisfies

∑n

i=1
wi.bi < ρ , where ρ represents the constant separating

two sets A and B [20].
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P i = 0 when w.Si < ρ (Idle class) (10b)

Two margins are defined on both sides of H to maximize the gap between two classes. The

length of the margins is controlled by a parameter called box constraint Boxct. We will evaluate

the optimal value of Boxct using a bio-inspired technique i.e. FFA in our approach.

D. SVM with Fire Fly Algorithm

In FFA, let X be a group of fire flies, X = [l1, l2, ..lX ], initially located at specific positions

aX = [al1 , al2 , ..alX ]. Each fire fly moves and tries find a brighter fire fly, which has more light

intensity than its own. The objective function f(x) used for evaluating the brightness of the fire

fly in our approach is the classification accuracy i. e. f(x) = CA(aX). When a fire fly, say l1

finds another brighter fire fly l2 at another location having more intensity compared to its own,

it tends to move towards fire fly l2. The change in position is determined as [23]

av+1
l1

= avl1 + β0e
−ψl1l2

r2
l1l2 (avl2 − avl1) + α(rand− 0.5) (11)

where v represents the number of iterations, al1 and al2 represents the position of fire fly l1 and

l2 respectively, α, β0 and ψl1l2 are constants, rand is a uniformly distributed random number and

rl1l2 represents the euclidean distance between l1 and l1. For our approach, the starting positions

of the X fire flies are initialized, while the position of each fire fly represents the value of box

constraints Boxct.

E. Linear Regression

The flexibility of linear regression to include mixture of various features in different dimensions

e. g. space, frequency, time and threshold as a linear combination is the main motivation of using

it for modeling in this approach. The linear regression model for our approach is given by [24]:

P i = e0 + e1S
i(1) + e2S

i(2) + ...+ ekS
i(k) = e0 +

k
∑

j=1

ejS
i(j). (12)

where the class label P i is represented as a linear combination of parameters e1, e2, , ek and

features (Si(1), Si(2), .., Si(k)) in the ith time slot. The stepwise-linear regression is used in this
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approach. In each step, the optimal term based on the value of defined ’criterion’ is selected. The

’criterion’ can be set as the sum-of-squares error (SSE), deviance, akaike information criterion

(AIC), Bayesian information criterion (BIC) or R-squared etc. SSE is used in this approach.

It is observed from (12), that the computational time for evaluating the response of the model

linearly increases with the number of frequency bins/ predictors involved. So we need to select

an appropriate number of predictors for linear regression.

F. Hidden Markov Models

It is an unsupervised algorithm for modeling the time series data. The motivation to use the

unsupervised algorithm is that it does not need the training phase. In HMM, the sequence of

states can be recovered by an analysis of the sequence of observations. The set of states and

observations are represented by U and G given as, U = (u1, u2, ...uN), G = (g1, g2, ...gM),

where u1 and u2 represent the states when P i = 0 and P i = 1, respectively. The observations

g1 and g2 represent the value of OC i corresponding to each P i. HMM is defined as

λ = (Ch, Dh, π) (13)

where the transition array Ch is the probability of switching from state u1 to state u2 given as

[25], Ch = [c12] = P (qt = u2|qt−1 = u1). The Dh is the probability of observation g1 being

produced from state, Dh = [d1,2] = P (ot = g1,2|qt = u2) and π is the initial probability array,

π = P (q1 = u2).

HMM has two main steps. In the first step, the sequence of observations O = (o1, o2, ...oT ),

transition probability matrix Ch and emission probability matrix Dh are utilized to find the proba-

bility of observationsO given hmm model λ using ( [25], Eq.13) as, P (O|λ) =
∑

Q P (O|Q, λ)P (Q|λ),

where Q = (q1, q2, ...qT ) and P (O|Q, λ) =
∏T

t=1 P (ot|qt, λ) = gq1(o1) ∗ gq2(o2)..gqT (oT ). The

probability of the state sequence is given as P (Q|λ) = πq1cq1q2cq2q3...cqT−1qT . In the second step,

the hidden state sequence, that is most likely to have produced an observation is decoded using

the viterbi algorithm. The most likely sequence of states QL generated using the viterbi algorithm
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is matched with the expected fixed state sequence Q to compute classification accuracy. HMM

can be also be supervised by adding two extra steps as

Step(a): Use the initial guesses of Ch and Dh to compute Q and O, that are used for computing

P (O|λ) in forward algorithm

Step(b): Use O, Dh and Ch in Step(a) to estimate the transition probability matrix Ch′ and

emission probability matrix Dh′ using maximum likelihood estimation [26].

