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Abstract 

Cognitive radio (CR) can identify temporarily available opportunities in a shared radio environment to 

improve spectral efficiency and coexistence behavior of radio systems. It operates as a secondary user 

(SU) and accommodates itself in detected opportunities with an intention to avoid harmful collisions with 

coexisting primary user (PU) systems. Such opportunistic operation of a CR system requires efficient 

situational awareness and reliable decision making for radio resource allocation. 

Situational awareness includes sensing the environment followed by a hypothesis testing for detection of 

available opportunities in the coexisting environment. This process is often known as spectral hole 

detection. Situational knowledge can be further enriched by forecasting the primary activities in the radio 

environment using predictive modeling based approaches. Improved knowledge about the coexisting 

environment essentially means better decision making for secondary resource allocation. This dissertation 

identifies limitations of existing predictive modeling and spectral hole detection based resource allocation 

strategies and suggest improvements.   

Firstly, accurate and efficient estimation of statistical parameters of the radio environment is identified as 

a fundamental challenge to realize predictive modeling based cognitive approaches. Lots of useful 

training data which are essential to learn the system parameters are not available either because of 

environmental effects such as noise, interference and fading or because of limited system resources 

particularly sensor bandwidth. While handling environmental effects to improve signal reception in radio 

systems has already gained much attention, this dissertation addresses the problem of data losses caused 

by limited sensor bandwidth as it is totally ignored so far and presents bandwidth independent parameter 

estimation methods. Where, bandwidth independent means achieving the same level of estimation 

accuracy for any sensor bandwidth.  

Secondly, this dissertation argues that the existing hole detection strategies are dumb because they 

provide very little information about the coexisting environment. Decision making for resource allocation 

based on this dumb hole detection approach cannot optimally exploit the opportunities available in the 

coexisting environment. As a solution, an intelligent hole detection scheme is proposed which suggests 

classifying the primary systems and using the documented knowledge of identified radio technologies to 

fully understand their coexistence behavior. 

Finally, this dissertation presents a neuro-fuzzy signal classifier (NFSC) that uses bandwidth, operating 

frequency, pulse shape, hopping behavior and time behavior of signals as distinct features in order to 
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identify the PU signals in coexisting environments. This classifier provides the foundation for bandwidth 

independent parameter estimation and intelligent hole detection. MATLAB/Simulink based simulations 

are used to support the arguments throughout in this dissertation. A proof-of-concept demonstrator using 

microcontroller and hardware defined radio (HDR) based transceiver is also presented at the end. 
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Chapter 1 

 

Introduction 

Communication technologies ranging from internet to mobile phone have become very popular in 

different fields of life. More and more investment and efforts have been launched to design safer, cheaper 

and easy-to-use communication technologies. Wireless technologies, in particular, have become very 

successful due to their inherent support for mobility and have started replacing their wired counterparts in 

nearly every field of life. Presently, more and more new wireless technologies are being introduced and 

further research is being done to make the existing ones more reliable and useable.  

Meanwhile, wireless technologies could also find remarkable places in industrial automation systems as 

they offer very flexible installation and mobile operation and avoid cable ‘wear and tear’ problems. 

However, despite their success and popularity, wireless technologies are still far behind their wired 

counterparts in terms of reliability. Since the transmission medium has to be shared, wireless technologies 

face a unique threat of interference from themselves which is growing with the popularity of wireless 

technologies. Harmful interference can be caused by either parasitic machine emissions, or by intentional 

or unintentional wireless systems as illustrated in Fig. 1.1.  

 

Figure 1.1: Environmental effects cause impairments to wireless technologies  

Meanwhile, harmful interference, i.e. the level of interference where the performance degradation is felt, 

is a very broad concept. Different involved stakeholders may have diverse viewpoints about it because of 

their differing circumstances and priorities regarding their goals for QoS [STD28]. A robust 

communication system may tolerate high interference because error handling methods employed across 
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different layers of its protocol stack are able to handle the influence of interference. Those interference 

handling techniques can be divided into SUPRESS, REPAIR and AVOID type approaches. The 

transmission methods that attempt to restrain the influence of interference such as spreading, multi-carrier 

modulations, interleaving etc. can be categorized as SUPRESS type mechanisms. While, methods that can 

fix the damage caused by the interference such as forward error correction (FEC) and automatic repeat 

request (ARQ) can be considered as REPAIR type mechanisms. Finally, AVOID type interference 

handling methods like listen before talk (LBT) attempt to avoid the interference. This thesis work 

contributes to the last type; making use of cognitive strategies to avoid interfering effects.  

1.1 Motivation 

Currently, there are many state-of-the-art wireless technologies (see Fig 1.2) for specialized 

communication tasks and due to diverse application areas it is often required to run several wireless 

technologies simultaneously. For example, in their daily life most individuals are using IEEE 802.11 

based WLAN for internet access and IEEE 802.15.1 based Bluetooth for short range communication such 

as connecting headsets or mobile phones to a laptop. Multiple wireless technologies, with common 

spectrum assignments, running simultaneously in partially or fully overlapping geographical regions are 

known as coexisting radio1 systems. Where, coexistence is the ability of one system to perform a task in a 

given shared environment where other systems have an ability to perform their tasks and may or may not 

be using the same set of rules [STD23]. 

Meanwhile, the current frequency allocation paradigm is static and interference free operation of radio 

systems is enabled through either spatial or spectral guard bands in it. However, the increasing demand 

for spectrum utilization and frequency allocation information issued by corresponding regulatory 

authorities in US [NTIAC] and EU [EUROP], indicates that we are running short of spectral space since 

most of the spectrum is already assigned. On the other hand, spectrum usage surveys show that this 

spectrum scarcity is artificial and in fact the spectrum is critically underutilized [MIT99, YOU09, 

CAB08, JUN09] since legacy users do not need to transmit most of the time. This situation has led to the 

idea of open spectrum [ROB03, LLE08], which calls for opening up most of the spectrum for unlicensed 

users in ways that they can coexist with legacy spectrum users, creating huge new capacity with existing 

spectral resources. However, as an alternative to spatial and spectral guard bands there must be strategies 

to prevent coexisting radio systems interfering with each other destructively. Meanwhile, industrial, 

scientific, and medical (ISM) bands, such as the 2.4 GHz or 5.8 GHz bands, already offer an open spectral 

access. Therefore, more and more new radio technologies are choosing to operate in these bands. 

                                                           
1
 The terms ‘radio’ and ‘wireless’ are used interchangeably throughout in this document. 
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However, existing wireless technologies are designed and standardized without putting much thought into 

coexistence with other technologies (Appendix A1). Consequently, there is an urgent need to solve the 

coexistence problem in these bands. 

 

 

Figure 1.2: Wireless technologies taxonomy 

 

Fortunately, the industry has already realized the necessity of a systematic approach in incorporating 

coexistence methodologies in designing future wireless devices and technologies. Several physical layer 

methods to solve the coexistence problem have been researched in recent years and a few of them are 

implemented in real-time systems. Adaptive hopping algorithms employed in Bluetooth [BTS01] are 

probably one of the most notable efforts because of its ability to blacklist channels with unacceptable 

level of interference. However, studies such as [QIX07] show that when the environment is fairly 

crowded there may not be enough interference free channels to exploit the strength of frequency hopping. 

Another worth mentioning example is time slotted channel hopping (TSCH) [TSC04] which is proposed 

for implementation in ISA100.11a and wirelessHART technologies [CHR10]. But it is expected to have a 

similar fate in overcrowded coexisting environments. Further discussion on state-of-the-art methods to 

solve the coexistence problem is included in Appendix A1. 

Several standardization initiatives taken recently have also highlighted the significance of the coexistence 

problem. Notable of these are:  
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• IEEE 802.15.2 [STD23] recommended practice for coexistence between IEEE 802.11 and IEEE 

802.15.1 based devices.  

• IEEE 802.19 task group [PRA08] which is developing standards for coexistence between wireless 

standards (mainly IEEE 802 networks) of unlicensed devices.  

• IEEE 1900.2 [STD28] recommended practice for the analysis of in-band and adjacent-band 

interference and coexistence between radio systems.  

Appendix A2 includes detailed description of related existing standards.  

Apart from these standardization efforts which are still in their infancy, the existing solutions are 

inadequate to tackle the coexistence of rapidly increasing wireless technologies because of some common 

limitations. The most prominent limitation is the lack of generality in these solutions since these are 

devised to solve the coexistence of a specific technology in the coexistence of some particular interfering 

radio technology. However, the pervasive use of wireless communication in everyday life makes it 

insensible to design technology specific solutions due to two reasons: firstly, it is difficult, if not 

impossible, to predict which technologies can be expected as coexisting or interfering systems. Secondly, 

designing technology specific coexistence solutions means that any new technology will have to find a 

unique solution for its coexistence with each existing technology, which is an impossible task. 

Furthermore, rigidness of conventional hardware defined radios (HDR) also hinders the efforts to solve 

the coexistence problem. Due to these reasons, more generic and flexible methods to solve the 

coexistence problem are needed. 

Fortunately, the induction of cognitive radio (CR), “a radio that is aware of its surroundings and adapts 

intelligently” [MIT99], has created new opportunities to design generic strategies that can drive radio 

systems safely in dynamic, time-varying coexisting environments as illustrated in Fig. 1.3. Analogous to 

sand and pebbles poured into the gaps between larger rocks, a CR can fit itself opportunistically into 

temporarily available spectral gaps with an objective to keep the harmful interference to/from coexisting 

wireless systems below a threshold level.  

Initial research to use CR for opportunistic spectrum access (see section 2.1 and Appendix A1) has shown 

satisfactory and encouraging results and provides motivation for this research work. However, the CR 

systems are yet in a research phase and a lot of work still needs to be done before they can be practically 

deployed. Most important research areas in the field of CR are design and development of hardware 

platforms, protocol architecture, standardization, and cognitive strategies for optimal resource allocation. 

This thesis work presents new contributions to cognitive strategies for resource allocation in coexisting 

environments. 
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Figure 1.3: Communication technology evolution 

 

The coexistence management perspective of existing cognitive strategies is often oriented around either of 

the following concepts:  

• Switching to another ‘free’ frequency channel opportunistically.  

• Transmitting using the same frequency channel by utilizing temporal gaps.  

The first one can be seen as a frequency dimension solution and the second one as a time dimension 

solution. Collectively these two concepts are referred as opportunistic or dynamic spectrum access (OSA 

or DSA). Another approach for spectrum sharing is transmit power control (TPC) which allows 

transmission in an already occupied band given that the resulting interference is not harmful to the legacy 

users. Additionally, it may require the CR nodes to operate over ultra wide bandwidths to employ the 

TPC based approach. Nevertheless, all these cognitive solutions are limited to a single dimension and are 

vulnerable to failures in case of congestion in that particular dimension.  

However, the electromagnetic (EM) resource space
2
 is multidimensional [DRO05], where frequency, 

time, power and space are the primary features of radio signals. Each of which define an orthogonal 

dimension which can be used to separate transmissions of coexisting radio systems. There are several 

other orthogonal features, some of these, listed in IEEE 1900.2, are polarization, diversity, CDMA 

techniques, MIMO, dynamic routing behaviors, adaptive network management algorithms and adaptive 

error correction (a more comprehensive list can be found in Table 4, page. 36 of [STD28]). These 

variables are less subtle but getting more attention as experience and technology are developing. The idea 

of multidimensional EM resource space extends the size of shareable space beyond the conventional 

frequency, time or power based ‘one-dimensional opportunity space’ and offers ‘multidimensional 

opportunity space’ to achieve coexistence optimized operation of wireless systems. Hence, a good 

                                                           
2
 EM resource space, hyperspace, or electrospace are all used as synonyms in this document 
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cognitive strategy shall be able to optimize the transmission of underlying radio systems across multiple 

hyperspace dimensions.  

Last but not least is the need for cognitive strategies that can not only be used to design new wireless 

technologies but can also be added to existing radio systems, either merely as ‘add-on’ or with least 

amendments in the existing technology in order to improve their coexistence capabilities. Unfortunately, 

existing cognitive strategies often only target modern software defined radios (SDR) based platforms.  

With an aim to address these shortcomings and requirements this thesis presents a coexistence optimized 

cognitive engine (COCE). It employs generic cognitive strategies to find coexisting opportunities on 

multiple dimensions of the hyperspace. It can be deployed on top of a software defined radio based 

platform or as add-on for any of the existing radio technologies (Fig. 1.4). 

 

Figure 1.4: COCE can be either (a) implemented on the top of an existing technology or (b) implemented 

using an SDR/HDR as underlying platform to realize a new radio system. 

1.2 Scope and Contributions 

The overall scope of this thesis is to improve predictive modeling and spectral hole detection based 

resource allocation approaches with respect to coexistence. Detection and classification of radio system is 

an essential prerequisite. Furthermore, since narrowband data acquisition is common for industrial 

systems but causes considerable loss of valuable spectral and temporal information of radio signals, the 

treatment of lost data caused by narrowband sensing platforms is also included in this scope. The 

objective is to put the modeling capabilities of a narrowband CR system to the same accuracy level as a 

CR system equipped with a wideband sensing platform. 

Briefly, this dissertation presents the following contributions to the subject:  

1. State-of-the-art: A detailed analysis of the coexistence problem, including existing cognitive and 

non-cognitive solutions and related standards. It also includes: 

SDR or HDR

COCE

Interface

Existing radio system.

WLAN/BT/ZigBee etc

COCE

Interface

(a) (b)
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a. A description of distinct PHY/MAC level features of prominent industrial wireless 

technologies.  

b. Comparative analysis of traditional and probabilistic opportunistic spectrum access 

strategies. 

c. Parameter estimation methods for missing data with main focus on Markov model and 

renewal theory. 

2. Signal classification: A neuro-fuzzy signal classifier which can identify standard wireless 

technologies and extract them from coexisting environments. It uses bandwidth, channel 

frequency, pulse shape, hopping behavior and temporal behavior of radio systems as distinct 

features.  

3. Predictive modeling: It includes: 

a. Comparison of Markov model based opportunistic access with traditional opportunistic 

spectrum access approaches.  

b. Analysis of detection probability of narrowband sensors using a swept sensing method. 

c. A selective spectral projection method is presented that improves the acquisition and 

classification of signals which are wider than the sensor bandwidth without losing time 

related information of the signal. 

d. Renewal theory and hidden Markov model based bandwidth independent parameter 

estimation methods to incorporate missing data caused by limited sensor bandwidth.  

4. Real-time cognitive test-bed: It demonstrates: 

a. Real-time operation of the neuro-fuzzy signal classifier. 

b. Comparison of Markov modeling based opportunistic spectrum access with traditional 

reactive opportunistic spectrum access in real-time environments. 

c. Comparison of intelligent hole detection with conventional dumb hole detection methods. 

1.3 Thesis Structure 

This thesis addresses the coexistence problem of wireless systems with a particular focus on industrial 

applications. This section walks through the rest of this document to provide a glimpse of its organization.  

Chapter 2: Theoretical Foundation  

An overview of theoretical concepts used in this thesis is presented in this chapter. A literature survey of 

related state-of-the-art work is mostly covered in this chapter. It starts with a brief introduction of 

cognitive radios and presents different technologies involved in different areas of cognitive radio 
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research. Then it presents a short introduction of machine learning fundamentals which are important to 

understand the work presented in this thesis.  

Chapter 3: Problem Definition and Proposed Solution 

This chapter formulates the problem and suggests cognitive strategies to improve wireless coexistence. 

Dumb hole detection, reactive/proactive sensing, and swept sensing are identified as key problems in 

existing cognitive solutions. In contrast to these approaches intelligent hole detection and bandwidth 

independent parameter estimation are proposed as appropriate new solutions to these problems. The 

modeling of complex coexisting environments, which are comprised of many unknown radio systems 

with diverse statistical behavior, is suggested using classification and extraction of individual radio 

systems.  

Chapter 4: Classification and Extraction of Primary User Systems 

A neuro-fuzzy signal classifier (NFSC) is presented in this chapter which decomposes the coexisting 

environment without any loss of temporal-spectral details of its constituent radio systems. This classifier 

uses bandwidth, channel frequency, hop behavior and temporal behavior of radio systems as distinct 

features and uses fuzzy logic based rules to classify the coexisting signals  

Chapter 5: Bandwidth Independent Parameter Estimation 

This chapter derives a formula for the detection probability of narrowband sensors using swept sensing. It 

later combines the results of this formula with the information provided by the NFSC to generate accurate 

estimations of parameters for Markov model based opportunistic spectrum access.      

Chapter 6: Implementation and Results 

Instead of using a wide-band SDR technology, a MSP430 microcontroller and a simple CC2500 narrow-

band transceiver are used as a real-time demonstrator to implement selected features as proof-of-concept. 

Chapter 7: Conclusion and Future Work 

Based on simulations and real-time results it is concluded that predictive approaches perform better than 

the conventional non-predictive approaches. However, multidimensional opportunities of the hyperspace 

can only be optimally exploited using classification based intelligent hole detection.   
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Chapter 2 

Theoretical Foundation 

2.1 Cognitive Radio Fundamentals 

In order to understand the concept and functions of cognitive radio it is important to understand the idea 

of cognition
3
. According to encyclopedia of computer science [RAL00] cognition includes mental states 

and processes such as thinking, reasoning, remembering, language understanding and generation, visual 

and auditory perception, learning, consciousness, and emotions. Cognitive science
4

 is the 

interdisciplinary study of cognition. It can be defined as, roughly, the intersection of the disciplines of 

computer science, linguistics, philosophy, psychology, cognitive anthropology, and the cognitive 

neurosciences.  

Thus, according to the computational view [RAL00] of cognitive science, 

1. There are mental states and processes intervening between input stimuli and output responses.  

2. These mental states and processes either are computations or else are computable. And hence, 

3. mental states and processes are capable of being investigated scientifically.  

Cognitive radio (CR), an application of computational cognitive science, is defined by Simon Haykin in 

[HAY05] as following: 

“Cognitive radio is an intelligent wireless communication system that is aware of its surrounding 

environment (i.e., outside world), and uses the methodology of understanding-by-building to learn from 

the environment and adapt its internal states to statistical variations in the incoming RF stimuli by 

making corresponding changes in certain operating parameters (e.g., transmit power, carrier frequency, 

and modulation strategy) in real-time, with two primary objectives in mind: 

                                                           
3 Cognition: “(1) of, relating to, being, or involving conscious intellectual activity (as thinking, reasoning, or 

remembering) (2) based on or capable of being reduced to empirical factual knowledge [MW]” 

4
 Cognitive Science: “An interdisciplinary science that draws on many fields (as psychology, artificial intelligence, 

linguistics, and philosophy) in developing theories about human perception, thinking, and learning [MW]” 
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• Highly reliable communications whenever and wherever needed. 

