89 research outputs found

    Low-profile and closely spaced four-element mimo antenna for wireless body area networks

    Get PDF
    A compact four-element multiple-input multiple output (MIMO) antenna is proposed for medical applications operating at a 2.4 GHz ISM band. The proposed MIMO design occupies an overall volume of 26 mm × 26 mm × 0.8 mm. This antenna exhibits a good impedance matching at the operating frequency of the ISM band, whose performance attributes include: isolation around 25 dB, envelope correlation coefficient (ECC) less than 0.02, average channel capacity loss (CCL) less than 0.3 bits/s/Hz and diversity gain (DG) of around 10 dB. The average peak realized gain of the four-element MIMO antenna is 2.4 dBi with more than 77 % radiation efficiency at the frequency of interest (ISM 2.4 GHz). The compact volume and adequate bandwidth, as well as the good achieved gain, make this antenna a strong candidate for bio-medical wearable applications

    High Isolation Wideband MIMO Antenna without Decoupling Technique for IoT Applications

    Get PDF
    This paper presents a method a high isolation wideband MIMO antenna without using any decoupling technique. This is achieved by transforming a strip line to a 1 ×2 MIMO antenna using Hilbert transform and Defected Ground structure is used in the antenna to resonate the antenna in for IOT and  5G sub-6 GHz bands. The proposed antenna has a size of 50 × 49.8 × 1.6 mm 3 and operates in the frequency band of 4.6 GHz to 5.94 GHz. The antenna simulated in ANSYS HFSS showed that its parameters Envelope correlation coefficient (ECC), Total Active Reflection Coefficient (TARC), Diversity gain (DG) and Channel Capacity Loss (CCL) are less than 0.04, -25 dB, 9.98 to 10 dB and less than 0.4 bits/s/Hz respectively. The radiation pattern of the antenna in both E-plane and H-plane has been simulated which the uniform distribution of power in the space

    Metamaterial based design of compact UWB/MIMO monopoles antenna with characteristic mode analysis

    Get PDF
    In this article, a novel metamaterial inspired UWB/multiple-input-multiple-output (MIMO) antenna is presented. The proposed antenna consists of a circular metallic part which formed the patch and a partial ground plane. Metamaterial structure is loaded at the top side of the patches for bandwidth improvement and mutual coupling reduction. The proposed antenna provides UWB mode of operation from 2.6-12 GHz. The characteristic mode theory is applied to examine each physical mode of the antenna aperture and access its many physical parameters without exciting the antenna. Mode 2 was the dominant mode among the three modes used. Considering the almost inevitable presence of mutual coupling effects within compact multiport antennas, we developed an additional decoupling technique in the form of perturbed stubs, which leads to a mutual coupling reduction of less than 20 dB. Finally, different performance parameters of the system, such as envelope correlation coefficient (ECC), channel capacity loss (CCL), diversity gain, total active reflection coefficient (TARC), mean effective gain (MEG), surface current, and radiation pattern, are presented. A prototype antenna is fabricated and measured for validation

    Metasurface-Based Wideband MIMO Antenna for 5G Millimeter-Wave Systems

    Get PDF
    This paper presents a metasurface based multiple-input multiple-output (MIMO) antenna with a wideband operation for millimeter-wave 5G communication systems. The antenna system consists of four elements placed with a 90 degree shift in order to achieve a compact MIMO system while a 2 x 2 non-uniform metasurface (total four elements) is placed at the back of the MIMO configuration to improve the radiation characteristics of it. The overall size of the MIMO antenna is 24 x 24 mm(2) while the operational bandwidth of the proposed antenna system ranges from 23.5-29.4 GHz. The peak gain achieved by the proposed MIMO antenna is almost 7dB which is further improved up to 10.44 dB by employing a 2 x 2 metasurface. The total efficiency is also observed more than 80% across the operating band. Apart from this, the MIMO performance metrics such as envelope correlation coefficient (ECC), diversity gain (DG), and channel capacity loss (CCL) are analyzed which demonstrate good characteristics. All the simulations of the proposed design are carried out in computer simulation technology (CST) software, and measured results reveal good agreement with the simulated one which make it a potential contender for the upcoming 5G communication systems

    Design of an integrated sub-6 ghz and mmwave mimo antenna for 5g handheld devices

    Get PDF
    The reported work demonstrates the design and realization of an integrated mid-band (sub-6 GHz) and mmWave multiple input, multiple output (MIMO) antenna for 5G handheld devices. The proposed prototype consists of the two-port MIMO configuration of the mid-band antenna placed at the top and bottom of the substrate, while the 4-port mmWave MIMO antenna is placed sideways. The MIMO configuration at the top and bottom consists of a two-element array to achieve high gain at the mid-band spectrum, while the antennas placed sideways are optimized to cover the 5G-mmWave band spectrum. The overall dimensions of the board were selected the same as the of smartphones, i.e., 151 mm x 72 mm. The mid-band antenna has an operational bandwidth of 2.73 GHz, whereas the mmWave antenna has an impedance bandwidth of 3.85 GHz with a peak gain of 5.29 and 8.57 dBi, respectively. Furthermore, the design is analyzed for the various MIMO performance parameters; it was found that the proposed antennas offer high performance in terms of envelop correlation coefficient (ECC), diversity gain (DG), mean effective gain (MEG) and channel capacity loss (CCL) within operational range. A fabricated prototype was tested and measured results show strong agreement with predicted results. Moreover, the proposed work is compared with state-of-the-art work for the same applications to demonstrate its potential for targeted application