The Ch′ and Dh′ collectively form the estimated HMM model (λe) that can be further used for

evaluating P (O|λ) and QL using the forward algorithm and the Viterbi algorithm respectively.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to analyze the occupancy of the eight bands, the statistics of data in all bands from 880

to 2500 MHz are presented in Section IV-A. The classification criteria are explained in Section

IV-B. The selection of the best parameters for each model using the classification criteria are

discussed in Section IV-C. The classification models with the optimal parameters are compared

to find the best classifier in terms of the CA, defined as CA = No. of correct classfications
Total number of test samples

A. Statistics of Data

The CDF plot is shown in Fig.2 which gives the summarized view of all power ranges for

the eight bands. It can be observed from Fig.2 that the eight bands can be categorized into two

main groups. Group A includes 925 - 960 MHz, 1805 - 1800 MHz and 2110 - 2170 MHz while

Group B has five bands: 880 - 915 MHz, 1710 - 1785 MHz, 1900 - 1920 MHz, 1920 - 1980

MHz and 2400 - 2500 MHz. Group A and Group B are different given as:

1) Average Power: Group A bands have higher value of the average power than Group B

bands. The results are shown in Table I.

2) Standard Deviation (σ): We evaluated the maximum standard deviation in frequency bins

(σj) and time slots (σi) over the period of four months using k frequency bins. It is observed

that Group A bands have higher values of both σi and σj compared to Group B bands as shown

in Table I.
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3) Periodicity: Due to stochastic noise and non-linearities, it is impossible to find the pure

periodic and stationary signal in real time. However we found reasonably periodic structures in

some bands by computing the relationship between occupancy and frequency, given as (OCj =
∑n

i=1
Si(j)

n
). We found that Group B bands can be classified as periodic bands while Group A

bands do not have this property. One band from each group is shown in Fig.3.

The periodicity may be caused by the usage pattern. For instance, the periodicity in each band

lies in their uplink/ downlink usage pattern. For instance, the band 1710-1785 MHz is an uplink

band, while the aperiodic band 1805-1880 MHz is the downlink. The uplink transmits data from

the mobile user to base station so that its activity is completely determined by mobile users’s

periodic usage pattern. On the other hand, the downlink transmits the data from base station to

the mobile user so that its activity is also affected by control and broadcast channels, making it

less or non periodic.

We found that OC i and OCj for both groups share similar trend, where OCj is greater than

OC i for all bands. The threshold selection is an important task for analyzing both OCj and OC i.

Therefore, we took the minimum and the maximum value of power for each frequency band and

tested seven values of thresholds in this range. Each band is analyzed separately for the seven

values of the threshold using the four months data. It is observed for all bands that occupancy

monotonically decreases when the value of threshold increases. These results have proved that

larger value of threshold will classify less samples as occupied. The effect of different threshold

levels on mean occupancy for one band from each group is shown in in Fig.4.

B. Classification Criteria

This subsection studies the choice of Uoc, Loc, con
i and B in Section II-C as shown in Fig

5. We have utilized Day1 (1-1440 min), Day 2 (1441-2448 min) and Day 5 (7200-8640 min)

in Band 880-915 MHz, and four different values of threshold: γ = [−102,−104,−106,−108]

dBm. The parameters Uoc and Loc will be selected by Ms, which represents the occupancy

split that divides the data into occupied and idle classes. It varies from 0.1 to 0.9 with a step
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TABLE I