• Efficient utilization of the radio spectrum.” 

This is not the only definition of cognitive radio as there are many researchers and organizations that have 

their own opinion about ‘what should be called a cognitive radio’. Table 2.1 provides a comparison of 

some well-known opinions. 

Table 2.1: Criteria to be called a cognitive radio: well-known opinions [from YOU09] 
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FCC √ √ √ √        

S. Haykin √ √ √ √ √ √ √ √    

IEEE P1900 √ √ √ √ √       

IEEE USA √ √ √ √ √ √     √ 

ITU-R √ √ √ √ √ √      

J. Mitola √ √ √ √ √ √ √ √ √ √  

NTIA √ √ √ √ √ √ √     

SDRF 

CRWG 
√ √ √ √ √ √ √  √   

VT CRWG √ √ √ √ √ √ √ √ √   

 

A CR employs cognition in the form of a cognitive engine (CE), added at the top of a radio platform 

(see Fig. 2.1) as mentioned in IEEE 1900.1 [STD18] by the following footnote to the definition of CR:  

“Generally the cognitive functionality may be outside the boundary normally associated with a radio 

(e.g., environment sensing is a cognitive function that is not normally part of a radio)”.  
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Figure 2.1: A simplified block view of CR 

In order to exploit cognition the host radio platform has to be reconfigurable software-controlled. The 

degree of reconfigurability of the underlying radio architecture decides about the extent of cognition. 

Where software-controlled means the use of software processing within the radio system or device to 

select the parameters of operation [STD18]. Moreover, a software-controlled radio can be either a 

hardware defined radio (HDR) or a software defined radio (SDR). Where, HDR and SDR are defined as 

follows [STD18]: 

HDR: A type of radio that implements communication functions entirely through hardware such that 

changes in communications capabilities can only be achieved through hardware changes. 

SDR: Uses software processing within the radio system or device to implement operating functions.  

Although, it is possible for an intelligent radio to use software-control to adapt the decision-making 

process even when a fixed set of hardware-defined physical layer implementations (HDR) is used. 

However, a software-defined, software-controlled intelligent radio can offer much more flexibility to 

change the physical layer parameters. Meanwhile, an intelligent radio is a subset of software-controlled 

radio and is defined as [STD18]: 

A type of cognitive radio that is capable of machine learning.  

Where, machine learning (ML) is defined in the following and further discussed in section 2.2.: 

The capability to use experience and reasoning to adapt the decision-making process to improve 

subsequent performance relative to predefined objectives [STD18]. 

A CR can operate as a secondary user (SU) in a coexisting environment where several primary users (PU) 

are already operating. Conventionally, a user which has the license to use a frequency band is called a PU, 

while an un-licensed radio system which wants to use that frequency band opportunistically is called a 
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SU. Since an open access to the spectrum is assumed in this thesis work, this definition is simplified as 

follows:  

Radio systems, already operating at a given time in a partially or fully overlapping spatial as well as 

spectral region are PUs and any new system that wishes to operate at some later time in that spatial-

spectral region is a SU. 

 

Figure 2.2: The hierarchical model of a CR system. Popular state-of-the-art methods for each task are 

also listed at the left hand side. Energy detection (ED), cyclostationary feature detection (CFD), matched 

feature detection (MFD), power spectral density (PSD) and spectral correlation function (SCF) are 

explained later in this chapter. 
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Functions of a CR can be divided into sensing, cognitive and tuning domains [AHM10] as shown in 

Fig. 2.2. The terms knobs and meters are borrowed from [THO07] to explain the functionality of these 

domains. These terms originally come from classical transceivers with adjustable controls (knobs) that 

control the radio's operating parameters and meters which display certain performance or operating 

parameters of the system. For instance, one can tune a knob in an FM radio to select a specific frequency 

in order to tune to a specific station, or, tune a knob to adjust the sound of the radio. Whereas, the meter 

can be the small screen showing the current frequency. The sensing domain deals with meter readings, the 

cognitive domain is responsible for decision making and the tuning domain deals with knob control type 

tasks. A brief explanation of functions, related problems, and existing solutions of these domains is 

provided in the following. 

2.1.1 Sensing Domain 

The sensing domain keeps the CR aware of electromagnetic (EM) activities in its surroundings. It consists 

of data acquisition, feature extraction, and detection/classification components. Collectively, these tasks 

are referred as spectrum sensing. Typically, a CR acquires samples of an entire band of interest and uses 

these samples to extract particular signal features and in turn uses some predefined threshold values to 

detect or classify the radio signals. 

Detection or often referred as hole detection is the minimum required goal of the spectrum sensing 

process. The term hole refers to an arbitrarily wide part of the spectrum and there can be white and black 

holes indicating free and busy spectral areas, respectively. Grey hole is also often used to refer to a 

partially free subband. The hole detection method merely speaks about the presence or absence of primary 

signals and is formulated by the following binary hypotheses: 

H0  :  y(n) = w(n) 

H1 :  y(n) = x(n) + w(n)  (2.1) 

where y(n), x(n) and w(n) represent time domain samples of the received signal y, primary signal x and 

additive white Gaussian noise (AWGN) w, respectively. H0 and H1 denote the hypothesis corresponding 

to the absence and presence of a primary signal, respectively.  

In addition to the binary hypothesis, the classification of distinct PU signals, formulated by M-ary 

hypotheses in eq. (2.2), enables a better decision making in subsequent domains of the CR system.  

H0  :  y(n) = w(n) 

Hi  :  y(n) = xi(n) + w(n) i = 1,…,M. (2.2) 
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Where M is the total number of distinct signals, xi(n) represents samples of a particular PU signal, i.e. PUi 

and Hi denote the hypothesis corresponding to the presence of that PU signal.  

Classical spectrum sensing strategies include energy detection (ED), cyclostationary feature detection 

(CFD), and matched filter detection (MFD) as discussed in the following.  

ED is the most basic spectrum sensing technology [CAB08]. It is the only choice when there is no 

knowledge about the received signal. The decision rule in this approach is given by: 

	
�� = ∑ |�
��|�����

��<−>
��

� (2.3) 

where T(y) is the test statistic of the received signal y, N is the sampling size in the time domain and γ is a 

predefined threshold value. It can be implemented like a spectrum analyzer by averaging frequency bins 

of the fast Fourier transform (FFT) of the received signal. Processing gain in this technique is 

proportional to the FFT size N and observation/averaging time. By increasing N one can improve the 

frequency resolution to better detect narrowband signals.  

If a priori knowledge of modulation or signal features is available, CDF can also be a choice. It can utilize 

built-in hidden periodicity, e.g. sine wave carriers, pulse trains, repeated spreading, hopping sequences, or 

cyclic prefixes of modulated primary signals for more accurate detection. Due to this hidden periodicity 

the autocorrelation function of such signals is periodic and 	is called cyclic autocorrelation function. It can 

be used to calculate the spectral correlation function (SCF) to detect signal features. The cyclic 

autocorrelation function and the SCF are given in eq. (2.4) and eq. (2.5), respectively [WAG92]. 

���
 � = lim$→&
�
$ ∫$�
( + *

���∗
( − *
��e,-�.�/0(  (2.4) 

1��
2� = 34���
 �5 (2.5) 

Where, the operator 36∙8 denotes the Fourier transform. If a signal is cyclostationary with the period T 

then the cyclic autocorrelation function has a component at α = 1/T where α is the cycle frequency. The 

binary hypothesis of eq.(2.1) can be rewritten as follows: 

�� ∶ 	 1��
2� = 1:�
2�	
�� ∶ 	 1��
2� = 1;�
2� + 1:�
2� (2.6) 

Since the noise is in general not periodic, we have 1:�
2� = 0 for α ≠ 0. It leaves only signal features in 

the α domain which makes this technique a better candidate in noisy environments. The decision rule in 

this strategy is given by the following equation: 
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��

� (2.7) 

The optimal strategy for any signal detection is MFD [SMK98], where the unknown received signal x(n) 

is correlated with a known replica y(n) of the signal. It maximizes the received SNR. However, it is a 

coherent detection strategy and is not suitable in very low SNR regimes since it is difficult to achieve the 

required synchronization.  

So far only a binary hypothesis is considered. However, these strategies can be used for M-ary hypothesis 

testing by extracting and distinguishing particular signal features. In this regard, ED can be used to 

compute the power spectral density (PSD) or spectrogram of signals to extract signal features such as 

bandwidth (BW), center frequency, hop behavior, duty cycle and time behavior of signals. Modern A/D 

based sensing platforms, such as an SDR or a so-called real-time spectrum analyzer (RSA), are often 

employed for ED based spectrum sensing. Traditional heterodyne receivers can also be employed where a 

received signal strength indicator (RSSI) has to be used as proxy to ED. 

In contrast to it CFD and MFD perform more sophisticated signal processing. Consequently, more 

complex signal features such as modulation, bitrate, symbol rate, spreading, chip rate etc. can also be 

extracted in addition to the above mentioned signal features. For example symbol rate based feature 

detection is addressed in [CAB08] and modulation detection in [FEH05, KYO07, HAN08] using CFD. 

Eventually, it results in better detection and classification of the PU signals but at the expense of 

increased system complexity and processing time. Signal classification is discussed in detail in chapter 4.   

Note that data acquisition is the job of the underlying radio platform, whereas the remaining components 

of the sensing domain can be implemented either in the CE or as part of the underlying radio or can be 

distributed in both. 

2.1.2 Cognitive Domain 

The cognitive domain plans optimal usage of radio resources in order to satisfy the performance 

requirements of the underlying SU radio system. It constitutes most of the CE and is solely responsible 

for the decision-making process. There is no single well accepted model of cognition. However, learning 

with experience and strategic decision making is the overall goal of it. There is a long list of machine 

learning (ML) strategies which can be used to realize specialized tasks at the cognitive domain. However, 

genetic algorithms (GA), neural networks (NN), Bayesian inference, fuzzy logic (FL) and game theory 

are the most popular methods for learning and strategic decision making tasks in cognitive radios. Hybrid 
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approaches based on these techniques are also used often to either minimize limitations of individual 

technologies or to exploit accumulative gains. Neuro-Fuzzy approach, GA for weight allocation in NN, 

fuzzy games are some examples of hybrid technologies.  

Modeling of real-time situations and predicting future outcomes is also a well accepted job of the 

cognitive domain as it significantly enhances the decision making capabilities of the cognitive system. 

Traditional methods for modeling and prediction include autoregressive (AR) and time series modeling, 

Markov models and NNs. Furthermore, channel occupancy and transmission occurrences of radio systems 

are often modeled as Poisson process which is also recommended by the International 

Telecommunication Union’s (ITU) handbook on Teletraffic Engineering [SIT10]. Therefore, several 

methods derived from Poisson arrival processes are also used in literature for modeling and prediction of 

radio signals, e.g. renewal theory or Markov-modeled Poisson process. Appendix A1 includes a survey of 

learning and modeling strategies in existing CR systems. Whereas, ML strategies that are used in this 

thesis work are discussed in detail in section 2.2 and statistical modeling of radio signals is further 

discussed in chapter 5.  

Typical challenges and limitations involved at this domain are inherited from its constituent ML 

techniques. The most prominent of which are computational complexity, high demand of computational 

resources especially memory, difficulty in modeling real world problems and reasoning in uncertain and 

unfamiliar situations [HEA10, MUS95, JUE08, SED03].  

2.1.3 Tuning Domain 

It consists of a software-controlled radio platform, which offers flexible tuning of communication 

parameters. USRP series [ETTUS], FlexRadio [FLEXR] and Sundance’s SDR-DS [SUNDA] are some 

popular SDR architectures commercially available for research purposes. However, there are countless 

hardware defined radios (HDR) which can be used as tuning domain.  

Limitations and challenges at this domain are basically related to the underlying radio platform. The 

tuning domain is not in the scope of this thesis. Interested readers are referred to [DAN05, MIT09].  

2.2 Machine Learning Fundamentals 

Machine learning (ML) covers a broad range of computer programs. In general, it is the study of 

computer algorithms that improve their performance automatically through experience [TMM97]. The 

fundamental task in ML is to model a real-world problem or in other words determine the estimate ŷ of a 

function y = f(x). Where x is the input variable and describes features and attributes of the problem, y is 
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the outcome and f is the relation between input variable and outcome. In real applications, most learning 

tasks can be formulated as one of the following two problems [YIH07]: 

Regression: It is about inferring a function f(X) so that a given value x of the input variable X, generates a 

good prediction ŷ = f(x) of the true value y of the output variable Y. 

Classification: Given a finite set of classes C = {1,2,…,K} and a value x of random variable X, infer a 

function l = g(x) to label x such that ? ∈ A.  

In fact, both the regression and classification problems can be formulated using the same framework and 

the only difference between them is in terms of the dependent variable, i.e. Y in regression and l in 

classification. It requires nominal, discrete values in classification, while continuous, real values in 

regression [YIH07]. 

Why is ML a natural choice for a coexistence problem? Generally, ML is useful in the following 

situations: 

• Environments change with time. 

• A task cannot be mathematically defined but only by example.  

• Large piles of data include some important hidden relationships. 

• The amount of available knowledge is too large for interpretation by a human. 

Refractions, diffractions, reflections, and moving objects make the response of a radio channel highly 

dynamic and vague. Whereas, versatile and conflicting requirements of applications make the 

transmission patterns of the radio systems highly uncertain. This does not only make the coexistence 

environments hard to model but also requires a continuous and dynamic decision making under multiple 

constraints and objectives. Furthermore, regulatory policies, increasing number and usage of radio 

systems and new radio technologies are adding more to the existing radio knowledge. All these reasons 

make the coexistence problem a good application of ML.      

Following is a brief overview of ML strategies and concepts which are used later in this dissertation. 

2.2.1 Fuzzy set theory 

Fuzzy Logic (FL) uses human like reasoning to deal with uncertainties and ambiguities in a given 

problem. There is a smooth and gradual transition from true to false and the truth of each statement is a 

matter of degree. Important components of a FL based system, as shown in Fig. 2.3, are: 

• The fuzzy representation of I/O parameters (fuzzification/defuzzification) and relationship 

between them. 
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• Membership functions (MF) for input space. 

• Antecedents and consequents 

• Decision rules 

 

Figure 2.3: Model of a FL based system. 

The rule-based decision is the heart of a fuzzy model and contains the set of if-then rules. Such rule sets 

are flexible and new rules can easily be added to extend the functionality of the system. For example, the 

following simple rule can be used to classify some well-known non-hopping radio systems having distinct 

BW and/or centre frequency fc in the 80 MHz wide 2.4 GHz ISM band.  

ifififif	BW	EFGHIJK	BWLMN	ANDANDANDAND	2c	EFGHIJK	to	2jth	channel	of	�XN 		

thenthenthenthen	�XN 	YZJ[FG\]^	in	_th	channel	

The following new rule, to analyze the hopping behavior of signals, can be added without changing the 

existing functionality of the classifier. 

ifififif	BW	EFGHIJK	BWBT	ANDANDANDAND	2cis	IYZZ\]^		
thenthenthenthen	BT	based	�X	is	YZJ[FG\]^ 

The if-part of above rules is called the antecedent and the then-part is called the consequent. 

Note that all bold-italic words are fuzzy or linguistic variables defined over some base variables. The 

set of possible values is called the term set. For instance a term set T for fuzzy variable matched can be 

defined on the base variable “|cdLMN − cd|” as follows: 

	 = e fg(hℎj0, l(mn�o?�	fg(hℎj0, g?fnl(
fg(hℎj0,pjgq?�	fg(hℎj0, �n(	fg(hℎj0r 
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Where, “BWLMN − BW” is the difference of bandwidth of i
th
 PU system and bandwidth of input signal 

and | | represents the absolute value. 

Fuzzy set and singleton: A fuzzy set ‘A’ is a collection of ordered pairs represented as s = 6
t, u
t��8, 
where item x belongs to the universe of discourse and u
t� is the degree or grade of membership. A 

single pair 
t, u
t��, in a fuzzy set is called a fuzzy singleton. Since frequency is the central resource in 

radio environment, we can replace x with frequency f to define our fuzzy radio set as 3 = 6
2, u
2��8. 
Universe of discourse: The input space, where elements of a fuzzy set are taken from, is called universe 

of discourse or universe and is often represented by u or U. The entire radio frequency is the universe in 

our fuzzy radio model.  

Membership function (MF): A MF is a curve that defines how each point in the input space is mapped to a 

membership value (or degree of membership - DoM ) between 0 and 1. It is conventionally denoted as 

u
t� or equivalently as u
2� in the fuzzy radio set. The set of elements that have a non-zero membership 

is called the support of the fuzzy set. Note that a fuzzy set can be equivalently represented by its MF. 

Standard Fuzzy Operators: Boolean operators AND, OR, and NOT are interpreted as intersection or min 

(∩), union or max (∪), and fuzzy complement (1 − s), respectively. 

Similarity measure (SM): SM is used in fuzzy mathematics to measure the similitude between two fuzzy 

sets. Several definitions of SM have been presented. This thesis adapts [HAS06], which states that SM of 

fuzzy sets A and B is based on the minimum relative sigma count of A in B (and B in A) as follows: 

1y
s, c� = |z∩{|
|}~	
|z|,|{|� (2.8) 

Where |s| = ∑ uz
t�;∈M . Hence eq. (2.8) can be written as, 

1y
s, c� = ∑ |��	
��
;��∈� .��
;��
|}~	
∑ 	��
;��∈� ,∑ 	��
;��∈� � (2.9) 

2.2.2  Neural Network  

Modeled on a nerve plexus, a neural network (NN) is nothing more than a set of nonlinear functions with 

adjustable parameters to give a desired output. Different types of NNs are separated by their network 

configurations and training methods, allowing for a multitude of applications. However, they are all 

comprised of processing elements (PEs), called neurons, which are interconnected to form a layered 

network. Each PE usually produces a single output value by accumulating inputs from other PEs. While 

there are many types of NNs available in the literature, multi-layer linear perceptron networks (MLPNs), 

nonlinear perceptron networks (NPNs) and radial basis function networks (RBFNs) are most common and 
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applicable for CR systems [HEA10]. Fig. 2.4 provides an example NN of a hypothetical signal classifier. 

Note that a PE in a NN can itself be a NN. 

A neuro-fuzzy (NF) model is often used to combine the advantages of both FL and NNs. It adapts a NN 

based connectionist approach to exploit parallelism and adaptation, while individual PEs use FL based 

linguistic rules from human experts to deliver outputs. 

