13 research outputs found

    System design and validation of multi-band OFDM wireless communications with multiple antennas

    Get PDF
    [no abstract

    Impulse radio ultra wideband over fiber techniques for broadband in-building network applications

    Get PDF
    In recent years, the demand for high bandwidth and mobility from the end users has been continuously growing. To satisfy this demand, broadband communication technologies that combined the benefit of both wired and wireless are considered as vital solutions. These hybrid optical wireless solutions enable multi-Gbit/s transmission as well as adequate flexibility in terms of mobility. Optical fiber is the ideal medium for such hybrid solution due its signal transparency and wide bandwidth. On the other hand, ultra wideband(UWB) radio over optical fiber technology is considered to be one of the key promising technologies for broadband communication and sensor network applications. The growing interest for UWB is mainly due to its numerous attractive features, such as low power spectral density, tolerance to multipath fading, low probability of interception, coexistence with other wireless services and capability of providing cost-effective > 1 Gb/s transmission. The main idea of UWB over fiber is to deliver UWB radio signals over optical channels, where the optical part serves as a backbone communication infrastructure to carry the UWB signal with a bandwidth of several GHz. This enables multiple novel applications such as: range extension of high speed wireless personal area networks (WPANs), low cost distributed antenna systems, secure and intelligent networks, or delivering broadband services to remote areas. In particular, this thesis deals with novel concepts on shaping and generation of IR-UWB pulses, theoretical and experimental demonstrations over different fiber types, routing of integrated wired/wireless IR-UWB services and effect of fiber types on ranging/localization of IR-UWB-over-fiber systems. Accordingly, this thesis investigates techniques for delivery of high data rate wireless services using impulse radio ultra wideband (IR-UWB) over fiber technology for both access and in-building network applications. To effectively utilize the emission mask imposed for UWB technologies by the Federal Communications Commission(FCC), novel pulse shaping techniques have been investigated and experimentally demonstrated. Comparison of the proposed pulses with conventional ones in terms of the compliance to the FCC-mask requirements, spectral power efficiencies and wireless coverage has been theoretically studied. Simple and efficient optical generation of the new pulse has been experimentally demonstrated. Furthermore, performance evaluation of 2 Gb/s transmission of IR-UWB over different types of fiber such as 25 km silica single-mode, 4.4 km silica multi-mode and 100 m plastic heavily-multi-mode fiber have been performed. To improve the functionalities of in-building networks for the delivery of wireless services; techniques that provide flexibility in terms of dynamic capacity allocation have been investigated. By employing wavelength conversion based on cross-gain modulation in optical semiconductor amplifiers(SOA), routing of three optical channels of IR-UWB over fiber system has been experimentally realized. To reduce the cost of the overall system and share the optical infrastructure, an integrated testbed for wired baseband data and wireless IR-UWB over 1 km SMF-28 fiber has been developed. Accordingly, 1.25 Gb/s wired baseband and 2 Gb/s wireless IR-UWB data have been successfully transmitted over the testbed. Furthermore, to improve the network flexibility, routing of both wired baseband and wireless signals has been demonstrated. Additionally, the ranging and localization capability of IR-UWB over fiber for in-door wireless picocells have been investigated. The effect of different fiber types (4 km SMF, 4.4 km GI-MMF and 100 m PF GI-POF) on the accuracy of the range estimation using time-of-arrival (ToA) ranging technique has been studied. A high accuracy in terms of cm level was achieved due to the combined effect of high bandwidth IR-UWB pulses, short reach fiber and low chromatic dispersion at 1300nm wavelength. Furthermore, ranging/ localization using IR-UWB over fiber system provides additional benefit of centralizing complex processing algorithms, simplifying radio access points, relaxing synchronization requirement, enabling energy-efficient and efficient traffic management networks. All the concepts, design and system experiments presented in this thesis underline the strong potential of IR-UWB for over optical fiber(silica and plastic) techniques for future smart, capacity and energy-efficient broadband in-building network applications