STATISTICS OF FREQUENCY BANDS

Group Band Frequency Bins (k) Mean Power (dBm) σj σi OCi (%) OCj (%) Periodicity

A

925-960 MHz 192 -75.07 23.43 24.93 45.8 65.8 x

1805-1880 MHz 448 -89.9338 21.054 23.64 32.45 86.21 x

2110-2170 MHz 384 -71.1649 23.66 12.097 53.90 59.41 x

B

880-915 MHz 192 -101.0693 16.67 6.2322 57.06 79.1 X

1710-1785 MHz 448 -106.0201 9.2423 4.8510 57.71 66.52 X

1900-1920 MHz 128 -103.8796 6.4199 4.0611 62.25 75.17 X

1920-1980 MHz 384 -103.7396 15.58 4.18 61.48 72.12 X

2400 -2500 MHz 640 -103.5026 16.8873 7.9524 31.17 36.02 X

size of 0.1. It is observed in Fig.5 that the value of CA depends on day and the value of

threshold. The actual value of OC i
train in (3) always lies in a certain range, [Ls, Us], where Ls

represents the lowest value of OC i
train and Us represents the maximum value of OC i

train. When

Ls <=Ms <= Us, two groups of classes P i = 0 (available class) and P i = 1 (occupied class)

can be classified correctly. When Ms > Us or Ms < Ls, all the samples will be classified as one

class because OC i
train is a closed set whose values do not lie outside the range [Ls, Us]. This

explains why the CA = 1 for [Loc, Uoc] = [0.1, 0.2] and [Loc, Uoc] = [0.75, 0.9] while CA < 1

for [Loc, Uoc] = [0.2, 0.75] for Day 1 using γ = −102 dBm. Thus, the classification cannot be

performed when Ms > Us or Ms < Ls. The optimal range is [Loc, Uoc] = [0.2, 0.75] for CA < 1.

However, for CA < 1, there are four different choices of threshold available. In our proposed

approach, we choose that specific value of threshold that contains the largest number of values

between Loc and Uoc. Following this, we have selected γ = −102 dBm for Day1, Day2 and Day5

as the optimal threshold which ensures the largest amount of samples between Loc and Uoc. The

[Loc, Uoc] = [0.2, 0.75] for Day 1, [Loc, Uoc] = [0.4, 0.85] for Day2 and [Loc, Uoc] = [0.2, 0.80]

for Day 5 respectively. The optimal values of γ, Uoc and Loc are further used for finding B for
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each day.

C. Model Performance Comparison

Following the discussion above, we have compared the performance of the algorithms in this

section using 1 month data of Band 880-915 MHz. Our tests show that the number of minimum

observations/node for DT can be seclected as 17, number of predictors for LR as 15, normal

kernel for NBC and linear kernel for SVM. The optimal splitting range, optimal threshold and

B will be selected corresponding to the data of each day.

1) Supervised VS Unsupervised Algorithms using k = 55: In Fig. 6(a), it is observed that the

mean CA attained by LR, SVM, DT, NBC and HMM is 0.9257, 0.9162, 0.8483, 0.9493 and

0.4790 respectively. The mean computation time in each iteration by LR, SVM, DT, NBC and

HMM is 350.19, 0.092, 0.0136, 0.0045, and 0.0171 seconds, respectively. Thus, NBC is the best

considering the accuracy and complexity.

2) Supervised vs Unsupervised Algorithms using K = 192 : We have compared HMM,

Trained HMM, SVM, DT and NBC in Fig.6(b) for 30 days. Each iteration represents 1 day.

LR is not shown as it takes an excessively long time in this case. It is observed that trained

HMM performed better than HMM, but worst than DT, NBC and SVM. The mean CA attained

by Trained HMM, HMM, SVM, DT and NBC is 0.6816, 0.4887, 0.8528, 0.8392, 0.7970 while

the computational time for each iteration of Trained HMM, HMM, SVM, DT and NBC 0.0205,

0.09066, 0.0135, 0.0163, 0.0095 seconds, respectively. Thus, SVM is the best in this case with

highest CA and shortest time.

3) SVM with Fire Fly Algorithm : So far, the best overall performance is attained by the

linear SVM technique. The performance of linear SVM is affected by the value of Boxct as

illustrated in Section IV-C. The fire fly algorithm can be used to select the best value of Boxct.