 

Figure 2.4: Example NN of a radio signal classifier. Different features of an incoming signal are 

extracted and fed to NN which in turn identifies the signal. Note that a PE in NN can itself be a NN.  

2.2.3 Markov Models 

Consider a stochastic process that is in one of N distinct states at any given time where distinct states are 

represented by a set S = {Si: i = 1,2,…,N}. If the state at time t = n is denoted as qn, where n = 1,2,…, then 

at regularly spaced discrete times, the process constantly undergoes a transition from one state to another 

with a set of probabilities associated with each state. A full probabilistic description of the process 

requires specification of the current state (i.e. at time t), as well as all predecessor states, as follows 

[LAW89]: 

�
�� = 1�|��,� = 1�,�, ��,� = 1�,�, … � 

where 1� ∈ 1, � ≥ 0, and ‘|’ is the conditional probability. The process is said to follow a Markov model 

(MM) of order m if the next state depends only on preceding m states, where m is finite valued. The 

probabilistic description can then be truncated to only m previous states, as follows: 
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�
�� = 1�|��,� = 1�,�, ��,� = 1�,�, … � =
�
�� = 1�|��,� = 1�,�, ��,� = 1�,�, … , ��,� = 1�,��, for	� > f (2.10) 

For the special case of a first order MM, this probabilistic description is limited to just the current and the 

predecessor state, as follows: 

�
�� = 1�|��,� = 1�,�, ��,� = 1�,�, … � = �
�� = 1�|��,� = 1�,�� (2.11) 

In order to better incorporate the concept of prediction, this description can be equivalently described in 

terms of the present and the future states as given in the following:   

�
���� = 1���|�� = 1�, ��,� = 1�,�, … � = �
���� = 1���|�� = 1�� (2.12) 

Which means that, given the present state, the future is independent of the past. From now onwards this 

form of first order Markov model will be used in the rest of the text. Furthermore, a process is considered 

a time-homogeneous Markov process if: 

�
���� = 1���|�� = 1�� = �
������ = 1���|���� = 1��, where	f	represents	a	time	shift (2.12a) 

Furthermore, it is assumed that the right-hand side of above equations is independent of time, which leads 

to the set of state transition probabilities aij of the following form:  

gN� ≡ ������ = 1���� = 1N�,	where	1N , 1� ∈ 1 (2.13) 

The matrix s = 4gN�5 = ����}�	��|���	��	����������	���|	��}��	� 	��	��}��	�¡
���}�	��|���	��	��}��������	���|	�  ¢ is an N x N transition matrix. Since 

its entries are probabilities, its rows sum to 1 and there must be a transition from a state 1N to another 

state. It follows that: 

gN� ≥ 0	and	∑ gN� = 1����  (2.14) 

So from any state 1N, the process moves to the state 1� with probability aij, and this probability remains the 

same for any n. The only special case is the first state of a discrete sequence, called initial state. 

The probability distribution of the initial state, called initial probabilities is represented as follows: 

£N = �
�� = 1N� (2.15) 

where £ = 6£N8 is a vector of N elements satisfying the following identity: 

 ∑ £N = 1�N��  (2.16) 

An example two state Markov model of a noisy radio signal is shown in Fig. 2.5. The sensed signal is 

converted to a binary stream (also shown in Fig. 2.5) by using a threshold value, where 1 and 0 represent 
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ON and OFF states respectively at discrete time steps. Where, a time step is defined by the sample time. 

Hence, using this 23 samples long binary time series one can compute the following: 

¤¥ON¦	 = l§f
one	runs� �§f©jm	n2	n�j	m§�l⁄ = g«jmgoj	¬ghqj(	l­®j = 3.2	time	units 
¤¥OFF¦	 = l§f
zero	runs� �§f©jm	n2	®jmn	m§�l⁄ = g«jmgoj	­�(jmgmm­«g?	(­fj	©j(pjj�	¬ghqj(l

= 1.75	time	units 

S = {S1 = 0, S2 = 1}, π = { π0, π1}
T
 = {0.30, 0.70}

T
 and s = �g�� g��g�� g��¢ = �0.43 0.57

0.26 0.74¢ 

 

Figure 2.5: a) A two state MM for a noisy radio signal. b) Corresponding radio signal and binary series.  

Given the model, one can ask some useful questions. For example, what is the probability that the usage 

of the channel for the next five time units will be “ON, ON, OFF, OFF, ON”? More formally it can be 

stated as an observation sequence O = {1, 1, 0, 0, 1}. Its probability is as follows: 

�
·|s, £� = �
1,1,0,0,1|s, £� = �
1� ∙ �
1|1� ∙ �
0|1� ∙ �
0|0� ∙ �
1|0� = £� ∙ g�� ∙ g�� ∙ g�� ∙ g��
= 0.70 ∙ 0.26 ∙ 0.74 ∙ 0.43 ∙ 0.57 = 0.033 
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One can also be interested in knowing that if the channel is busy (signal is ON) at a current time then 

what is the probability that it will remain busy for exactly d time units? This question can be answered by 

evaluating the probability of the observation sequence O = {11, 12, 13, …, 1d, 0d+1} as follows: 

�
·|s, £, �� = 1� = �
1� ∙ �∏ ��1��1�,��¹��� � ∙ �
0¹��|1¹� = 1 ∙ 
g���¹,� ∙ g�� = 
g���¹,� ∙ 
1 −
g��� (2.17) 

Note that �
1� = 1 in this equation as it is given that �� = 1. If ��is not known then �
1� = £�. The 

above probability can be generalized as follows: 

�
·|s, £, �� = 1N� = 
gNN�¹,� ∙ 
1 − gNN� = ¬N
0�  (2.18) 

The quantity ¬N
0� is the discrete probability density function (PDF) of duration d in state 1N. It describes 

the exponential duration characteristic of the state duration in a Markov process. Using ¬N
0� one can 

estimate the expected number of observation in a state, conditioned on starting in that state: 

0ºN = ∑ 0 ∙ ¬N
0�&¹�� = ∑ 0 ∙ 
gNN�¹,� ∙ 
1 − gNN�&¹�� = �
�,»  

  (2.19) 

where ∑ 0 ∙ 
gNN�¹,� = �

�,»  �¼

&¹��  and ½  denotes the expected or average value. Thus, for our example 

Markov model shown in Fig. 2.5a, the expected packet duration is 1/(0.26) = 3.84 time units and expected 

inter-arrival time of packets is 1/(0.57) = 1.75 time units. For sufficiently large number of samples, the 

estimated values matches to the directly computed values, which are also given in Fig. 2.5b.  

Summarizing this discussion, an observable Markov model is uniquely determined by the following three 

components: 

1. A state space vector S 

2. An initial state distribution π 

3. A state transition matrix A 

Moreover, the reason to call it an observable MM is because at any discrete time n, the state qn is 

observable.  

2.2.4 Hidden Markov Model  

The Markov model explained so far is called observable MM because the states of the underlying system 

are clearly observable. However, an observable MM is too restrictive to be applicable in many real world 

problems since the states may be hidden and therefore not directly observable or some samples are 

missing because they could not be collected at some times for any reasons. In either of these cases an 

applied Markov model is called Hidden Markov model (HMM). In a HMM the observation or the missing 
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part is a probabilistic function of the state. The remaining text in this section will not differ between 

missing and hidden scenarios and will refer them as hidden. However, section 2.3 and chapter 6 will 

address the issues of missing data samples in detail.  

In a HMM the discrete observations in each state come from a set of M symbols, denoted by 

V = {v1,v2,…,vM}. There is an observation or emission probability that a symbol vm at time n is observed 

in the state 1N. This emission probability is specified as: 

©N
f� ≡ �
·� = «�|�� = 1N�  (2.20)   

Moreover, the emission probability matrix is B = {bi(m)}. The observed values constitute the observation 

sequence O and the actual state sequence Q is hidden. The task is then to infer the state sequence from the 

observation sequence. 

Formulizing an HMM is uniquely determined by the following elements: 

1. State space S of N states 

2. M number of distinct observation symbols 

3. State transition probabilities A 

4. Emission probabilities B 

5. Initial state probabilities π 

Since, N and M are implicitly defined in other parameters, an HMM is shortly denoted as λ = (A, B, π)
 5
. 

Furthermore, given a number of observation sequences, there are three types of problems where HMMs 

can be applied. These are listed in the following: 

1. Evaluation: Given the model λ and an observation sequence O, efficiently evaluate the probability 

P(O| λ).  

2. Decoding: Given a model λ and an observation sequence O, decode the most probable state 

sequence Q that has generated the observation sequence. Formally, we are interested in finding 

Q* that maximizes P(Q|O, λ), i.e. ¾∗ = argmaxÁ �
¾|·, Â�. The Viterbi algorithm is a popular 

dynamic programming based method to compute such single best state paths and is widely used 

in decoding the convolution codes of communication systems.   

3. Learning: Given k observation sequences L = {O
k
}, learn the optimal parameters of λ. i.e. 

Â∗ = argmaxÂ �
Ã|Â�. This thesis work will deal with such kind of problem. A popular approach 

                                                           
5
 Note that λ (bold, non-italic) is used to denote a HMM whereas, λ (non-bold, italic) is used to represent the rate 

parameter of exponential and Poisson distributions in this document. 
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called Baum-Welch algorithm, a maximum-likelihood estimation method for learning parameters 

of HMMs will be used in this thesis for learning HMM parameters and is discussed in detail in 

Section 2.3. Additionally, a renewal theory based maximum-likelihood parameter estimation 

method will also be used for this task. 

2.2.5 Treating Missing Data 

Learning, inference and prediction in the presence of missing data is a popular research problem in 

machine learning and statistical data analysis. Meanwhile, there can be a variety of reasons for missing 

data. Limiting the discussion strictly to sensor actuator and communication systems, some example 

reasons of missing data can be: 

• Some sensors in a sensor network may stop functioning. 

• The sensor can observe only a part of a larger target space. 

• The acquired samples could not be successfully transmitted due to high noise or interference. 

• The sensor could not see the target signals because of unfavorable channel conditions at arbitrary 

points in time (typically known as hidden node problem). 

Abstractly, the generative process of data acquisition may be decomposed into a complete data process 

that generates complete data sets and a missing data process that determines which parts of the acquired 

data are missing. The problem of interest is the analysis of missing data process to estimate unbiased 

model parameters of the generative process. In order to avoid biased estimations in the presence of 

missing data several methods have been developed where each of which has a limited application range 

depending on the application area (finance, medical, engineering etc.) and pattern of missing data. 

Roughly, the pattern of the missing data can be random or deterministic. In this thesis the problem of 

spectrum sensing will be later on formalized as missing data problem with deterministic periodic patterns 

of missing data. State-of-the-art techniques to treat missing data can be grouped as following [MYR01]: 

Techniques ignoring incomplete observations: The simplest technique is to ignore missing 

observations. It is usually satisfactory with small amounts of missing data but its major drawback is that 

its application may result in too small data sets if the percentage of missing data is too high, eventually 

resulting in biased estimates. 

Imputation-based techniques: Imputation based methods replace missing parts of data sets with some 

suitable estimates to generate imputed data sets. In turn standard complete data parameter estimation 

methods such as ordinary least squares method can be applied to the imputed data set. Some common 

methods to compute imputation value include overall mean of complete part of data, some appropriate 
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subgroup mean, logical rule based estimated value and last value carried forward. However, the main 

drawback of imputation is that artificially substituted values may lead to biased results if the imputation 

method is not appropriate.  

Model based methods: Model based methods do neither remove missing parts of data nor replace 

missing values. Rather, these methods define a model for the partially missing data and base their 

inference under the likelihood of that model. A full information maximum likelihood (FIML) method, 

multiple-group likelihood method and expectation-maximization (EM) algorithms are three popular 

maximum likelihood estimation methods [CRA01] that are often available in software packages. The first 

two algorithms are considered as direct approaches in a sense that model parameters are estimated 

directly from the available data without any preliminary preparation step (e.g. imputation). In contrast, the 

EM algorithm is an indirect approach since an additional preparation phase is required before the 

parameter estimation. This method will be briefly discussed in the following paragraphs because a 

particular variant of it, known as Baum-Welch algorithm, will be used in this thesis for learning HMM 

parameters. 

Expectation-Maximization (EM) algorithm: The EM method [JEF98] is an iterative technique of 

finding the maximum-likelihood estimate of the parameters of an underlying distribution when the given 

data set has missing values. In order to understand the algorithm assume that X is an observed random 

variable with probability density function P(X|Φ) generated from some distribution with parameter set Φ 

(e.g. P can be a Poisson distribution and Φ can be the arrival rate λ). Let’s call X the incomplete data set 

(with missing values) and the likelihood function of it, i.e. ℒ
Φ|Æ� = �
Æ|Φ�, the incomplete likelihood 

function. Now assume that there exists a complete data set Z = (X, Y), where Y is another random variable 

corresponding to missing data. The joint density function of Z is given by: 

�
Ç|Φ� = �
Æ, È|Φ� = �
È|Æ,Φ� ∙ �
Æ|Φ�  (2.21) 

Where the likelihood function of this joint density function is given as: 

ℒ
Φ|Ç� = ℒ
Φ|Æ, È� = �
Æ, È|Φ�  (2.22) 

This is called a complete likelihood function. The EM algorithm first finds the expected (E) value of the 

complete-data log-likelihood i.e. log(P(X,Y| Φ)) with respect to missing data Y given the observed data X 

and current parameter estimates. This is called E-step and is specified as follows: 

E-step: ¾�Φ,ΦÉ� = ¤¥log	
ℒ
Φ|Æ, È�|Æ,ΦÉ�¦  (2.23) 

Where ΦÉ is the current parameter set estimate and Φ is the new parameter set that will be optimized to 

increase Q. Estimation in E-step is done on the basis of either marginal distribution of observed 
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incomplete data or some past knowledge or some logical assumptions about missing data or merely some 

random guess. It is worth noting that X and Φ
É
 are constants and Y is a random variable in Eq. (2.23). The 

next step is the iterative maximization (M) of the expectation computed in E-step. It is described as: 

M-step: ΦÉ�� = arg	maxÊ¾
Φ|ΦÉ�  (2.24) 

where the superscript l is the index of iteration. 

It is proved in [DEM77] that an increase in Q implies an increase in the likelihood of missing data, i.e. 

ℒ�ΦÉ���Æ� ≥ ℒ�ΦÉ�Æ� and also that the algorithm is proved to converge to a local maximum of the 

likelihood function. 

2.2.6 Renewal Theory  

Renewal theory [COX67] emerged from the study of self-renewing aggregates and was initially used in 

problems of probability theory related to failure and replacement of some components. Soon it became a 

tool for investigation of probability of general problems connected with sums of independent non-

negative random variables. The theoretical concept of failure can be given any interpretation depending 

upon the context of its application. For example in this thesis packet size and inter-packet arrival times 

will be used instead of this bookish term.      

The fundamental model of renewal theory is based on the definition of an ordinary renewal process. 

Suppose in a mechanical system we have a population of components, each component has a life-time 

specified by a random variable X with PDF f(x). The mechanical system starts with a new component with 

life-time X1 at time zero. Assume the component fails at time X1. It is immediately replaced by another 

new component which has the life-time X2. Next failure will occur exactly at X1 + X2. The process 

continues and the failure time of the r
th
 component with life-time Xr is specified as follows: 

1Ë = Æ� + Æ� +…+ ÆË  (2.24) 

If {Xi} are independent and identically distributed (i.i.d.)
6
 random variables the system is called an 

ordinary renewal process. As a special case, if X is exponentially distributed with PDF Ìj,Í; , the 

ordinary renewal process is called a Poisson process. In communication systems, a PU radio system 

transmitting fixed sized data packets with i.i.d. random inter-packet times can be modeled as an ordinary 

renewal process.  

                                                           
6
 In probability theory a collection of random variables is considered i.i.d. if all random variables belong to the same 

probability distribution and are independent from each other. 
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The definition of an ordinary renewal process provides the base for defining alternating renewal 

processes that can better explain many real world systems where the concept of immediate replacement is 

not applicable. Suppose there are two types of components with life-times given by i.i.d. random 

variables X and Y with PDF’s f(x) and f(y) respectively. Let say the process starts with a new component 

of type-X and whenever a component fails, it is replaced by a new component of the opposite type. Then 

the resulting process is called a alternating renewal process. For example, the radio traffic of an 

IEEE 802.11 based WLAN network as captured by a sensor (e.g. a spectrum analyzer), where many users 

are surfing internet, is a good example of an alternating renewal process as shown in Fig. 2.6 for 

simulated signals. See Appendix A3 for real-time WLAN signals. 

 

Figure 2.6: A combined spectrogram of two IEEE 802.11 based 20 MHz wide simulated signals. The 

packet size of signal at fc = 2457 MHz is equal to one unit of time and inter-packet arrival times are 

exponentially distributed, that makes it an ordinary renewal process. The other signal, at fc = 2417 MHz 

demonstrates a more realistic scenario, where both packet sizes (signal ON time) and inter arrival times 

(signal OFF time) are exponentially distributed, hence an alternating renewal process. 

Furthermore, if the system has been already running since a long time when it is first observed then it is 

called an equilibrium (ordinary or alternating) renewal process. It is more applicable to real world 

problems since it does not require the system to be observed from the beginning.  
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By modeling a signal as an ordinary or alternating renewal process, one can use the concepts of renewal 

theory in order to solve problems of the following types: 

• Time up to the r
th
 renewal: If the renewal process is the PU transmission sensed by a sensor, then 

this can be interpreted as estimating time for transmission of r packets.  

• Number of renewals in time t: One is interested in a random variable Nt, which specifies total 

number of packet transmissions occurring in a time interval (t1, t2). 

• The moments of the number of renewals in time t: The moments such as mean and variance of 

number of packets can be computed that can eventually provide an estimate of the transmission 

rate of a PU system. The first moment, i.e. the mean, of a renewal process is particularly 

emphasized and is given by: 

�
(� = ¤¥Î/¦  (2.25) 

where H(t) is called the renewal function. This renewal function is used in more general form as 

¤=Î/Ï,/¼> = �
(�� − �
(��, to compute the renewal density or the mean number of packets to be 

expected in a narrow time interval ∆t, As follows: 

ℎ
(� = limÐ/→��
Ñ=�Ò,ÒÓÔÒ>

Ð/   (2.26) 

• Forward recurrence time (Vt) or backward recurrence time (Ut): The forward and backward 

recurrence times give the measure of remaining and passed life of a component at any given time 

t respectively. It can be used to estimate the remaining or passed length of an ongoing packet 

transmission or conversely, the time that has passed in last transmission or expected remaining 

time in next transmission by simply exchanging the roles of X and Y. 