    Location-aware and Cooperative Communication in an OFDM based Ultra-wideband Radio System

    Get PDF
    Die auf dem orthogonalen Frequenzmultiplex (OFDM, Orthogonal Frequency Division Multiplexing) basierende Ultra-Breitband-(UWB, Ultra-wideband) Technologie stellt eine verheißungsvolle Technologie dar, um hohe Datenübertragungsraten und Lokalisierungs- und deren Tracking-Anwendungen zu realisieren. Im Gegensatz zu anderen Systemen ist die Reichweite von OFDM UWB Systemen durch eine strenge Regulierung sehr stark begrenzt. Darüber hinaus ist die Lokalisierung nicht zufriedenstellend. Damit sind bereits die beiden größten Nachteile im Bezug auf bestehende OFDM UWB System benannt. Die Motivation und Hauptaufgabe dieser Arbeit ist damit die Lösung der eben genannten Nachteile. Es wird ein OFDM UWB System vorgestellt, das Space Frequency Block Coding (SFBC) und FFH OFDM miteinander verbindet. Dieses vereinte System wertet die räumliche und frequentielle Diversität eines OFDM-Symbols aus und zeigt dabei eine hohe Güte in der Punkt-zu-Punkt Kommunikation. Beim Design von kooperativen UWB-Systemen wird ein AF-(Amplify-and-Forward) basiertes echtzeitfähriges SFBC-TFC (Time Frequency Code) Protokoll vorgestellt. In Kombination mit den oben genannten Strategien, kann eine Erhöhung in den Reichweite von OFDM UWB Systemen erreicht werden. In den Ausführungen zur Ortung anhand von OFDM UWB Signalen wird ein Algorithmus entwickelt, der aufgrund einer Kanalschätzung eine Minimierung des Phasenversatzes zwischen geschätztem und realem Kanal im Frequenzbereich durchführt. Diese Minimierung erwirkt eine Unterdrückung der Energie am Ende der Kanalimpulsantwort (CIR, Channel Impulse Response) im Zeitbereich. Zum Zweck der einfachen Implementierbarkeit wird das RTT (Round-Trip-Time) Messprotokoll in WiMedia UWB Systemen dahingehend verändert, dass das mobile Gerät keine Minimierung vornimmt. Es leitet seine Informationen an das mit ihm Kommunizierende, stationäre Gerät weiter, das direkt den gesamten Zeitversatz innerhalb des RTT berechnet. Der vorgeschlagene Algorithmus und das vorgeschlagene Protokoll haben ein besseres Ortungsvermögen als bekannte UWB Lokalisierungsprozeduren und bedürfen nur etwas zusätzlicher Berechnungsleistung. Diese Arbeit zeigt, dass Systeme mit hohen Datenraten wie OFDM UWB auch eine gute Lokalisierungsgenauigkeit erreichen können. Zusätzlich ist die Schwachstelle einer limitierten Reichweite ebenso kompensiert worden. Diese Erweiterungen dienen der Entwicklung von nützlichen UWB-Applikationen und sichern den Anteil der OFDM UWB Technik im Markt der drahtlosen Kommunikationssysteme der Zukunft.The Orthogonal Frequency Division Multiplexing (OFDM) based Ultra-wideband (UWB) is one of the most promising technologies for high data rate transmission and localization and tracking applications. However, the restricted transmit power causes a shorter communication range compared to other indoor radio systems. In addition, the ranging functionality is still not well supported by the current OFDM based UWB technology. These two drawbacks are the main disadvantages existing in the current OFDM UWB systems. To get rid of the two drawbacks, is the motivation and main task of this thesis. Within the scope of this thesis, a joint design of Space Frequency Block Coding (SFBC) with Fast Frequency Hopping (FFH) OFDM scheme is investigated in a multiple antenna OFDM UWB system. The joint scheme is able to exploit spatial and frequency domain diversity within one OFDM symbol, and can improve the data transmission quality in point-to-point communication. To the cooperative communication in UWB systems, an Amplify-and-Forward (AF) based distributed SFBC-TFC (Time Frequency Code) protocol is designed. In combination with the aforementioned strategies an increase in the communication range is achieved. Within the scope of this thesis, accurate ranging schemes for the OFDM UWB systems are designed. Fine ToA detection method based on the estimated channel is developed. The fine ToA is estimated by minimizing the accumulated energy of the tail taps of the estimated Channel Impulse Response (CIR). For the purpose of a feasible implementation, the Round-Trip-Time (RTT) measurement protocol in [WiM09] is modified in a way that the complicated computational tasks are burden onto the powerful device. The proposed fine ToA detection method and modified RTT protocol provides an accurate ranging capability and ensures feasible implementation to the MB-OFDM UWB systems. In carrying out this scheme, only some computational tasks are needed, no extra hardware support is required. It is shown in this thesis, OFDM UWB systems with very high data rate transmission and good ranging capability could be achieved, and the weakness of limited communication range is also compensated. These improvements will cause the rise of more valuable UWB applications for customers and ensures a bright future for the OFDM UWB technique