    A two-element planar multiple input multiple output array for ultra-wideband applications

    Get PDF
    In this article, a planar monopole two-element multiple input multiple output (MIMO) array has been designed and characterized with the intention of ultra-wideband (UWB) applications. The array has a voltage standing wave ratio (VSWR) working bandwidth (BW) of 13.258 GHz between 3.394-16.652 GHz, with a fractional BW (FBW) of 132.28% with respect to a center frequency of 10.023 GHz. The two elements of the MIMO array are 900 polarizations mismatched for better isolation. Consequently, less than 20 dB of isolation has been achieved throughout the entire BW. Also observed was a good combined realized peak gain of up to 5.85 dBi and total efficiency of greater than 85%. For MIMO performance key parameters, the array exhibits the envelope correlation coefficient (ECC) 9.983, total active reflection coefficient (TARC) <0.445, mean effective gain difference (MEG12) ≈0 dB, and the channel capacity loss (CCL) <0.4 bps/Hz. This design would encourage designers to create high-performance MIMO antennas for UWB frequency-related applications

    A two-element planar multiple input multiple output array for ultra-wideband applications

    Get PDF
    In this article, a planar monopole two-element multiple input multiple output (MIMO) array has been designed and characterized with the intention of ultra-wideband (UWB) applications. The array has a voltage standing wave ratio (VSWR) working bandwidth (BW) of 13.258 GHz between 3.394-16.652 GHz, with a fractional BW (FBW) of 132.28% with respect to a center frequency of 10.023 GHz. The two elements of the MIMO array are 900 polarizations mismatched for better isolation. Consequently, less than 20 dB of isolation has been achieved throughout the entire BW. Also observed was a good combined realized peak gain of up to 5.85 dBi and total efficiency of greater than 85%. For MIMO performance key parameters, the array exhibits the envelope correlation coefficient (ECC) 9.983, total active reflection coefficient (TARC) <0.445, mean effective gain difference (MEG12) ≈0 dB, and the channel capacity loss (CCL) <0.4 bps/Hz. This design would encourage designers to create high-performance MIMO antennas for UWB frequency-related applications

    Investigations of MIMO Antenna for Smart Mobile Handsets and Their User Proximity

    Get PDF
    In this chapter, a monopole antenna with compact size, simple structure, easy to fabricate is reported which covers LTE700 (band13/14) (746–798 MHz), GSM1800 (1710–1885 MHz), PCS1900 (1850–1990 MHz), and LTE2600 (2500–2690 MHz) band based on 6-dB return loss. The proposed MIMO antenna consists of two radiating elements. The main radiating element is a composition of driven element, which is directly fed with microstrip line, and one parasitic element. The parasitic element provides the resonance at higher frequency band and the combination of driven elements and parasitic elements provide above-said frequency bands. The current distribution, far-field radiation patterns, and diversity parameters are checked out for the MIMO antenna in free space. Further performances are studied in the presence of user proximity

    Compact quad-element high-isolation wideband mimo antenna for mm-wave applications

    Get PDF
    This paper presents a multiple-input multiple-output (MIMO) antenna system for millimeter-wave 5G wireless communication services. The proposed MIMO configuration is composed of four antenna elements, where each antenna possesses an HP-shaped configuration that features simple configuration and excellent performance. The proposed MIMO design can operate at a very wideband of 36.83-40.0 GHz (measured). Furthermore, the proposed MIMO antenna attains a peak gain of 6.5 dB with a maximum element-isolation of -45 dB. Apart from this, the MIMO performance metrics such as envelope correlation coefficient (ECC), diversity gain, and channel capacity (CCL) are analyzed, which demonstrate good characteristics across the operating band. The proposed antenna radiates efficiently with a radiation efficiency of above 80% at the desired frequency band which makes it a potential contender for the upcoming communication applications. The proposed design simulations were performed in the computer simulation technology (CST) software, and measured results reveal good agreement with the simulated one

    High Isolated 10-MIMO Antenna Elements for 5G Mobile Applications

    Get PDF
    The enormous increase in gadgets has resulted in a data rate shortage insufficient to satisfy the user's needs. The multiple input multiple output (MIMO) technique is substantially deployed in the 5G wireless communication system to increase channel capacity and provide sufficient throughput. However, MIMO antennas are associated with mutual coupling, especially between closely spaced antenna elements, resulting in a low MIMO performance. Therefore, effective isolation techniques are essential to reduce the mutual coupling between the adjacent MIMO antenna elements. A hybrid decoupling technique of self-isolation and an orthogonal mode approach has been proposed to provide significant isolation for high MIMO order 5G mobile applications. A compact self-isolated 10 × 10 MIMO antenna system has been proposed for 5G mobile phone applications operating at the 3.5 GHz frequency band. The antennas act as radiating and isolating elements simultaneously, providing significant isolation. Furthermore, the self-isolated 10-MIMO antenna elements are printed on double side edges of FR-4 small substrates orthogonal to the system substrates, forming an orthogonal mode that enhances the self-decoupling approach. The s-parameters results indicate significant isolation of less than -19 dB between the adjacent 10-MIMO antenna elements. Likewise, the evaluation results of the MIMO performance metrics such as envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and channel capacity Loss (CCL), are less than 0.006, 9.97 dB, -10 dB, and 0.08 bits/s/Hz respectively. The isolation result and the evaluated MIMO performance metrics demonstrate that the proposed 10-MIMO antenna system is sufficient for 5G mobile applications. &nbsp; &nbsp
    corecore