• The type of component in use at time t: This gives the probability πi(t) that component of type-i is 

in use at time t. For an alternating renewal process with two types of components i and j it is 

given as: 

£N = Ñ¥N¦
Ñ¥N¦�Ñ¥�¦ and £� = Ñ¥�¦

Ñ¥N¦�Ñ¥�¦ (2.27) 

For the PU signal with ON and OFF component types: 

£�� = Ñ¥��¦
Ñ¥��¦�Ñ¥�ÕÕ¦ and £�ÕÕ = Ñ¥�ÕÕ¦

Ñ¥��¦�Ñ¥�ÕÕ¦ (2.28) 
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• Survivor function: Given the cumulative distribution function, F(x), of the current state (let say 

ON state) of the renewal process, the survival function is the probability that the process has not 

changed its state since the last known time x. It is specified as follows: 

Ö
t� = Pr
Æ > t� = 1 − 3
t� = 1 − ∫ 2
§�0§;
�  (2.29) 

Where 3
t�	is the cumulative distribution function and 2
§� is the PDF of the corresponding 

state of the renewal process. The survivor function can be used for some useful derivations about 

the state of the renewal process. For example, an alternating renewal process that has been started 

a long time ago, the remaining time t̅ (see Fig. 2.7) in the current state (let say ON state) from the 

sampling time ts is given by 
Ö
;̅�
Ñ¥��¦. 

• Transition probabilities of replacement of components: In an equilibrium alternating renewal 

process with i and j component types, at any given time t if type i component is in use then the 

probability that type j component will be replaced can be computed as transition probability.  

 

Figure 2.7: Illustration of the remaining time in ON state. 

2.3 Standard Wireless Technologies Used as Primary User Systems 

The following standard wireless technologies are used in this research work as primary user (PU) systems 

and are described in detail in Appendix A3 with respect to selected PHY/MAC layer parameters. Selected 

PHY/MAC parameters are channel definition (bandwidth (BW), center frequency (fc)), pulse shape, 

modulation, hopping pattern, time behavior, bitrate, symbol rate and transmission power. Moreover, all 

these technologies operate in the 2.4 GHz ISM band. 

1. IEEE 802.15.1 based technologies 

a. Bluetooth 

b. Wireless Interface for Sensors and Actuators (WISA) 
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c. Wireless Sensor Actuator Networks for Factory Automation (WSAN)  

2. IEEE 802.15.4 based technologies 

a. ZigBee/ZigBee Pro (non-hopping system) 

b. WirelessHART 

c. ISA100.11a 

d. IEEE 802.15.4a based NanoNET  

3. IEEE 802.11 based Wireless Local Area Networks (WLAN)  

4. Atmel’s ATR2406 based proprietary transceiver. Note that this technology will be referred as 

‘Atmel’ throughout in this document. Although it is not a standard technology, it will be used in 

this thesis as a non-hopping system that is very similar to Bluetooth in terms of channel 

definitions.  
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Chapter 3 

Problem Definition and Proposed Solution 

The coexistence of wireless devices can be studied with respect to the following three issues: 

• Collaborative vs. non-collaborative: A coexistence mechanism in which coexisting systems can 

exchange information is known as collaborative. For coexisting systems that can’t exchange any 

information, only non-collaborative coexistence mechanisms can be employed. 

• Coexistence of heterogeneous or homogeneous devices. Heterogeneous radio systems use 

different technologies, whereas homogeneous radio systems make use of the same radio 

technology. 

• Collocation vs. proximity: Collocation is the case when multiple radios are in a single physical 

unit so that mutual interference can be caused by conduction, parasitic radiation or antenna near 

field radiation. The recommended practice by IEEE 802.15.2 regards the interference between 

IEEE 802.11 and IEEE 802.15.1 based devices as collocation when their device antennas are 

placed less than 0.5 meters apart. On the other hand, proximity considers larger distances, where 

interfering effects are only caused by radiation. The devices are typically located in the antenna 

far field range.  

Since there are better chances to exchange information among homogeneous devices, therefore their 

coexistence can almost always be dealt by using collaborative means. Whereas, the coexistence of 

collocated devices is mainly a concern of device manufacturers. This dissertation proposes cognitive 

strategies to improve the coexistence behavior for non-collaborative heterogeneous and homogenous 

radio systems operating in proximity scenarios. 

This chapter discusses major challenges involved to realize these cognitive strategies and proposes 

suitable solutions. Table 3.1 briefly summarizes the concepts presented in this chapter while Fig. 3.1 

presents a flow diagram of existing and proposed strategies in a comparative manner. Later on, 

section 3.1 confines limitations of existing cognitive methods. Section 3.2 presents proposed solutions 

and section 3.3 proposes a cognitive engine that incorporates the proposed solutions.   
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Table 3.1: Summary of limitations of existing cognitive strategies and solutions proposed in this thesis. 

 Existing approach Proposed approach 

Predictive modeling 

Multi-channel predictive modeling: 

Reactive / proactive sensing can’t 

anticipate the primary user activity 

and results in harmful collisions 

between primary and secondary 

signals. In order to coup with this 

problem predictive modeling based 

OSA has already been proposed. 

Multi-channel view of traditional 

predictive sensing approaches doesn’t 

account for missing information 

caused by limited sensor bandwidth. 

Therefore, accuracy of model 

parameter estimation remains a 

critical limitation of existing 

predictive modeling based OSA 

approaches in real-time applications.   

(section 3.1.1) 

Multi-PU predictive modeling: 

Multi-PU view of proposed predictive 

sensing approach supported by a radio 

knowledge base (RKB) performs 

bandwidth independent parameter 

estimation to treat the missing data 

caused by limited sensor bandwidth. 

Individual PU streams are extracted 

from the amalgamated coexistence 

stream and are modeled individually. 

Hence, statistical parameters are 

estimated for individual PU systems 

instead of individual channels.  

(section 3.2.1),  

(chapter 4, chapter 5) 

Decision making for 

resource allocation 

Dumb hole detection (DHD): 

Decision making about radio resource 

allocation is done on the basis of 

spectral holes. Where, a spectral hole 

is the result of binary hypothesis 

testing (Eq. 2.1) based spectrum 

sensing. It merely carries information 

about the presence or absence of a 

primary signal and doesn’t provide 

detailed coexistence behavior of 

primary signals. 

Eventually, opportunities in the 

coexisting environment can’t be fully 

exploited because of limited 

knowledge provided by the spectral 

holes, therefore the existing hole 

detection approach is dumb.  

(section 3.1.2) 

Intelligent hole detection (IHD):  

M-ary hypothesis testing (Eq. 2.2) is 

proposed to classify the primary 

signals with respect to standard 

technologies. The identification of 

primary signals in turn can be used to 

learn transmission characteristics of 

the signal from documented standards 

that better explains the coexistence 

behavior of signals. 

RKB can be maintained that 

includes documented knowledge of 

primary systems and secondary 

system’s operating history. Signal 

identification is then used to index 

useful information in RKB to explore 

hyper-spatial holes to better exploit 

opportunities in the coexisting 

environment in an intelligent way.  

(section 3.2.2),  

(chapter 4, chapter 6) 
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3.1 Shortcomings of Existing Cognitive Strategies 

A SU requires efficient situational awareness to utilize cognitive measures against harmful interference 

to/from PU systems. Where, situational awareness includes sensing the environment followed by a 

hypothesis testing for detection of available opportunities in the shared radio environment. In predictive 

modeling based approaches, the situational awareness is further enriched by forecasting the primary 

activities in the radio environment. Improved knowledge about the coexisting environment essentially 

means better decision making for secondary resource allocation. The following subsections identify 

shortcomings of existing situational awareness and cognitive decision making mechanisms.   

3.1.1 Multi-channel Predictive Modeling  

Typically, a CR system either senses a channel just before starting its desired transmission or performs 

this task periodically in order to remain aware about the operational environment. The former method is 

typically known as reactive sensing, while the latter one as proactive sensing [GHA08, HYO08]. Apart 

from when to sense, both methods are similar in nature, because both decide about the availability of the 

sensed channel merely on the basis of information obtained during the sensing process as illustrated in 

Table 3.2. These approaches can be regarded as collision detection strategies, since preventive measures 

can only be taken upon detecting a collision. Consequently both approaches suffer from the following 

problems: 

1. It is not possible to anticipate the usage of a spectral area, which hinders optimal decision making for 

channel selection. For instance, selection of CH1 and CH2 in Table 3.2 is equally likely, although 

CH1 will result soon in an extra switching. Similarly, CH3 can be an excellent choice, since it is 

available for the longest time in future, but a conventional sensing method will always detect it as a 

black hole.  

Table 3.2: Conventional reactive/proactive sensing vs. predictive sensing 

 

Conventional sensing Predictive sensing 

classification switching classification switching 

 

black hole yes black hole yes 

white hole yes black hole - 

white hole - white hole - 

black hole - white hole - 

black hole yes white hole no 
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2. There is always an interference window before a collision is detected, as shown at ‘current channel - 

CH0’ in Table 3.2. 

3. SU transmission often suffers unnecessary interruptions. For instance, if CH0-a is the current channel, 

then the selection of a new channel may not be an optimal decision since the interference is for such a 

short time that it will be ended just after the switching is done. Similarly, selection of CH1 will result 

in an unnecessary interruption soon after switching is completed. 

The limitations of reactive/proactive sensing approaches can be overcome by predictive modeling based 

OSA
7
 which is also referred as predictive sensing. It uses statistical modeling of the channel usage and 

employs probabilistic methods to predict those spectral-temporal areas where collisions are least likely to 

occur. Therefore, it can be regarded a collision avoidance (CA) approach. A comparison of predictive 

sensing with conventional methods is presented in Table 3.2 and further discussed in section 3.1.1.2. 

3.1.1.1 Sensor Bandwidth Limitation 

In order to completely understand the working and limitation of state-of-the-art predictive modeling based 

OSA approaches it is necessary to first recognize a fundamental limitation of sensing platforms. The 

sensing platforms that can be used for data acquisition can be categorized as wideband or narrowband 

with respect to the bandwidth of sensor (Bs) relative to the bandwidth of interest (BW). Where, Bs < BW and 

Bs ≥ BW correspond to the narrowband and wideband sensing platforms, respectively. Due to 

technological limitations a narrowband sensor is employed quite often in existing real-time applications. 

A standard method to scan the entire band of interest with a narrowband sensor is swept sensing [TEK04-

AGI04] as illustrated by Fig. 3.1.  

However, swept sensing can easily miss primary radio systems resulting in a loss of valuable spectral-

temporal information which is vital for predictive modeling and parameter estimation. A solution, to 

improve the detection probability, is to sense for a longer time at a single frequency as shown by triangles 

in Fig. 3.1. However, this solution can only improve the detection probability in situations where a single 

frequency has to be particularly stressed e.g. if the CR system is already transmitting in a channel and it 

wants to continue in the same channel and just wants to make sure after some time that the channel is still 

free. The overall probability of data loss does not improve across the entire band of interest. Furthermore, 

this solution directly conflicts with the efficiency requirements particularly in real-time applications with 

low latency requirements, especially because the task of sensing is already quite time consuming as 

compared to other tasks of a radio system. Cooperative sensing using multiple sensors can be another 

                                                           
7
 It is also referred as MAC-layer sensing or MAC-PHY sensing or cross layer sensing in the literature 
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solution, e.g. as used in [XIZ11], but at an expense of increased system complexity, cost and resources. 

This thesis will present non-cooperative cognitive strategies using a single narrowband antenna.  

 

Figure 3.1: Illustration of swept sensing. Where, Ts = sample time, Tw = time required to sweep the entire 

band of interest, BP = bandwidth of primary radio system. 

3.1.1.2 Predictive Sensing: Multi-channel Predictive Modeling Approach 

In general, given that the SU is not able to sense the entire band of interest at once, the existing predictive 

sensing strategies view the spectrum as a collection of multiple non-overlapping channels and model the 

PU activity in each of these channels. The model is then either used to directly choose a channel with 

least probability of interference instead of sensing before each secondary transmission or is used to sense 

the channels in an optimal order with an objective to detect maximum opportunities. Following is a short 

literature overview of predictive sensing approaches: 

In [HYO08], a sensing-period optimization mechanism, a channel-sequencing algorithm and an 

environment adaptive channel-usage parameter estimation method are presented. The PU traffic is 

assumed independent identically distributed ON/OFF patterns and is modeled using a semi-Markov 

process. It proposes a maximum likelihood parameter estimation method using four transition 

probabilities (ON→ON, ON→OFF, OFF→ON, OFF→OFF) of the channel usage which have to be 

computed from samples acquired for each channel. The predictive modeling based method is reported 

finding 22 % more opportunities with smaller channel discovery delay than the conventional sequential 

sensing method.   

In [HAI09], the optimal sensing order problem is formulated as a multi-armed bandit problem for 

multiple channels. The busy/free status of each channel is independent from other channels. Statistical 

parameters of primary transmissions in each channel are computed online using a gradual sensing 
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method. As a starting point, each channel is sensed once and an initial estimation of parameters is 

obtained which is then gradually improved as the sensing time grows. 

An extended knowledge based reasoning (EKBR) is presented in [XIA10]. A secondary user initially 

possesses no statistical information about the primary traffic which is assumed an i.i.d. Poisson arrival 

process. It performs fine sensing in a proactive manner to determine an initial set of probabilities 

regarding channel availability. Upon the request of data transmission, the SU retrieves its short-term 

statistics, and initiates fast sensing immediately on all channels to obtain the instantaneous statistical 

information. The short-time and instantaneous statistics are then used with knowledge based reasoning to 

maximize the detection probability of opportunities. OSA using EKBR is reported to have outperformed 

the traditional approaches in terms of sensing delay, transmission rate and percentage of missed 

opportunities.  

In [HOY08], sensing information is stored in a channel history database in order to retrieve it later to 

compute statistical parameters of channel usage, where multiple channels are sensed sequentially. Primary 

traffic in each channel is first classified as one of four patterns which are, periodic traffic with fixed 

ON+OFF time, fixed OFF and random ON times, fixed ON and random OFF times, both ON and OFF 

random times. Probabilistic availability of each channel is then computed using the identified patterns of 

ON and OFF states of the channel. It is demonstrated using simulations that the channel switch rate is 

reduced up to 55 % in comparison to the traditional reactive methods. 

In [QIN07], the theory of a Partially Observable Markov Decision Process (POMDP) is used to provide 

an analytical framework for opportunistic spectrum access. The usage of each channel is assumed to 

follow a Markov chain, whose transition matrix is already known to the secondary users. Using POMDP 

an opportunistic user makes optimal decisions for sensing and access based on the belief vector that 

summarizes the knowledge of the network state based on all past decisions and observations. 

In [XIZ11], a Cognitive Radio-EnAbled Multi-channel MAC (CREAM-MAC) protocol with cooperative 

sequential spectrum sensing scheme with multiple channels is presented. The channel usage pattern of the 

PUs follows an i.i.d. ON/OFF renewal process. Multiple nodes of the SU network cooperate to maximize 

the detected opportunities where each SU is equipped with multiple sensors.  

In [GEI07], a Poisson distributed IEEE 802.11 based WLAN network traffic is modeled using a semi-

Markov process in order to exploit temporal opportunities. Spectrum sensing and predictive modeling are 

performed for only one channel where the WLAN based PU is active. An enhanced hopping scheme is 

then presented for Bluetooth systems to coexist with the WLAN primary system. It is demonstrated that 
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the predictive modeling based hopping scheme outperforms the traditional counterpart in terms of 

collision rate and throughput. 

All this work reports promising results and highlights the usefulness of predictive modeling to realize 

opportunistic spectrum access. However, model generation and parameter estimation methods of these 

strategies face at least one of the following limitations:   

1. All primary channels are sequentially sensed to acquire the training data such as in [HYO08]. 

However, as the number of channels increases the sampling interval between two consecutive 

samples of a particular channel increases as illustrated in Fig. 3.2, which decreases the accuracy 

of estimated model parameters.   

 

 

Figure 3.2: Sequential sampling of three channels 

 

2. It is sometimes assumed that statistical parameters of the primary traffic are known to the 

cognitive system, e.g. in [QIN07], which is an unrealistic assumption for time varying 

environments. 

3. Sometimes, only a small set of channels is considered for modeling where it is very easy to 

collect statistical parameters of the PU system. E.g. [GEI07] where only active channels of 

IEEE 802.11 are modeled.  

4. Multiple multi-sensor or single sensor nodes cooperate to acquire samples of multiple sensors 

[XIZ11]. Firstly, it requires more resources and secondly, the data acquisition problem becomes 

trivial at each individual node similar to the one mentioned in 3.  

5. A gradual learning approach, e.g. [HAI09, XIA10], shows potential for real-time parameter 

estimation. However it also relies on assumptions and limitations stated in 1-3.   

6. Sensing information is stored, e.g. in [XIA10, HOY08], and used later for statistical parameter 

estimation. However, the dynamic nature of real-time environments may not be accurately 

represented with previously stored information. 
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Summarizing the entire discussion presented in section 3.1.1 it can be concluded that despite the 

effectiveness of existing predictive modeling in OSA based approaches there is still a great need for 

advanced methods that can provide up-to-date and accurate model parameter estimation when the wider 

band of interest is comprised of multiple channels accompanied by a narrow bandwidth of the SU sensor. 

Section 3.2.1 proposes identifying and extracting individual PU systems from the coexisting environment 

to perform bandwidth independent parameter estimation using non-cooperative sensing with a single 

antenna. In turn, transmission characteristics of each PU should be modeled separately giving a multi-PU 

view of the spectrum instead of the traditional multi-channel perspective.  

3.1.2 Dumb Hole Detection  

Conventionally, the hole detection process merely identifies the presence or absence of the PU signals as 

it is formulated by the binary hypotheses given in eq. (2.1). Such a hole detection process provides 

information about: 

1. The instant occupancy status of the scanned spectral area.  

2. The signal strength of the PU signals. 

It can be argued that this information is not enough to tune the cognitive radio system to optimally exploit 

the multi-dimensional opportunities. Therefore, it shall be named a dumb hole detection (DHD) method. 

In order to understand this notion, it is important to understand the concept of coexistence margin, which 

can be defined as follows: 

Coexistence margin: “Coexistence margin is the measure of ability of a SU radio system to tolerate 

interference or accommodate interference if it is intolerable.”  

