1,133 research outputs found

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    A survey of deep learning approaches for WiFi-based indoor positioning

    Get PDF
    One of the most popular approaches for indoor positioning is WiFi fingerprinting, which has been intrinsically tackled as a traditional machine learning problem since the beginning, to achieve a few metres of accuracy on average. In recent years, deep learning has emerged as an alternative approach, with a large number of publications reporting sub-metre positioning accuracy. Therefore, this survey presents a timely, comprehensive review of the most interesting deep learning methods being used for WiFi fingerprinting. In doing so, we aim to identify the most efficient neural networks, under a variety of positioning evaluation metrics for different readers. We will demonstrate that despite the new emerging WiFi signal measures (i.e. CSI and RTT), RSS produces competitive performances under deep learning. We will also show that simple neural networks outperform more complex ones in certain environments

    Indoor positioning with deep learning for mobile IoT systems

    Get PDF
    2022 Summer.Includes bibliographical references.The development of human-centric services with mobile devices in the era of the Internet of Things (IoT) has opened the possibility of merging indoor positioning technologies with various mobile applications to deliver stable and responsive indoor navigation and localization functionalities that can enhance user experience within increasingly complex indoor environments. But as GPS signals cannot easily penetrate modern building structures, it is challenging to build reliable indoor positioning systems (IPS). Currently, Wi-Fi sensing based indoor localization techniques are gaining in popularity as a means to build accurate IPS, benefiting from the prevalence of 802.11 family. Wi-Fi fingerprinting based indoor localization has shown remarkable performance over geometric mapping in complex indoor environments by taking advantage of pattern matching techniques. Today, the two main information extracted from Wi-Fi signals to form fingerprints are Received Signal Strength Index (RSSI) and Channel State Information (CSI) with Orthogonal Frequency-Division Multiplexing (OFDM) modulation, where the former can provide the average localization error around or under 10 meters but has low hardware and software requirements, while the latter has a higher chance to estimate locations with ultra-low distance errors but demands more resources from chipsets, firmware/software environments, etc. This thesis makes two novel contributions towards realizing viable IPS on mobile devices using RSSI and CSI information, and deep machine learning based fingerprinting. Due to the larger quantity of data and more sophisticated signal patterns to create fingerprints in complex indoor environments, conventional machine learning algorithms that need carefully engineered features suffer from the challenges of identifying features from very high dimensional data. Hence, the abilities of approximation functions generated from conventional machine learning models to estimate locations are limited. Deep machine learning based approaches can overcome these challenges to realize scalable feature pattern matching approaches such as fingerprinting. However, deep machine learning models generally require considerable memory footprint, and this creates a significant issue on resource-constrained devices such as mobile IoT devices, wearables, smartphones, etc. Developing efficient deep learning models is a critical factor to lower energy consumption for resource intensive mobile IoT devices and accelerate inference time. To address this issue, our first contribution proposes the CHISEL framework, which is a Wi-Fi RSSI- based IPS that incorporates data augmentation and compression-aware two-dimensional convolutional neural networks (2D CAECNNs) with different pruning and quantization options. The proposed model compression techniques help reduce model deployment overheads in the IPS. Unlike RSSI, CSI takes advantages of multipath signals to potentially help indoor localization algorithms achieve a higher level of localization accuracy. The compensations for magnitude attenuation and phase shifting during wireless propagation generate different patterns that can be utilized to define the uniqueness of different locations of signal reception. However, all prior work in this domain constrains the experimental space to relatively small-sized and rectangular rooms where the complexity of building interiors and dynamic noise from human activities, etc., are seldom considered. As part of our second contribution, we propose an end-to-end deep learning based framework called CSILoc for Wi-Fi CSI-based IPS on mobile IoT devices. The framework includes CSI data collection, clustering, denoising, calibration and classification, and is the first study to verify the feasibility to use CSI for floor level indoor localization with minimal knowledge of Wi-Fi access points (APs), thus avoiding security concerns during the offline data collection process

    Generalizable Deep-Learning-Based Wireless Indoor Localization

    Get PDF
    The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To address the generalizability challenge faced by conventionally trained deep learning localization models, we propose the use of meta-learning-based approaches. By leveraging meta-learning, we aim to improve the models\u27 ability to adapt to new environments without extensive retraining. Additionally, since meta-learning algorithms typically require diverse datasets from various scenarios, which can be difficult to collect specifically for localization tasks, we introduce a novel meta-learning algorithm called TB-MAML (Task Biased Model Agnostic Meta Learning). This algorithm is specifically designed to enhance generalization when dealing with limited datasets. Finally, we conduct an evaluation to compare the performance of TB-MAML-based localization with conventionally trained localization models and other meta-learning algorithms in the context of indoor localization
    corecore