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Ultra Wideband Systems with MIMO

    Full text link

    Contributions to Improve Cognitive Strategies with Respect to Wireless Coexistence

    Get PDF
    Cognitive radio (CR) can identify temporarily available opportunities in a shared radio environment to improve spectral efficiency and coexistence behavior of radio systems. It operates as a secondary user (SU) and accommodates itself in detected opportunities with an intention to avoid harmful collisions with coexisting primary user (PU) systems. Such opportunistic operation of a CR system requires efficient situational awareness and reliable decision making for radio resource allocation. Situational awareness includes sensing the environment followed by a hypothesis testing for detection of available opportunities in the coexisting environment. This process is often known as spectral hole detection. Situational knowledge can be further enriched by forecasting the primary activities in the radio environment using predictive modeling based approaches. Improved knowledge about the coexisting environment essentially means better decision making for secondary resource allocation. This dissertation identifies limitations of existing predictive modeling and spectral hole detection based resource allocation strategies and suggest improvements. Firstly, accurate and efficient estimation of statistical parameters of the radio environment is identified as a fundamental challenge to realize predictive modeling based cognitive approaches. Lots of useful training data which are essential to learn the system parameters are not available either because of environmental effects such as noise, interference and fading or because of limited system resources particularly sensor bandwidth. While handling environmental effects to improve signal reception in radio systems has already gained much attention, this dissertation addresses the problem of data losses caused by limited sensor bandwidth as it is totally ignored so far and presents bandwidth independent parameter estimation methods. Where, bandwidth independent means achieving the same level of estimation accuracy for any sensor bandwidth. Secondly, this dissertation argues that the existing hole detection strategies are dumb because they provide very little information about the coexisting environment. Decision making for resource allocation based on this dumb hole detection approach cannot optimally exploit the opportunities available in the coexisting environment. As a solution, an intelligent hole detection scheme is proposed which suggests classifying the primary systems and using the documented knowledge of identified radio technologies to fully understand their coexistence behavior. Finally, this dissertation presents a neuro-fuzzy signal classifier (NFSC) that uses bandwidth, operating frequency, pulse shape, hopping behavior and time behavior of signals as distinct features in order to xii identify the PU signals in coexisting environments. This classifier provides the foundation for bandwidth independent parameter estimation and intelligent hole detection. MATLAB/Simulink based simulations are used to support the arguments throughout in this dissertation. A proof-of-concept demonstrator using microcontroller and hardware defined radio (HDR) based transceiver is also presented at the end.</p

    Time reversal transmission approach for ultra wideband communications

    Get PDF
    [no abstract

    Convergent communication, sensing and localization in 6g systems: An overview of technologies, opportunities and challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust
    corecore