It is a combination of the perspective of the harmful interference and reconfigurability of a radio system, 

physical strength of interfering signal and appropriateness of situational knowledge acquired by the SU 

system. These parameters are explained in the following: 

Perspective of the harmful interference: As already mentioned in the first chapter, harmful 

interference, i.e. the level of interference where the performance degradation is felt by a radio system, 

depends on operational circumstances and goals of the radio system. A robust communication system 

may tolerate high interference because error handling methods employed across different layers of its 

protocol stack are able to keep the influence of interference hidden from its end users. It can do so by 

either error correcting codes or retransmissions at the data link layer or routing around areas of high 

interference at the network layer or by using more buffering at the application level etc. However, 

consequences of these error handling methods such as reduced battery life, increased delay, reduced 
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system capacity or coverage may themselves be significant performance degradation factors for other 

systems. Systems that can’t compromise on these factors may require a lightweight stack, consequently 

lacking such cross layer error handling capabilities which make them unable to tolerate even low to 

medium levels of interference. Eventually, there is a greater need of coexistence management strategies 

for such radio systems. 

Physical strength of interference: Physical strength of interference over the time interval, in which the 

cognitive SU is interested to transmit, is the result of interferer’s bandwidth, received power at recipient’s 

antenna and duty cycle. Although, channel parameters such as path loss and fading effects also 

significantly influence the physical strength of interference, but these are beyond the scope of this thesis. 

Meanwhile, the duty cycle itself is a function of many other signal parameters such as symbol rate, packet 

length, retransmissions, overhead bytes, preamble length, total number of network nodes etc.    

Reconfigurability: A SU radio platform offering more configurable orthogonal parameters will be able 

to exploit more dimensions of the hyperspace (see Table 3.3 for a short list of important hyperspace 

dimensions). Note that these hyperspace dimensions are orthogonal opportunities from the SU’s 

perspective but are operational parameters of primary systems that influence their coexistence behavior. 

For example, a CDMA based PU system offers an orthogonal opportunity in the code dimension but only 

a CDMA enabled SU system can avail this opportunity. 

Appropriateness of situational knowledge: The hyperspace dimensions are directly related to the 

operating parameters of the PU system that define its coexistence behavior. Consequently, a particular 

hyper-spatial opportunity emerges only if the PU system is operating using certain parameters. A CR 

system needs sufficient knowledge about operational parameters of the PU systems in order to optimally 

tune the underlying radio system. For instance, a SU capable of transmitting using CDMA can justifiably 

choose this option only if it knows that the PU system is a CDMA based system. However, the DHD 

method considerably lacks such situational knowledge. In addition to this, the DHD method also has the 

following limitations: 

1. The DHD method can’t even completely evaluate the physical strength of interference because of 

its inability to detect several important parameters such as symbol rate, packet length, 

retransmissions, overhead bytes, preamble length, total number of network nodes etc.  

2. Different hopping systems have different hopping characteristics. For example, a Bluetooth 

system offers very short lived interference since it stays for only 625 µs – 1875 µs in a single 

channel as compared to several milliseconds of a slow hopping ISA100.11a system. Some 

hopping systems may be simultaneously using several channels; an example of which is Wireless 

Interface for Sensors and Actuators (WISA) using 5 channels (see Appendix A3). Knowledge of 
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such hopping characteristics can be very helpful in the decision making process but it can’t be 

provided by the DHD method as it merely detects the instant occupancy status. 

 

Table 3.3: Selected dimensions of hyperspace and related coexistence opportunities. A comprehensive 

list of communication parameters that can affect coexistence behavior and operation of radio systems is 

provided by IEEE 1900.2 [STD28] and is included in Appendix A1. 

General class Hyperspace dimension Opportunity 

Frequency Frequency Utilize frequency multiplex. 

Time Time Utilize time multiplex. 

 Space 
Location Utilize MIMO features, i.e. make use of directional 

transmitting and/or receiving abilities. Angle of arrival (AoA) 

Additional 

signal features 

Code These items can be viewed as secondary dimensions of 

hyperspace but can help to achieve simultaneous 

transmission without interfering primary users. 
Polarization 

Power 

Concepts such as an ultra-wideband underlay, spread 

spectrum, and interference temperature [HAY05] are all 

methods that manage transmit power to improve 

coexistence with other radio systems. 

 

In short, more knowledge of the coexisting environment enables the cognitive system to perform better 

decision making to optimally exploit available opportunities in a multi-dimensional hyperspace. Although 

the DHD method if using some sophisticated spectrum sensing methods, e.g. CFD, can detect few 

additional parameters such as modulation, symbol rate, chip rate etc., only at a cost of increased overhead 

and complexity. Yet it is impossible to detect all communication parameters using this approach. 

However, the complete set of communication parameters of the primary systems will better express their 

coexistence behavior. Hence, there is a need to find methods that can enable the CR system to acquire 

enough knowledge of the transmission characteristics of primary systems. Section 3.2.2 proposes to 

classify the PU systems with respect to standard technologies. The standard based identification of PU 

systems can then be used to learn the complete communication parameter set of the corresponding PU 

systems from documented standards. 
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3.2 Proposed Solutions 

3.2.1 Multi-PU Predictive Modeling  

Instead of dividing the entire band of interest into multiple channels with respect to the bandwidth of SU 

sensor and modeling the usage of each individual channel, this dissertation suggests modeling the 

transmission pattern of each coexisting system separately. In order to do so the coexisting systems have to 

be first identified. Once identified, transmission streams of individual PU signals have to be extracted 

from the amalgamated coexisting environment. The extracted signals of si a-priori known technologies 

can then be individually modeled and due to the linear proximity environment the accumulative response 

of these individual models can be used to approximate the overall statistical behavior of the coexisting 

environment x, as specified by eq. (3.1) and eq. (3.2) in time and frequency domains respectively. 

t
(� = l�
(� + l�
(� +⋯+ l�
(� (3.1) 

Taking the FFT of eq. (3.1) results in eq. (3.2): 

Æ
2� = 1�
2� + 1�
2� +⋯+ 1�
2� (3.2) 

The main advantage of identifying and modeling individual primary signals over traditional multi-channel 

based approaches is that it enables to use known signal features for reliable modeling and parameter 

estimation.    

3.2.1.1 Bandwidth Independent Parameter Estimation 

In order to put the narrowband sensors to the same grade of performance as of wideband sensors 

bandwidth independent parameter estimation methods are proposed in this thesis work. The term 

bandwidth independent in the context of predictive modeling means that the estimation error should be 

independent of the sensor bandwidth (BS), PU bandwidth (BP) and the width of entire band of 

interest (BW). As an example, consider that two PU systems with bandwidths BP1 = 1 MHz and 

BP2 = 20 MHz and arrival rates λP1 and λP2 are coexisting in the 2.4 GHz band (BW = 80 MHz) and two 

sensors with bandwidths Bs1 = 1 MHz and Bs2 = 80 MHz are independently used to sense the radio 

environment. The bandwidth independent estimation ideally means that the estimated values of λP1 and λP2 

should be the same for both sensors. The proposed approach involves two major concepts; these are, 

viewing the shared spectrum from the multi-PU perspective instead of multi-channel perspective and 

treating the problem of modeling using narrowband sensing as a problem of learning from missing data. 
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3.2.1.2 Parameter Estimation using Narrowband Sensors - a Missing Data Problem 

Since narrowband sensing always misses some useful data, the parameter estimation problem using a 

narrowband data acquisition platform has to be treated as a problem of learning from missing data. The 

eventual target is to estimate statistical parameters such as mean, arrival rate etc., of the primary signals of 

diverse bandwidths with the same level of accuracy using wideband as well as narrowband sensing 

platforms. Primary transmissions are modeled using first order Markov model in chapter 5 and HMM and 

renewal theory based methods are used to estimate model parameters in the presence of missing training 

data. 

3.2.2 Intelligent Hole Detection 

In order to equip the CR system with sufficient situational knowledge this thesis suggests an intelligent 

hole detection (IHD) method. In a broader sense, IHD means cognitive decision making for radio 

resource allocation has to be performed on the basis of complete knowledge of the PU systems. The idea 

is to use a radio knowledge base (RKB) to include information extracted from documented standards for 

all systems of interest. The extracted information such as bandwidth, channel frequencies, modulation, 

data rate, spreading, hopping etc. can better explain the coexistence behavior of the primary system in 

contrast to only considering the signal strength and instant occupancy status of the spectrum. In turn, the 

CR system can identify the coexisting systems and relate the already stored information to acquire enough 

situational knowledge to perform optimal tuning as illustrated by Fig. 3.3. Additionally, the CR system 

can evolve its RKB by collecting its own working experience with respect to different coexisting systems 

if it is aware of the identity of the PU systems.  
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Figure 3.3: A hypothetical example of coexistence management of DHD and IHD based CR systems in a 

crowded environment. a) If a white hole is not detected then the DHD based CR system decides to 

transmit at a frequency where the amplitude of the interfering signal is weakest, b) An IHD based CR 

system can reject interference of all four PU systems as follows. It chooses a DSSS based waveform to 

reject WLAN interference and transmits in idle times between consecutive cyclic transmissions of a 

NanoNET based interferer. The knowledge of the CR system about the ability of Bluetooth and 

wirelessHART to blacklist active WLAN channels can be another motivation of choosing to coexist with 

the WLAN system and avoid both other systems.  
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3.2.2.1 A Real-time Example 

A simple cognitive test-bed, based on USRP2 [ETTUS], is implemented to demonstrate the decision 

making based on dumb and intelligent hole detection methods. There are four channels for the SU test-

bed defined over 10 MHz bandwidth at 2.407 GHz, 2.422 GHz, 2.44 GHz, and 2.455 GHz center 

frequencies. Three different PU systems are used to create a coexistence scenario in the 80 MHz wide 

2.4 GHz band as shown in Fig. 3.4a. Based on prior experimental results, the CR system has learnt (in 

fact this information is hardcoded in SU to substitute a real RKB) that an Atmel system (PU1 in Fig. 3.4) 

is a very high duty-cycle periodic system and the worst interferer for it. IEEE 802.11 based PU2 is a 

mediocre interferer and CSS based PU3 is a wideband low duty-cycle system and offers almost negligible 

interference to it. To realize the DHD method, the test-bed needs no knowledge about the PU systems and 

simply scans the entire band to find available holes. After finding the entire band equally occupied it 

decides to transmit in the first channel as shown in Fig. 3.4b and suffers very high interference from PU1 

and PU2. In order to realize the IHD method, the cognitive test-bed identifies the coexisting radio systems 

(using the NFSC classifier presented later in chapter 4) and uses its stored (hardcoded) knowledge about 

the strength of these interferers to take a decision about tuning itself. Eventually, the SU chooses the last 

channel, where the interference is negligible (Fig. 3.4c). 

 

Figure 3.4: Opportunistic operation of a USRP2 based SU using DHD and IHD based methods. 
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Obviously, this example scenario is limited but at this point it is sufficient because the main purpose is to 

illustrate the concept. In real-time situations the optimal parameter selection can itself be a significant 

challenge because the coexistence of radio systems is a multi-objective optimization problem [THO07]. 

Hence, the CR system should be able to plan a set of operating parameters that meet all conflicting 

objectives under imposed constraints. In this simple example the parameter selection or more formally the 

resource allocation problem is mere frequency selection. However, in real-time scenarios the resource 

allocation problem is expected to be much more complicated than this example because the CR system 

has to evaluate all possible orthogonal opportunities with respect to the given coexistence scenario and 

reconfiguration capabilities of itself. 

Overall, there are three constituents of the proposed IHD method. These are classification of primary 

signals, maintenance of RKB and optimal resource allocation. This dissertation will address the problem 

of signal classification in chapter 4. The remaining aspects of IHD are addressed in chapter 6 for some 

selected scenarios. 

3.2.3 Classification of PU Signals with Respect to Known Standards 

Classification of primary signals is basic to multi-PU predictive modeling and intelligent hole detection 

methods. It has already gained much attention but the majority of the stat-of-the-art radio signal classifiers 

such as [FEH05, KYO07, HAN08, WUD05, CAT07, JOL08, WEN99], lie in the category of automatic 

modulation classification (AMC) 8  as shown in Table 3.4. However, in order to usefully utilize the 

documented knowledge of standard technologies it is essential to classify the signals with respect to 

known standards. While, modulation alone cannot be used for this purpose because many standard 

technologies can employ the same modulation e.g. ZigBee, ISA100.11a and WirelessHART all use O-

QPSK modulation. Therefore, the classification of coexisting signals with respect to known standards is 

an essential part of this dissertation. A neuro-fuzzy signal classifier (NFSC) is presented in chapter 4 to 

classify the primary radio systems with respect to known standards. It uses operating frequency, 

bandwidth, pulse shape, hoping behavior and time behavior of primary systems as distinct features. 

However, a few contributions presented in recent years have already addressed the classification of 

signals with respect to standard technologies, such as [SHR11, PAL03]. The work presented in [SHR11] 

uses a WiFi based Airshark card, capable of acquiring RSSI based spectrum sensing using 20 MHz 

bandwidth, to classify several state-of-the-art hopping and non-hopping standard radio technologies. The 

overall approach looks somewhat similar to that of the NFSC though it uses a decision tree based 

classifier unlike the neuro-fuzzy approach of the NFSC. However, the NFSC had already been partially 

                                                           
8
 AMC is the automatic identification of the modulation of the received signal without any prior knowledge. 
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reported in [AHD10, AHA10] before [SHR11]. Furthermore, a 20 MHz sensor is already wide enough to 

acquire good training data in an 80 MHz target bandwidth. In comparison to it the NFSC does not limit 

itself to a sensor of any particular bandwidth and treats the classification problem generally in the context 

of sensor bandwidth. The work presented in [PAL03] addressed the problem of standard classification 

using a two parameter (pulse shape, BW) NN based classifier. In contrast to it, firstly, the NFSC includes 

more parameters i.e. fc, hopping behavior, temporal behavior in addition to pulse shape and BW, as 

distinct features providing better discriminating capabilities. Secondly, the fuzzy logic based approach of 

the NFSC strengthens discriminating capabilities of the classifier because fuzzy-logic provides robustness 

against noise and other anomalies caused by multipath and fading effects of real-time environments. 

Table 3.4: A survey of radio signal classification methods 

References 
Parameter 

extraction method 
Parameter extracted Learning method Labeling 

[FEH05] SCF ∝-profile
2
 MLPN

1
 Modulation 

[KYO07] SCF ∝-profile
2
 HMM Modulation 

[HAN08] SCF ∝-profile
2
 SVMFM

1
 Modulation 

[WUD05] Wavelet analysis Localized frequency WSVM
1
 Modulation 

[CAT07] PDF
1
 of frequencies 

Frequency distribution 

features
3
 

Multiple NN Modulation 

[JOL08] PSD, SWWVD
1
 

Modulation type, modulation 

parameters, Instantaneous 

frequency 

Rule based classifier Modulation 

[WEN99] 
Constellation 

diagram 
Constellation points Fuzzy logic Modulation 

[QIN08] Universal classifier BW, symbol timing 

Sample, symbol and 

frame based 

reasoning 

Analog-digital 

categorization, 

modulation 

[SHR11] 

RSSI based 

frequency-time 

representation 

BW, fc, Spectral signature, 

Duty cycle, Pulse signature, 

Pulse spread, Pulse distribution 

Decision tree Standard 

[PAL03] PSD BW, Pulse shape RBF
1
 NN Standard 

1. Wavelet SVM (WSVM), Support vector machine and feature matching (SVMFM), Multilayer Linear perceptron 

network (MLPN), Temporal width (TW), Smooth-windowed Wigner-Ville distribution (SWWVD), Probability density 

function (PDF), Radial Basis Function (RBF) 

2. ∝-profile is the highest value of the spectral correlation function (SCF) for a given cyclic frequency ‘∝’ 

3. Frequency distribution features used are mean frequency and standard deviation of frequency 
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Furthermore, to the best of my knowledge the influence of bandwidth of data acquisition platform is 

never studied in the context of radio signal classification. The NFSC explicitly addresses the role of 

sensor bandwidth and studies test case scenarios using narrowband as well as wideband sensing 

platforms. Unlike supervised learning approaches, the NFSC follows an un-supervised approach and does 

not need explicit training. The need for training is not only a complicated job because it is difficult to 

obtain the training data of all real-time scenarios but it also causes the overfitting problem. Finally, the 

NN based architecture offers scalability. To add a new radio technology or a new signal feature PE’s 

corresponding to newly desired functionality have to be added without disturbing the existing structure. 

As an example a state-of-the-art modulation classifier can be added to the NFSC by merely adding new 

processing elements. 

3.3 Coexistence Optimized Cognitive Engine 

The proposed model of a coexistence optimized cognitive engine (COCE) combines all suggested ideas as 

shown in Fig. 3.5. Its functionality can be divided into five main components: signal classifier, predictor, 

opportunity locator, sensing organizer and parameter selector. Additionally, these components share a 

radio knowledge base (RKB) which stores ‘expert knowledge’ about radio systems and channels. This 

expert knowledge includes extracted information from documented standards and cognitive radios' own 

working experience and can be maintained manually or automatically by the system through an evolution 

process.  

 

Figure 3.5: Conceptual model of the proposed coexistence optimized cognitive engine 
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As a first step, unknown radio systems are labeled by the signal classifier. Based on this labeling 

information the signal classifier decomposes the incoming coexisting stream and outputs the individual 

signal streams. These streams represent the ON and OFF patterns of spectral usage at respective discrete 

time steps. Where sample time Ts of the underlying sensor provides the fundamental step size in all 

components of COCE. 

The extracted signals of a-priori known technologies can be individually modeled and the accumulative 

response of these individual models can be used to approximate the overall statistical behavior of the 

coexisting environment, as specified by eq. (3.1) and eq. (3.2). A bank of predictors, which includes one 

predictor corresponding to each distinct radio technology, receives the extracted signal streams. Each 

predictor models the incoming signal and generates probabilistic prediction of temporal-spectral behavior 

of the corresponding PU system. 

Furthermore, a radio environment map (REM) or a predicted REM (PREM) can be generated by 

combining the expert knowledge from RKB with either labeled signal streams or prediction, respectively, 

depending on the needs of the underlying radio platform. For instance, a SU radio platform capable of 

exploiting only frequency and time dimension may find it useful to use prediction to subsidize its limited 

reconfigurability. On the other hand, a platform richer in terms of reconfigurability, may already have 

enough leverage and can choose merely a REM to omit the modeling overhead to increase its efficiency. 

Finally, this REM/PREM is used by a parameter selection method to choose an optimal combination of 

parameters for safe transmission.     
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Chapter 4 

Classification and Extraction of Primary User 

Systems 

The process of signal classification typically consists of a feature extraction phase followed by a 

classification or labeling phase as shown in Fig. 4.1. Where, prominent signal features often used as 

distinct features for signal classification are modulation, data rate, symbol rate, bandwidth (BW), center 

frequency (fc), signal power, time and hopping behavior. 