We set α = 1, β0 = 2 and ψl1l2 = 1.3 for FFA. Fig. 7(a) depicts that ’SVM+FFA’ performs

better than the conventional SVM in most of the cases. The mean CA attained by SVM+FFA,

SVM, DT, NBC and HMM is 0.8728, 0.8499, 0.7970, 0.8392 and 0.4822, respectively.
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4) Comparison with Statistical/ Probabilistic Model: We compare the proposed ML classifi-

cation framework with the model in [8]. The inputs of this model are the statistical parameters

extracted from real time measurements. The outputs obtained from this model are the transmis-

sion times tON and tOFF , where tON and tOFF represents the busy and idle duration respectively.

Based on tON and tOFF , the model predicts the PUs occupancy for the testing data matrix.

Following [8], we have predicted the PU occupancy of the testing data matrix using data of

one day and k = 192 frequency bins of Band 880-915 MHz. In order to compare the statistical

model with our approach, we have transformed the (OC i) evaluated using the statistical model

to PU status labels (P i), following the criteria explained in Section II-C. This is because, the

validation in our approach is performed using CA, where P i
eval is checked against the value of

P i
test. It was observed in Fig. 7(a), that ML algorithms have attained higher value of CA than

statistical model. The mean CA for the statistical model is only 0.45, much lower than average

value of CA attained by DT, NBC, SVM and SVM +FFA.

5) Blocking Probability: This probability is computed using SVM+FFA, SVM, DT, NBC,

HMM and the statistical model [8]. It is further compared with the expected P (SUblocking) to

compute the difference between evaluated and expected values. It is evident in Fig. 7(b), that

SVM+FFA has predicted the P (SUblocking) with minimum difference and is very close to the

expected one. The expected blocking probability is 0.9191 in Fig. 7(b) while the predicted

P (SUblocking) using SVM+FFA, SVM, NBC, DT, HMM and statistical model is 0.9264, 0.9322,

0.9638, 0.9577, 1 and 1, respectively. The P (SUblocking) for HMM and statistical model is

always 1, which implies that both HMM and statistical model have failed to find any block of

consecutive free time slot of length outsu.

6) Supervised vs Unsupervised Algorithms using different Training/ Testing Data vectors: We

have presented the detailed comparison of supervised and unsupervised algorithms using different

sizes of training and testing data in Table II. The classification accuracy and computation time for

all supervised algorithms increases with an increase in the size of the training data. SVM+FFA

has attained the highest CA but with the longest computation time in most cases.
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TABLE II

PERFORMANCE COMPARISON OF FIVE ML ALGORITHMS USING DIFFERENT SIZES OF TRAINING/ TESTING DATA.

Performance Comparison

Training data, Testing data Technique Mean CA Mean Computational Time (s)

15 %, 85 %

Decision Trees 0.7612 0.0132

Support Vector Machine (SVM) 0.8945 0.0128

SVM + Fire Fly Algorithm 0.9034 3.0412

Hidden Markov Model 0.4925 0.0241

Naive Bayesian 0.8714 0.0084

30 %, 70 %

Decision Trees 0.8028 0.0198

Support Vector Machine (SVM) 0.9143 0.0153

SVM + Fire Fly Algorithm 0.9189 3.8947

Hidden Markov Model 0.4841 0.0191

Naive Bayesian 0.9064 0.0098
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Fig. 3. Occupancy VS spectrum frequency for (a) Band 880-915 MHz (b) 925-960 MHz.
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Fig. 6. Performance Comparison of (a) SVM, DT, NBC, LR and HMM with k = 55. (b) SVM, DT, NBC, HMM and trained

HMM with k = 192.
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Fig. 7. (a) Performance comparison of ML algorithms: SVM, DT, NBC, HMM, ’SVM+FFA’ and statistical model [8] using

k = 192 for 30 days. (b) Comparison of ’Actual P (SUblocking)’ with the P (SUblocking) evaluated using SVM, DT, NBC,

HMM, ’SVM+FFA’ and statistical model [8] using k = 192 for 30 days.
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