 

Figure 4.1: Signal classification process 

Generally, the extraction of certain signal features needs complex and expensive signal processing. For 

instance, a popular method for this purpose is the computation of the spectral correlation function (SCF) 

which requires the FFT computation of order N followed by cross-correlation of order N
2
. Such 

challenging computational effort is not feasible in existing radio platforms. On the other hand, some of 

these signal features can be extracted without going into internal details of the signal, e.g. by using power 

spectral density (PSD) or frequency-time representation of signals. It merely needs FFT processing of 

order N. Table 4.1 lists important MAC/PHY layer parameters and methods used in popular literature to 

extract these parameters.  

This chapter presents a neuro-fuzzy signal classifier (NFSC) which uses a-priori known signal features to 

classify the PU systems and extract them from an incoming coexisting stream as earlier mentioned by 

eq. (3.1) and eq. (3.2). 
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Table 4.1: Prominent signal features and corresponding extraction methods 

Feature Parameter extraction method 

Channel definition (Bandwidth, center 

frequency fc) 
Power spectral density (PSD) 

Pulse shape (shape filter) Power spectral density (PSD) 

Modulation Cyclostationary feature detection 

Hopping pattern Time-frequency representation such as spectrogram 

Temporal pattern Time-frequency representation such as spectrogram 

Bitrate/Symbol rate Cyclostationary feature detection 

Mono/Multi carrier Cyclostationary feature detection 

 

4.1 Neuro-Fuzzy Signal Classifier  

A neuro-fuzzy signal classifier (NFSC), partially reported in [AHD10, AHA10], is implemented in order 

to classify the PU radio systems with respect to radio standards and extract individual systems from the 

coexisting environment. It uses bandwidth (BW), center frequency (fc), pulse shape, time behavior (TB) 

and hop behavior (HB) of primary signals as distinct features. All experiments are done in the 80 MHz 

wide 2.4 GHz ISM band using PU technologies presented in section 2.3. Thus, in terms of FL, the 

universe of discourse, XÛ, is as follows: 

XÛ = 62400	MHz ≤ 2 ≤ 2483	MHz8 (4.1) 

The block diagram of the NFSC is shown in Fig. 4.2. It consists of PEs distributed in six layers where 

each layer is specialized for a single task. The data acquisition and fuzzification layers consist of only one 

PE each. The inference layer consists of one PE for each PU, thus for n PUs there are n PEs in this layer. 

There is exactly one PE corresponding to each channel of each PU in all other layers. Consequently, if Mi 

denotes the total number of frequency channels of a particular PU, then each of these layers contains 

∑ yN�N�� 	PEs. The functionality of these layers is briefly discussed in the following paragraphs. 

4.1.1 Data Acquisition 

Wideband data acquisition: A real-time spectrum analyzer, Tektronix RSA6114A, is used as RF front 

end for capturing the entire 2.4 GHz ISM band as a single frame. It can process a bandwidth up to 
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110 MHz (sensor bandwidth Bs) using 14 bit/300 MHz analog-to-digital (A/D) convertors. It performs ED 

based sensing and generates the PSD by computing the FFT of the acquired frame. The left hand side plot 

in Fig. 4.3b and Fig. 4.3c display individual frames containing nanoNET, WLAN, Atmel, and Bluetooth 

signals, whereas, a combination of several frames, a spectrogram, is shown in Fig. 4.3a. The sample time 

(Ts) for data acquisition is 625 μs	for one frame in order to keep exactly one Bluetooth hop in a single 

frame. 

In addition to real-time data, simulated wideband data will also be used in this chapter. Some example 

spectrograms are included in Fig. A3.2, Fig. A3.6 and Fig. A3.9 for Bluetooth, WISA/WSAN and 

wirelessHART/ISA100.11a systems respectively in Appendix A3. The sample time for simulated data 

acquisition is 10 μs	for one frame in order to enable the NFSC distinguishing between minor variations in 

slot lengths of very identical systems such as between WISA (64 μs ) and WSAN (72 μs ) or 

wirelessHART (10 ms) and ISA100.11a (10…15 ms). 

 

Figure 4.2: Block diagram of the NFSC (PUH: frequency hopping PU, PUNH: PU without frequency 

hopping, SM: similarity measure, SD: statistical dispersion, CT: central tendency) 
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Narrowband data acquisition: A CC2500 transceiver from TI is used to perform RSSI based narrowband 

sensing. It can acquire only 0.812 MHz bandwidth. Exactly 80 channels are sensed in the 2.4 GHz ISM 

band with 1 MHz channel spacing. It performs swept sensing to generate a complete frame of the entire 

ISM band. The conventional MaxHold spectrum analyzer mode is applied to acquire a high resolution 

picture. However, as a disadvantage, the MaxHold mode looses all time related information. Therefore, 

this data can be used to process only two features, BW and fc, for signal classification. However, 

chapter 6 includes methods to improve the quality of narrowband data acquisition to provide somewhat 

equivalent information to the wideband data acquisition. Two example RSSI based frames, sensed using 

CC2500, are shown in the right hand side plot of Fig. 4.3. The sample time for the narrowband data 

acquisition method is approximately 100 μs. 

 
(d)  

Figure 4.3: (a) A spectrogram acquired with a real-time spectrum analyzer using 80 MHz acquisition 

bandwidth. (b) and (c) are PSD plots. The Bluetooth hop sequence captured in the spectrogram is a 

‘page hop sequence’ that uses only 32 channels (Appendix A3). (d) Swept spectrum analyzer scanning. 

Single sweep (top) vs. MaxHold mode (bottom) 

4.1.2 Fuzzification 

The incoming frame X
f� containing n dBm based frequency bins is mapped to a membership value 

between 0 and 1 as shown in Fig. 4.4 using the following MF: 

u
2� = âLmin,Lã
: â  (4.2) 

Where p	is the total range of the received dBm distribution (p = �min − �max) within a single frame. 

�min  and �max  are the minimum and the maximum dBm values and �x  represents dBm value 
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corresponding to individual frequency bins. The resulting frame, fuzzy power spectrum (FPS), is a fuzzy 

set and can be written as:  

3�1 = 4
Æ
2�, u
2��|2	­�	XÛ5 (4.3) 

  

(a) Strong signals (b) Weaker signals 

Figure 4.4: A PSD frame acquired by real-time spectrum analyzer (top) and the corresponding fuzzy 

power spectrum (bottom). The PSD frame includes WLAN and Atmel based primary signals. DoM: 

degree of membership.   

  

(a) (b)  

Figure 4.5: (a) Fuzzification of strong signals acquired by the wideband platform. The WLAN and the 

Atmel systems are operating. Note that presence of a stronger signal (Atmel) reduces the extent of 

stretching of other coexisting signals (WLAN). To solve this problem, a channel level stretching is 

done after filtering. (b) Channel level stretching for first channel of WLAN 
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As discussed earlier in section 2.2.1 fuzzy representation of inputs is mandatory to perform fuzzy 

operations later on. Additionally, in NFSC, this process provides functionality similar to adjusting the 

reference amplitude in a spectrum analyzer in order to improve the ‘peak prominence’ or visibility of 

weaker signals. The fuzzification process stretches the signal in the fuzzy interval (0, 1) to hide major 

anomalies in the original dBm data caused by channel impairments, path loss and diverse characteristics 

of different underlying data acquisition RF front ends. Consequently, it provides a fairly normalized data 

stream, for different channel conditions and sensing platforms, to its subsequent layers as shown in plots 

of two very different signal strengths presented in Fig. 4.4. For further illustration, some special cases are 

discussed in Appendix A4 using signals acquired in various bad channel conditions, with different 

sensing platforms. 

Furthermore,	 Pmin and Pmax in eq. (4.2) are selected at the frame level therefore the fuzzification process 

does not stretch all coexisting signals equally when the amplitudes of PU signals are considerably 

different from each other. To solve this problem I performed another stretching at the channel level after 

filtering, using the same MF as given in eq. (4.2). This phenomenon is shown in Fig. 4.5. 

4.1.3 Filtering          

Each PE emulates a band-pass filter functionality and allows frequency bins of the corresponding channel 

only. For instance, the two top plots in Fig. 4.6a and Fig. 4.6b show filtered parts of the input FPS 

corresponding to two selected channels of WLAN (1
st
 and 6

th
) and Atmel (15

th
 and 39

th
) PU systems. The 

incoming frame, FPS, filtered over the _/å channel of PUi is represented as: 

3�1N.� = 43�1, 	uN,�filter
2�5 (4.4) 

where, uN,�filter
2� is the fuzzy MF used as filter. It is the pulse shape of the corresponding PU signal. 

Commonly used pulse shaping filters in communication systems are raised cosine, the root raised cosine 

and the Gaussian filters. However, pi-curve is used to design filters for all PUs in experiments reported in 

this document because it provided sufficient approximation for experimental purposes. It is given below: 

uN,�filter
2� = £Curve�BWNPU × D, 		2�� (4.5) 

where BWNPU is the bandwidth and 2� 	 is the center frequency of _/å channel of �XN. D is a constant, which 

can be selected to adjust the width of pass-band of the filter for each PU. In presence of coexisting 

systems with diverse bandwidths, it is noted during experiments that ‘narrower’ systems should always be 

filtered with relatively wider bandwidths than their actual channel bandwidths. Otherwise, a wider-band 

signal is incorrectly detected as a narrower-band signal. The following values were determined during 
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simulations and used for specified systems in the rest of document: DNanoNET = 1, DWLAN = 2, 

DIEEE 802.15.4 = 4 and DAtmel/DIEEE 802.15.1 = 8 as optimal values during experiments. 

 

(a): uêëì�
pulse	shape

 and 3�1êëì� for two selected channels (top) and SM score of all 13 channels (bottom) 

 

(b): uì�|��
pulse	shape

 and 3�1ì�|�� for two selected channels (top) and SM score of all 94 channels (bottom) 

Figure 4.6: Results at filtering and SM layer using the FPSs shown in Fig. 4.4. Note that the 

fuzzification process results in identical SM scores for stronger and weaker signals shown in Fig. 4.4.  
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4.1.1 Similarity Measure 

It compares the incoming filtered FPS, ufilter
2�, with the ideal pulse shape of the respective PU signals 

to generate a similarity measure (SM) score. The resulting SM score can be either defuzzified using a MS 

like the one shown in Fig. 4.7 or simply compared with a predefined threshold value to evaluate the 

presence or absence of the corresponding PU signal. For instance, for both FPSs shown in Fig. 4.4, the 

SM score for 13 WLAN and 94 Atmel channels is plotted in Fig. 4.6.  

 

 

Figure 4.7: The membership function to grade the SM score 

 

In terms of BW and fc, the PU systems presented in section 2.3 can be divided into four distinct classes, 

which are NanoNET, IEEE 802.11, IEEE 802.15.4 and Atmel/IEEE 802.15.1 based systems. At the SM 

layer the NFSC successfully distinguishes between these classes. However, signals which are identical in 

terms of these parameters, e.g. different variants of a standard such as WISA and Bluetooth, can’t be 

differentiated from each other at this layer. The MF used as ideal pulse shape is given by eq. (4.6) while 

the pulse shapes used for WLAN and Atmel signals are also shown in the top plots in Fig. 4.6a and 

Fig. 4.6b.  

uN
pulse	shape
2� = £A§m«j�BWNPU� (4.6)  

The comparison of the filtered FPS with an ideal pulse shape is done by computing the SM. Thus, 

eq. (2.9) can be written as follows:  

1yN,� = u�í
2� = ∑ |��	
�filter
Û�î∈� .�pulse	shape
Û��
|}~	
∑ 	�filter
Û�î∈� ,∑ 	�pulse	shape
Û�î∈� � (4.7) 

where 1yN,� is a fuzzy singleton, computed in a single PE and is a measure of the PUi presence in one of 

its channels, i.e. the jth channel. The complete fuzzy set for PUi, i.e. the SM over all Mi channels computed 

by Mi PEs, is as follows: 

1y = �ï3�1, uSM
2�ð¢ (4.8) 
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The fuzzy set, SM	 or	 SMi	 for	 PUi, only contains a DoM. It is compared with a predefined threshold value 

for each PU system represented by γ
SM

, to categorically label the presence or absence of a PU using the 

following MF: 

Ãsc¤ÃN,�SM = uñz{ÑñSM�1yN,�� = e1					if	1yN,� ≥ �NSM
0					otherwise							 (4.9) 

where, LABEL
SM

 is a binary time series representing SM layer labeling. Using fuzzy set notation it can 

be represented as:  

Ãsc¤ÃSM = �ï1y, uñz{ÑñSM
1y�ð¢ (4.10) 

Example SM sets for WLAN and Atmel systems using two FPSs presented in Fig. 4.4 are plotted in 

Fig. 4.6a and Fig. 4.6b respectively. The SM score for four selected PU systems for FPS presented in 

Fig. 4.5 are shown in Fig. 4.8. 

 
 

Figure 4.8: SM of four specified systems using FSP shown in Fig. 4.5. Since only WLAN and Atmel 

systems are active in the input FPS, these results correspond to true negative for NanoNET, true 

positive for WLAN and Atmel systems and false positive for Bluetooth. A threshold line at γ
SM 

= 0.6 is 

also visible. 

 

Note that Ãsc¤ÃNSMcompletely preserves frequency and time related information of an individual PU 

system and acts as extracted binary time series. Operating parameters, such as center frequency of the 

active channel or hop, duty cycle, period (in case of cyclic systems, e.g. NanoNET and Atmel in these 

experiments) etc. can easily be deducted from it to model the transmission of respective PU systems. For 

sake of illustration the extracted binary time series for four PU systems are plotted in Fig. 4.9a with real-

time acquired data and for two hopping systems in Fig. 4.9b using simulated wideband data. However, it 

should be noticed that incorrectly identified entries for identical systems are still there in Ãsc¤ÃNSM.  

Section 4.2.2 presents a detailed performance analysis of the detection probability of the NFSC at the SM 

layer using receiver operating characteristic (ROC) curves. 
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(a) Real-time wideband data acquisition. Note that the Atmel and Bluetooth systems are very identical 

in terms of channel definitions therefore the SM layer can’t differ between these signals. 

 

(b) Simulated wideband data. Identification and extraction of multiple hopping systems with distinct 

channel definitions. WirelessHART and Bluetooth are used as PUs at SNR = 2dB. 

Figure 4.9: PU classification and extraction at SM layer 
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4.1.2 Distinguishing Between a Hopping and a Non-Hopping System 

In order to discriminate between a hopping and a non-hopping system with identical channel definition, 

the last two layers of NFSC are implemented as follows. 

4.1.2.1 Statistics Layer 

Descriptive statistics summarize an entire data set to describe the main features of it. Statistical 

dispersion (SD) and central tendency (CT) are two of several measures of it. The former measures the 

spread of data and the latter measures how the data is clustered around a single value. Transmissions of a 

hopping system are reasonably spread over its hopping channels and have high SD as long as the total 

number of captured hops is fairly large. On the other hand a non-hopping system exhibits high CT, since 

all occurrences are expected to be at a single channel. 

PEs corresponding to non-hopping PU systems maintain cumulative moving average of incoming binary 

values as a measure of CT as given by the following MF: 

A	N,� = uþ��Ãsc¤ÃNSM� = ñz{Ññ
 ,¡�,�SM 	�

�,��	×�$
 ,¡�,��Ï��  (4.11) 

where q is the total number of processed frames. On the other hand, only the first occurrence over each 

hopping channel is remembered for a hopping PU system as a measure of SD. It is given by the following 

MF:  

1�N,� = u���Ãsc¤ÃNSM� = �1																							if	Ãsc¤ÃN,�SM = 1
unchanged				otherwise										 (4.12) 

where �ïÃsc¤ÃSM, uCT�Ãsc¤ÃSM�ð¢  and �ïÃsc¤ÃSM, uSD�Ãsc¤ÃSM�ð¢  are fuzzy CT and fuzzy SD 

sets, respectively.  

4.1.2.2 Inference 

The following MF is used to evaluate the presence of a non-hoping PU:  

u�	
A	N� = e 1				if	max	
A	N� ≥ �NCT
0					otherwise																 (4.13) 

Whereas, presence of a hopping system is evaluated using the following MF:  

u	
1�N� = e1				if	mean	
1�N� ≥ �NSD
0				otherwise																			 (4.14) 

Illustration: Fig. 4.10 illustrates how descriptive statistics are used to distinguish between hopping and 

non-hopping systems. Both systems are identical in terms of BW and fc and have ten channels each. Both 
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are incorrectly identified as each other by the SM layer. The threshold sets, Ãsc¤ÃSM , for eight 

consecutive frames are shown, which include TP as well as FP occurrences of both systems. Fig. 4.10a 

shows how max
CTi� and mean
SDi� remains fairly high for respective systems. Fig. 4.10b illustrates a 

case when there is only ‘correctly detected’ PU operating and the cheating PU is OFF. While, Fig. 4.10c 

illustrates the case when only cheating PU is operating. Note that, fuzzy threshold sets, Ãsc¤ÃSM, for 

later two cases are not shown in this figure. Real-time results at inference layer of PU systems earlier 

extracted in Fig. 4.9a, are plotted in Fig. 4.11. 

 

 

 

Figure 4.10: An illustration of distinguishing hopping and non-hopping PU systems at the inference 

layer. 
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Figure 4.11: Inference layer PU classification and extraction extended from Fig. 4.9a. 

 

4.1.2.3 Distinguishing between multiple hopping systems 

In order to distinguish between coexisting hopping PU systems with very identical channel definitions 

both temporal and hop behavior have to be studied. Section 4.2.2.3 presents three example scenarios to 

illustrate the concept. 

4.2 Performance Evaluation 

4.2.1 Performance evaluation tools 

The diagnostic performance of a classifier is often evaluated using the receiver operating characteristic 

(ROC) curve. The scores generated by the classifier are considered in two populations. One population 

corresponds to the presence of a particular class (positive case) and the other corresponds to the absence 

of that class (negative case). The distribution of scores is used to study the separation between the two 

populations. The better the classifier, the more separated scores of both populations can be achieved. 

Indeed, the distribution of the scores often overlaps to some extent. Fig. 4.12 provides an illustration of 

interpretation of score distribution of a classifier and corresponding ROC curve using two hypothetical 

classifiers. In this figure, the classifier B is a better classifier since the score distributions of positive and 

negative classes generated by it has less overlapping.    

A suitable threshold or cut-off point is then chosen in order to discriminate between the two populations. 

For every possible cut-off point, there will be some results corresponding to correctly classified as 

positive (TP = True Positive), wrongly classified as negative (FN = False Negative), correctly classified 

as negative (TN = True Negative) and wrongly classified as positive (FP = False Positive). Sensitivity and 

specificity of the classifier are then computed as True Positive Rate (TPR) and True Negative Rate (TNR) 
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to plot ROC curve as shown in Fig. 4.12 and further explained in Appendix A5. Instead of specificity, 1-

specificity or False Positive Rate (FPR) is often considered as more expressive parameter in a ROC curve 

and will be used for the NFSC performance evaluation. Moreover, a classifier, which can perfectly 

discriminate between distinct classes, has no overlapping in score distributions of negative and positive 

classes and has an ROC curve that passes through the upper left corner of the plot and is interpreted as 

having 100% sensitivity and 100% specificity. Hence, the closer the ROC curve is to the upper left 

corner, the higher is the area under the curve (AUC) and the higher is the accuracy of the classifier. 

Conversely, the closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate is 

the classifier with less AUC. 

 

 

 

Figure 4.12: Interpretation of distribution of scores and ROC using two hypothetical classifiers. 
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In detection theory TPR and FPR are better known as probability of detection (Pd) and probability of false 

alarm (PFA). A useful measure of performance of detectors and classifiers is the probability of detection 

(PoD) curve which is obtained by plotting Pd at a fixed PFA value against some signal or sensor 

parameters such as SNR, sensing time, BW etc. If the probability of deciding Hi when Hk is true, is 

represented by P(Hi; Hk) [STE11] then Pd and PFA for the NFSC can be written as follows:  

�d = �
�N	; 	�N� = Pr41yN,� >	�NSM; 	�N5 = $L
TP+FN (4.15) 

�FA = �
�N	;	��� = Pr41yN,� >	�NSM; 	��5 = �L�L�$� 	 ; 		­ = 1,2,3…Î	and	q = 0,1,2…Î	and	­ ≠ q (4.16) 

4.2.2 Performance Evaluation at SM Layer  

The PoD curve for four PU classes with respect to different SNR values is shown in Fig. 4.13a. Fig. 4.13b 

shows corresponding optimal threshold values (�NSM ) for PFA = 0 and PFA = 0.1. Fig. 4.14 presents 

distribution of NFSC scores for three different SNR values. Both these figures include results based on 

simulated data. Whereas, results using real-time acquired wideband and narrowband data are presented in 

Fig. 4.15 and Fig. 4.16. All these results are discussed in the following paragraphs. 

Choosing a threshold is always a tricky problem in classification and detection theory. Choosing a high 

threshold value will decrease the probability of detection whereas lowering the threshold will increase the 

probability of false alarm. Eventually, a compromise has to be done between PFA and Pd. A good idea is 

to choose a threshold value corresponding to a certain value of PFA or Pd depending on the requirements 

of application. The selection of optimal threshold also depends on the value of SNR of the underlying 

signal. Fig. 4.13b plots optimal thresholds at different SNR values for different radio systems 

corresponding to two typical values of PFA.  
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(a) 

 

 

 

 

(b) 

 

Figure 4.13: Performance analysis of NFSC using simulated wideband data a) The probability of 

detection at SM layer b) Corresponding optimal threshold values. 

 

 

-20 -15 -10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR in dB

P
d

NanoNET: P
FA

=0

IEEE 802.11g: P
FA

=0

IEEE 802.15.4: P
FA

=0

IEEE 802.15.1: P
FA

=0

NanoNET: P
FA

=0.1

IEEE 802.11g: P
FA

=0.1

IEEE 802.15.4: P
FA

=0.1

IEEE 802.15.1: P
FA

=0.1

-20 -15 -10 -5 0 5 10
0

0.2

0.4

0.6

0.8

SNR in dB

O
p

ti
m

a
l 

T
h

re
s

h
o

ld

Optimal Threshold Values for NFSC

 

 



Classification and Extraction of PU Systems 66

(a) 

 

(b) 

 

(c) 

 

Figure 4.14: NFSC score distribution for three different SNR values. Red and blue histograms 

correspond to the presence and absence of respective PU signal. (a) SNR = 10 dB, (b) = 0 dB, 

(c) = -10 dB. 
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Looking at the probability of detection curve shown in Fig. 4.13a and distribution of scores in Fig. 4.14 it 

can be concluded that: 

• The PU systems with wider bandwidths are better distinguished than their narrower band 

counterparts. A NanoNET signal is identified at as low as SNR = -10 dBm, an IEEE 802.11 based 

system at SNR = -2 dBm and both IEEE 802.15.4 and IEEE 802.15.1 based systems at 

approximately SNR = 2 dBm with 100 % probability of detection (Pd = 1).    

• Optimal thresholds of wider signals are more dependent on the value of SNR. For instance, the 

optimal threshold value is 0.2 at SNR = -10 dB and 0.6 at SNR = 10 dB for NanoNET system at 

PFA = 0. However, at PFA = 0.1, the threshold value remain stable at ~0.2 for the nanoNET 

system. For an IEEE 802.11 WLAN system, the threshold value varies between 0.4 at SNR = -

10 dB…0.6 at SNR = 10 dB against PFA = 0. The threshold value is almost stable for the WLAN 

system at PFA = 0.1. For narrower systems the threshold remains stable at different SNR values.  

However, instability of threshold values is mainly observed at PFA = 0, which is an ideal case and 

is often not required in real-time situations. For PFA = 0.1, the threshold value is stable but 

choosing a different threshold value for each primary systems can be a reasonable idea instead of 

a single threshold for all systems. A reasonable estimation of set of threshold values for all SNR 

values obtained from Fig. 4.13b and Fig. 4.14 is ��}�����SM  = 0.25,  �����	���.��SM  = 0.3, 

�����	���.��.�SM  = 0.45 and �����	���.��.�SM  = 0.45 against PFA ~ 0.1.  

Furthermore, the NFSC demonstrates excellent performance with both wideband as well as narrowband 

data real-time data acquisitions as shown by the ROC curves in Fig. 4.15 and Fig. 4.16, respectively. For 

wideband acquisition, the AUC is approximately 100 %, 98 %, 93 %, and 94 % for nanoNET, 

IEEE 802.11, Atmel, and Bluetooth signals respectively. It is important to note that Bluetooth and Atmel 

systems are not operating simultaneously in these results. In case of simultaneous operation of these 

systems it is not possible to distinguish them from each other because of highly identical channel 

definition as already specified in Fig. 4.9a. 

On the other hand, for narrowband data acquisition, the NFSC also performs excellently as long as the 

signal is acquired with an optimal MaxHold time as shown in Fig. 4.16a. The AUC is approximately 

100 %, 98 %, 94 %, and 96 % for nanoNET, IEEE 802.11g, Atmel, and Bluetooth PU signals respectively 

with MaxHold time, TMaxHold= 40 ms ( Single	sweep = 	s ∗ Total	no. of	channels = 8	ms , 

five consecutive sweeps are held). However in the presence of hopping systems, the MaxHold operation 

can seriously degrade the performance, if it is applied for a longer time. It is because several hops, frozen 

together, give an impression of a wideband signal and cheats the NFSC. Fig. 4.16b presents PFA of 
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nanoNET and IEEE 802.11 signals computed for Pd = 1, when TMaxHold is gradually increased. The ROC 

curve labeled as ‘NanoNET [BT working]’ in Fig. 4.16a corresponds to TMaxHold ~ 2 s. On the other hand, 

narrowband Bluetooth and Atmel systems do not require MaxHold operation as for the used narrowband 

sensor. However, the MaxHold operation will not degrade the results as long as several consecutive hops 

are not frozen together. Two almost equal ROC curves plotted in Fig. 4.16a, labeled as ‘BT [single trace]’ 

and ‘BT [MaxHold]’ supports this argument. 

 

Figure 4.15: ROC at SM layer using real-time wideband data acquisition. 

  

(a) (b) 

Figure 4.16: a) ROC at SM layer using real-time narrowband data acquisition. b) Influence of 

MaxHold time in the presence of a narrowband hopping system on Pd of non-hopping wider band 

systems. A Bluetooth PU is actually operating but increasing MaxHold time beyond a certain limit 

increases PFA against a fixed Pd for wider band PU systems. Pd = 1 in this plot. 
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4.2.3 Performance Analysis at Inference Layer 

4.2.3.1 Distinguishing between multiple hopping systems 

The ROC curves for Atmel and Bluetooth at the inference layer are shown in Fig. 4.17. The NFSC 

exhibits perfect performance as long as the duty cycle of Atmel is sufficiently high and fairly large 

number of frames are processed. These parameters strongly effect the values of max(CTi) and mean(SDi). 

In order to achieve sufficient separation in terms of these measures the duty cycle of the PUs should be 

high enough and/or more frames should be processed to compute the descriptive statistics. Additionally, 

extensive blacklisting or smaller number of active hops of a hopping system may also make the separation 

of values of max(CTi) and mean(SDi) less separable.				
	

 

Figure 4.17: Identifying coexisting hopping and non-hopping PU systems with identical 

channel definitions using real-time wideband data acquisition 

	

4.2.3.2 Distinguishing between multiple hopping systems 

When multiple hopping systems are expected to coexist, the statistical analysis of their hopping and/or 

time behavior can help to reveal their identities. Following three example scenarios illustrate the idea.  

Note: It is important to mention that only simulated data are used for simulations in this section because 

real-time devices for WISA, WSAN, wirelessHART and ISA100.11a were not available. 
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4.2.3.3 Example 1: Coexistence of Bluetooth and WISA/WSAN 

Statistics Layer: The hopping pattern used in WISA/WSAN is fairly different from that of the Bluetooth 

PU system. The WISA/WSAN specification divides the entire ISM band into seven sub-bands. Four 

uplinks lie in a single sub-band whereas there is a separation of at least two sub-bands in uplinks and 

downlink. Based on this information the algorithm given in Table 4.2 can accurately distinguish a 

WISA/WSAN PU system from a Bluetooth system.    

Table 4.2: WISA/WSAN statistics layer 

1: Since uplinks are three channels apart from each other, define a theoretical template for 

WISA/WSAN uplink hop pattern as WISA�ë_���_�}����� = 1001001001. 

2: Check each frame in incoming Ãsc¤ÃSM  for 3 sub-bands separation in uplink and downlink 

frequencies. 

3: Compute cross-correlation ( �;�� 
?�  - where ‘s’ specifies WISA/WSAN sub-band index) of 

WISAUL_hop_pattern with Ãsc¤ÃSM at each WISA/WSAN sub-band. Where cross-correlation is defined 

as: 

�;�
?� ≡ 	�í 
t ∗ ��¥?¦ ≡ �
í∑ t̅¥f¦�¥f + ?¦; 							? = 0,1,2, …y − 1í,����  (4.17) 

where t = Ãsc¤ÃWISA,	sSM 	is the truncated part of Ãsc¤ÃSM  corresponding to sub-band s, and � =
WISA�ë_���_�}����� 

4: Take average of maximum cross-correlation value of each frame for q frames, as follows: 

�AVG = ���
|}~	
��� ,� 
É���� ; 		where	­ = 1,2,3, … , �	and	l = 1,2,3, … ,7 (4.18) 

 

Note: Step-2 in Table 4.2 is not performed in results presented in later sections. However, it can be easily 

implemented to better discriminate the signals. 

Inference Layer: Following MF is used to evaluate the presence of a WISA/WSAN PU system:  

uê��ì/ê�ì�
�AVG� = e1				if	max	
�AVG� ≥ ��
0					otherwise																 (4.19) 
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(a) (b) 

Figure 4.18: a) (top) Spectrogram of coexisting WISA and Bluetooth systems and (bottom) the 

corresponding correlation matrix    b) Cross correlation matrix for WISA and Bluetooth systems 

when operating alone while spectrograms of these two plots are not shown.  

  

Figure 4.19: NFSC cross-correlation scores with varying traffic loads for WISA/WSAN system. For 

Bluetooth system 100 % traffic load is considered here which means that plotted line indicates the 

maximum possible R
AVG

 value for the Bluetooth system. 

 

Fig. 4.18a plots a coexisting spectrogram and its corresponding correlation matrix, while Fig. 4.18b plots 

cross-correlation matrices for simulated spectrograms with WISA and Bluetooth systems operating alone. 
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It can be seen that fairly high correlation value is generated when a WISA frame is encountered. 

However, the correlation value can be lower if WISA/WSAN traffic load is smaller. Where, traffic load is 

defined by the total number of active nodes in the WISA network. Fig. 4.19 plots the RAVG values against 

varying traffic loads. The maximum possible value of R
AVG

 for Bluetooth system is also plotted in this 

figure, which shows that WISA/WSAN network load as small as 20 % can be distinguished from a 

Bluetooth PU system.   

Furthermore, there is a small contradiction in WISA/WSAN specification and the method provided for 

computation of uplink hop sequence which can also affect the maximum value of correlation. It is stated 

that the uplink frequencies should be exactly three channels apart from each other. However, the 

computed sequences often include one uplink frequency which is at only two channels separation from 

one of its neighbor frequencies. It means that WISAUL_hop_pattern is not fixed as used in Table 4.2 and can be 

a varying sequence e.g. 101001001 or 100100101 etc. However, the used fixed pattern provides 

sufficiently high correlation value even in the presence of varying patterns as shown in Fig. 4.18 and 

Fig. 4.19. 

4.2.3.4 Example 2: Coexistence of WSAN and WISA 

These two systems can only be discriminated from each other by measuring the super-frame length using 

very small sample time in the order of tens of microseconds. However, lower traffic load can make it 

further challenging to find the boundaries of super-frames as shown in Fig. 4.20b with 50 % traffic loads 

for both systems.   

4.2.3.5 Example 3: Coexistence of WirelessHART and ISA100.11a 

These systems can be differentiated from each other only in the following situations as shown in the 

simulated coexisting spectrogram in Fig. 4.21: 

• The ISA100.11a system is using hybrid or slow hopping then measuring the slot/frame length can 

help identifying the ISA100.11a system. 

• The ISA100.11a system has not blacklisted the 26
th
 channel. 
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(a) (b) 

Figure 4.20: Coexisting WISA and WSAN systems. Super frame length is the only discriminating 

feature in these systems. 

 

 

Figure 4.21: Coexisting WirelessHART and ISA100.11a systems. These systems can only be 

distinguished from each other if ISA100.11a is using 26
th
 channel or hybrid/slow hopping.   
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Chapter 5 

Bandwidth Independent Predictive Modeling 

A secondary CR system equipped with capabilities to capture statistical characteristics of PU systems can 

model the behavior of coexisting environment that empowers its decision making process for 

opportunistic spectrum access (OSA). Overall, the goal of predictive modeling in cognitive radio systems 

is to forecast primary traffic variations and future traffic patterns. This in turn, enables the SU system to 

estimate the duration for which a vacant channel left by the incumbent PU system is expected to be 

available or an occupied channel is expected to remain busy. In wireless environments, the following two 

types of traffic patterns are recognized [HAY05]: 

Deterministic traffic: The PU system, exhibiting such type of traffic is assigned a fixed time slot for 

transmission. When the primary system is switched OFF, the frequency band remained vacant for some 

fixed amount of time and can be used by the SU system. Cyclic traffic, often used in industrial sensor-

actuator systems lies in this class. The deterministic transmission times can easily be calculated using 

methods such as cycle-time detection [AHM10] and global maximum of the autocorrelation 

function [HOY08].    

Stochastic traffic: This type of radio traffic can only be described in statistical terms. Typically, the 

arrival times of data packets are modeled as a Poisson process [ZAN01]. IEEE 802.11 based internet 

traffic is a famous example of this kind that can be found in most offices and industrial areas. An 

interesting approach to model IEEE 802.11b based internet traffic is presented in [GEI07]. It uses the 

knowledge of different types of inter-frame (IF) spaces
9
 specified in the IEEE 802.11b standard to model 

the internet traffic as a semi-Markov model
10

 as shown in Fig. 5.1. The appropriateness of Markov models 

to model the stochastic radio traffic has been widely demonstrated in literature, some of which are 

mentioned in section 3.1.2.3.   

The model parameters of stochastic traffic have to be estimated using historical data. However, in the 

presence of limited sensor bandwidth with respect to the entire band of interest, the job of acquiring 

historical data becomes very challenging as already discussed in section 3.1.2. This chapter presents 

‘bandwidth independent’ parameter estimation strategies for Markov modeled PU traffic in order to put 

                                                           
9
 For example short inter-frame space (SIFS), contention window (CW) etc. 

10
 A semi-Markov process can be viewed as a continuous-time Markov chain (CTMC) [GEI07] 
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the narrowband sensors to the same grade of performance as of wideband sensors. The term bandwidth 

independent in the context of predictive modeling means that the model parameter estimation error should 

be independent of the sensor bandwidth (BS), PU bandwidth (BP) and the width of entire band of 

interest (BW). 

 

Figure 5.1: IEEE 802.11b based internet traffic modeled as semi-Markov model, adapted from [GEI07]. 

An expanded version of the model is shown on the left hand side and a simplified version on the right 

hand side. pc: probability of contention, pf: probability of free, fON(t): pdf of ON state, fOFF(t): pdf of OFF 

state. 

The idea is to estimate model parameters (e.g. transition probabilities, mean etc.) of each coexisting PU 

systems using its identification and extracted binary time series provided by the NFSC presented in 

chapter 4. The NFSC provides binary time series of coexisting systems without losing any temporal-

spectral information of the original constituent signals as long as the bandwidth of the sensor is large 

enough to capture the entire band of interest (Wideband NFSC case). Hence, the estimation problem is 

straightforward in this case and estimated values can be used as reference for sake of comparison. 

However, narrowband sensing devices can’t capture the entire band of interest at once that results in loss 

of vital temporal-spectral information therefore, parameter estimation in this case is the main focus of this 

chapter. 

Overall, this chapter is structured as follows. Section 5.1, published in [AHM12], compares the 

performance of traditional OSA strategies with Markov modeling based OSA strategies using MATLAB 

simulations in order to highlight the significance of predictive modeling. Furthermore, this section will 

also help to introduce some concepts which are essential for the rest of this chapter. Section 5.2 

formulates the problem, describes the system model and finally provides methods to improve the missing 

information and parameter estimation.  
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5.1 Comparative Analysis of Traditional and Predictive Modeling Based 

OSA Strategies 

5.1.1 Simulation Setup 

The entire band of interest is divided into M (where M >1) channels with identical bandwidths Bchannel. 

Each channel is occupied with primary traffic which means that there is no completely free channel and 

the SU has to accommodate its transmission by finding some temporal gaps in one of these channels. The 

primary traffic in each of these channels, as observed by the SU sensor, is merely a sequence of ON (PU 

is active) and OFF (PU is inactive) states (see Fig. 2.4 for binary series generation using the binary 

hypothesis testing given by eq. (2.1)). The ON and OFF states are modeled by two i.i.d. random variables 

TON and TOFF respectively. Both TON and TOFF are exponentially distributed random variables with rate 

parameters λON, λOFF and pdf’s as given by the following set of equations [COX67]: 

�	ON~2ON
(� = ÌONj,ÍON/

	OFF~2OFF
(� = ÌOFFj,ÍOFF/  (5.1) 

where expected lengths of ON (packet length) and OFF (inter packet arrival time) states are given by 

¤¥ON¦ = 1 ÌON⁄  and ¤¥OFF¦ = 1 ÌOFF⁄  respectively.  

Such alternating behavior is a combination of two Poisson processes and is also known as renewal 

process as already discussed in chapter 2, section 2.2.5. Furthermore, because of the exponential state 

distribution it can also be modeled as a first order Markov process with state space S = {0,1}. Meanwhile, 

the rate parameters λON and λOFF are specified in inverse time units. Further assumptions made for the 

simulation setup are listed in Table 5.1. 

5.1.2 Opportunistic Spectrum Access Methods 

The following three OSA methods are used for comparison: 

1) First free: It is a traditional reactive sensing method in which sensing is performed before each 

transmission in order to find a suitable channel. Its algorithm is given below: 

i. Start sensing channels in a sequential order using the narrowband sensor and choose the first one 

where the average signal value is less than a predefined threshold value, as follows: 

�
�!"#∑ mN��!"#N�� < 	ℎmjlℎn?0  
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where mN� are sensed samples in m
th
 channel and Îì$% is the total number of samples acquired for 

averaging for a channel. 

ii. If no channel is selected in step 1 then transmit in the channel with min
 �
�!"#∑ mN��!"#N�� �. 

 

Table 5.1: Important assumptions made for the simulation setup of section 5.1 

1: The primary traffic rate in each channel is independent of all other channels. 

2: The radio environment is noiseless and ON and OFF states of the PU signal can be clearly 

distinguished from each other using the binary hypothesis given by eq. (2.1) to generate the binary 

series with Pmiss = 0 and Pfa = 0.  

3: It is assumed that data transmission and sensing operation of the SU system can’t be done 

simultaneously because there is only one narrowband transceiver with bandwidth BS = Bchannel for both 

of these tasks. 

4: Training data to estimate the model parameters are acquired using an ideal wideband sensor with 

bandwidth BS = M·Bnarrowband. Hence, the training data for all channels is acquired at once which 

ensures the completeness of the data for all channels. Eventually, the parameter estimates are very 

accurate. It is once again stressed that this wideband sensor is only used for acquisition of training 

data and regular sensing and transmission will be done only using the narrowband transceiver. The 

purpose to have this assumption is to investigate the performance of predictive modeling using 

narrowband devices assuming that accurate model parameters are available. Later on, this chapter will 

present parameter estimation methods using narrowband devices with an objective to achieve the 

same level of estimation accuracy as wideband devices. 

5: Energy detection based spectrum sensing is used. 

6: The SU transmits a fixed sized packet periodically. The size of packet and the period length also 

remains fixed for a single measurement.  
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2) MM2: The PU traffic is modeled as a Markov process with only two types of transitions. Self-state 

transitions are not considered. In such a model the initial state distribution probability matrix 

π = {fON(t), fOFF(t)} = {π0, π1} defines the state transition probabilities as shown in the simplified version 

of model in Fig. 5.1.  

Meanwhile, the initial state distribution matrix will be referred as π = {P(i)}={POFF, PON}
 
from now 

onwards throughout in the text because of being more expressive about the context. The algorithm of 

MM2 based OSA is as follows: 

i. Sense M channels at once using the wideband sensor for a fixed time interval Tlearning. Use this 

data to learn Markov model parameters, π = {POFF, PON}.   

ii. Transmit using the channel which has the lowest probability that the PU system is active, i.e. the 

one with min
�ON�. 
iii. Continue step-ii until a measurement is complete in case of stationary random traffic or go to 

step-i in case of non-stationary random PU traffic after every Twindow. Where, the measurement is 

defined in terms of a fixed no of secondary transmissions.  

Note: The non-stationary traffic is simulated in a way that the ON/OFF patterns of the primary traffic 

vary with time but remain fixed at least within a very small time window Twindow. Hence, the estimation 

process must be performed frequently enough to capture the variation of primary statistics.  

3) MM4: The PU traffic is modeled as a Markov process considering all four state transitions hence, it is 

specified by an initial state distribution matrix π and a state transition matrix A. Two different algorithms 

are used for the channel selection, which are described in the following.   

TYPE-I: 

i. Sense M channels at once using the wideband sensor for a fixed time interval Tlearning. Use this 

data to learn the Markov model parameters, π = {P(i)}, and A ={aij}. 

ii. Transmit using the channel which has the longest OFF state in comparison to its ON state. The 

difference of ON and OFF state is specified as: 

max
0º� − 0º��, where 0ºN = L
N�
�,»  

 is specified by eq. (2.19). 

iii. Continue step-ii until a measurement is complete in case of stationary random traffic or go to 

step-i in case of non-stationary random PU traffic after every Twindow. 
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TYPE-II: 

i. Sense M channels at once using a wideband sensor for a fixed time interval Tlearning. Use this data 

to learn the Markov model parameters, π = {P(i)}, and A ={aij}. 

ii. Perform sequential sensing of all channels using the narrowband sensor to acquire the actual state 

of each channel given by r
m
. 

iii. Compute 0ºN = �
�,»  

 for each channel where i is specified by the actual state, r
m
, of the 

corresponding channel. For example, compute 0º� for all those channels whose sensed state is 

OFF (i.e. r
m 

= 0) and vice versa. Transmit using the channel where the least PU activity is 

expected during the transmission of the SU packet. For p channels with actual OFF state and q 

channels with actual ON state, the decision parameter is given as: 

max�0º�& − ¬ghqj(	l­®j, ¬ghqj(	l­®j −	0º���	where	¬ + � = y. 

iv. Continue steps ii-iii until a measurement is complete in case of stationary random traffic or go to 

step-i in case of non-stationary random PU traffic after every Twindow. 

Note that unlike MM2 and MM4 TYPE-I methods, this approach requires the acquisition of the actual 

state of the channel in order to predict the state of the channel. Such predictive approaches are only 

suitable when there is a small number of channels, i.e. when M is small. The reason is illustrated in 

Fig. 5.2 with M = 3 and explained in the following paragraphs.  

 

Figure 5.2: Illustration of the prediction process using three channels. 
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In order to accommodate a SU packet one has to predict the state of the channel for a time interval 

0ºN = packet	size on the basis of q previous states acquired by the sensor, where q is the order of the 

model. Since future depends only on present but not on past in the case of a first order MM, only the 

current state of the channel has to be acquired i.e. q = 1.  

Meanwhile, the prediction can be generated in following two ways:  

ii. Firstly, the state of the channel can be predicted right after the current state of that channel is 

sensed (i.e tc1, tc2 and tc3 in Fig. 5.2) but for a time longer than the SU packet size by a factor ‘M-

i’, where i is the index of the channel in sequential order. The prediction time in this case is given 

by 0ºN = packet	size + 
y − ­�.  
iii. Secondly, the prediction for all channels can be deferred till the sensing to acquire the current 

state of all channels is finished i.e. at tp in Fig. 5.2. In this approach the so called current state of 

each channel is M-i time units old indeed. However, in this case prediction needs to be done only 

for a fixed time i.e. 0ºN = packet	size.  

In the first case, as the number of channels increases, the predicted time for each preceding channel is 

increased while longer prediction is naturally less reliable. The fact that packet will be transmitted in the 

latest part of the prediction further reduces the reliability because later parts of the prediction are less 

reliable than the former ones. In the second case, the prediction is done on the basis of current state that 

has been acquired some time ago and the statistical significance of this current state reduces for each 

preceding channel when the value of M increases. Eventually, less reliable prediction will be generated on 

the basis of less significant ‘current’ channel state. However, the tolerable value of M will also depend on 

the sample rate of the SU sensor as well as on PU traffic dynamics. For example, sensing with higher 

sample rate or the PU traffic with slower state changes (i.e. longer TON and TOFF) will tolerate higher 

values of M than their contrary counterparts.  

At this point it is worth mentioning that auto-regression (AR) based prediction strategies were also 

studied during the work done for this thesis. The results are reported in [AHM11 SHR12,]. In case of an 

AR model, the order q is often larger than 1, e.g. q = 10 is suggested for IEEE 802.11 based WLAN 

primary signals in [AHM11]. Where, larger values of q further lower down the tolerable maximum limit 

of M making the application of the AR model limited to only those scenarios where there is very small 

number of selectable channels, ideally for a single channel. 

On the other hand, some variants of MM based models can be implemented without acquiring the 

current state of the channel making it suitable for even very large values of M. Only MM4 TYPE-II 

method performs spectrum sensing before every SU transmission to acquire the current state of the 
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channel, whereas the other two methods are completely probabilistic in nature since decision is made only 

on the basis of prior probabilities. Table 5.2 summarizes main parameters of investigated OSA methods. 

 

Table 5.2: The OSA methods used in simulation 

Method Decision rule 

Sense before 

every 

transmission? 

Training 

required? 

First free 

�
�!"# ∑ mN��!"#N�� < (ℎmjlℎn?0,  

Or 

min	
 �
�!"# ∑ mN��!"#N�� �  

Yes No 

MM2 min	
���� No Yes 

MM4 
TYPE-I max
0º� − 0º��, No 

Yes 
TYPE-II max�0º�& − ¬ghqj(	l­®j, ¬ghqj(	l­®j −	0º��� Yes 

 

5.1.3 Quality of Service Parameters 

The QoS of different OSA methods is measured in terms of ‘collision rate’. It is computed as follows: 

collision	rate = Collision	count
total	number	of	SU	transmission 

where ‘collision count’ is measured as follows (see Fig. 5.3): 

Collision count: 
��(�	��	)����*�*	�}��	��	+�	�}),����	�}),��	��(� , where size is measured as a multiple of fundamental step 

size of simulation. 

 

Figure 5.3: Collision count 
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5.1.4 Simulation results 

The fundamental step size of the simulation is 1 ms and 5000 points are generated using this step size for 

each measurement which results in 5 seconds duration for one measurement unless time is explicitly 

specified. It also means that all quantities such as packet size or sample time are multiple of this step size. 

In case of stationary traffic λON and λOFF do not change for one measurement. In order to simulate non-

stationary traffic the rate parameters are randomly changed after every 2000 points (2 sec), which also 

defines the value of Twindow. It is also worth mentioning about these results that the point of interest is the 

difference in collision rate of different OSA methods but not the absolute value of the QoS parameter. 

This is because, the collision rate does not directly reflect the traditional BER and PLR type parameters 

that are used to measure the data loss in communication systems. By using the state-of-the-art 

transmission schemes (modulations, error correction mechanisms etc.), the actual data loss can be 

considerably less than the collision rate measured in this section.  

The first subsection compares the results of first free method with MM2 and MM4 TYPE-I for stationary 

and non-stationary PU traffic. Whereas, the second subsection compares the performance of MM2 and 

MM4 TYPE-II methods.   

First free vs. MM2/MM4 TYPE-I: The investigated parameters in this section are number of channels, 

PU traffic type and the SU packet size. Fig. 5.4a and Fig. 5.4b show results for stationary and non-

stationary PU traffics respectively whereas important observations are summarized in the following: 

• The difference in collision rate of first free and modeling based methods significantly increases with 

increase in number of channels. The difference is as small as ~10 % at smallest packet size with only 

3 channels and as large as ~50 % with 80 channels. One major reason of this large difference is the 

fact that the traffic rate is randomly chosen in M channels and the higher the number of channels, the 

higher are the chances to have some channels with a very small traffic rate. Hence, if all channels 

would be using a very high traffic rate then Markov based methods may also perform in the same 

order as the traditional OSA methods. However, the main success of modeling based method is that 

they always successfully choose the optimal channel whereas, the traditional sensing approaches 

often fails to exploit such opportunity because mere sensing is not enough to learn the rate of the PU 

activity in a channel. 

• The MM2 and MM4 methods exhibit identical performance. It can be concluded that prediction done 

in MM4 without explicitly sensing the current state of the channel does not provide better results than 

the simpler MM2 variant of it.  



Bandwidth Independent Predictive Modeling 83

• Markov based methods demonstrate a performance of the same scale even in the case of non-

stationary random PU traffic as long as model parameters are re-estimated at reasonably frequent 

intervals (see Fig. 5.4b).  

    

    

M = 3 M = 10 M = 40 M = 80 

a) Stationary random PU traffic. 

  

M = 13 (e.g. IEEE 802.11a/b/g defines 13 

channels) 

M = 79 (e.g. IEEE 802.15.1 based Bluetooth 

defines 79 channels) 

b) Non-stationary random PU traffic. Traffic rate (λON, λOFF) changes randomly after every 2 seconds. 

Figure 5.4: Performance analysis of first free, MM2 and MM4 TYPE-I based OSA methods. The MM 

based methods clearly outclass the traditional methods particularly at higher values of M.   
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MM2 vs. MM4 TYPE-II: The previous section concluded that if the state of the channel is predicted 

merely on the basis of prior probabilities, as in the TYPE-I method, then the MM4 and MM2 methods 

perform identically. However, this section will argue that the MM4 method is richer in decision making 

because it has more information than the MM2 type variant of it. In order to demonstrate this argument, 

the collision rate for MM2 and MM4 TYPE-II OSA methods with four different values of M is plotted in 

Fig. 5.5.  

It is important to note that the PU traffic is chosen in such a way that PON is identical in all channels but 

half channels have long packets arriving less often (i.e. both λON and λOFF are large) while the other half 

channels have very small packets occurring very often (i.e. both λON and λOFF are small). The reason to 

choose such traffic is to investigate if the MM4 TYPE-II method can differentiate in equally used 

channels merely on the basis of highly diverse transition probabilities. As shown in Fig. 5.5 the collision 

rate is 13 % lower for MM4 TYPE-II method than MM2 when there are only 2 channels. However, this 

difference is reduced with increase in number of channels because the prediction is less reliable for large 

number of channels as already discussed in section 5.1.2 (Fig. 5.2). Once again it is stressed that it is not 

the absolute value of collision rate that should be noted but the difference of collision rates of different 

methods. This is because the absolute value of collision rate depends on the PU traffic rate and for 

channels with lesser PU activity this value will be obviously lower as shown in Fig. 5.6 in comparison to 

first plot in Fig. 5.5. 

5.1.5 Conclusion 

It can be concluded from these results that the predictive modeling based OSA approach will surely 

choose the channel which has least probability of interference whereas, the conventional 

reactive/proactive OSA approaches have no means to give such guarantee. Therefore, it can often happen 

that a reactive/proactive approach would miss a less active channel by choosing a busier channel. 

Furthermore, the performance difference becomes more profound when the number of channels is 

increased because a higher number of channels generally increases the chances to find a less active 

channel. It means that in case of predictive modeling based OSA, it would be more beneficial to widen 

our search for opportunities to all available channels, i.e. having more channels in opportunity search 

space is better. However, the difficulty of obtaining an up-to-date and accurate estimation of the model 

parameters also increases with the increase in number of channels. Hence, an important challenge to 

realize the predictive modeling based approach is to include maximum number of channels in the search 

space without compromising on the quality of estimation of model parameters. The remaining part of the 

chapter takes on this challenge and provides bandwidth independent parameter estimation methods for 

MM2 and MM4 based OSA approaches. 
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Figure 5.5: Collision rate of MM2 and MM4 TYPE-II with different values of M and non-stationary 

random traffic. PON ~ 50% for all M channels is also plotted for each case.    

 

Figure 5.6: Collision rate with PON ~ 25% in both PU channels. 
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5.2 Bandwidth Independent Parameter Estimation 

Fundamental assumptions regarding data acquisition for parameter estimation made in the previous 

section are quite unrealistic for real-time scenarios. Firstly, obviously radio systems would often have to 

work in low signal-to-noise ratio (SNR) regimes in different types of fading environments. Secondly, the 

entire band of interest in a coexisting environment can be better modeled as divided into overlapping PU 

channels of different bandwidths rather than into equal bandwidth non-overlapping channels because of 

coexisting PU systems of diverse bandwidths. Thirdly, and most important, the data acquisition 

bandwidth BS is often smaller than the width BW of the band of interest and the entire band of interest 

cannot be sensed at once. These factors will result in non-zero Pfa and Pmiss which makes the task of 

parameter estimation very challenging.  

The factors contributing to Pmiss and Pfa can be mainly divided into two categories, environmental effects 

such as fading, noise and interference and sensor bandwidth limitation. The treatment of missing 

information because of sensor bandwidth limitation is the focus of this chapter. Note that sensors with 

BS < BW and BS ≥ BW will be referred as narrowband and wideband sensors respectively in this document.   

Traditionally, only a part of the entire band of interest that is equal to the data acquisition bandwidth is 

sensed continuously for Tlearning and parameters are estimated for that part only. This process is then 

repeated for the entire band of interest. However, this approach does not effectively capture up-to-date 

statistics of the PU traffic because the estimation becomes outdated for earlier channels particularly when 

the number of channels is higher or the PU traffic is non-stationary. Using more than one narrowband 

sensor obviously is a solution at an expense of increased system resources and network level cooperation 

between multiple sensors. This chapter presents parameter estimation methods using a single narrowband 

sensor for data acquisition. Where, the parameters to be estimated are PON which also gives POFF = 1-PON 

and the transition probability matrix A.      

5.2.1 System Model 

The coexisting environment is constituted by N PU systems of diverse bandwidths represented by BP. The 

primary channels may or may not be overlapping. Each PU generates i.i.d. exponential traffic as specified 

by eq. (5.1). A narrowband sensor is used to sequentially sweep the entire band of interest and multiple 

consecutive sweeps are combined to generate a spectrogram as shown in the right hand side plot in 

Fig. 5.7. This swept spectrogram includes two types of incomplete information of actual PU signals 

which are shown in the wideband spectrogram in the left hand side plot in Fig. 5.7. Firstly, whenever the 

PU signal is partially acquired it results into a spectrally incomplete signal. Secondly, whenever the PU 

signal is completely missed it generates a temporal missing.  
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Figure 5.7: Spectrogram of a simulated coexisting environment constituted by one IEEE 802.15.4 and 

two IEEE 802.11 based PU signals in the 2.4 GHz ISM band. The swept spectrogram shown in the right 

hand side plot is generated using a 10 MHz sensor. 
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First of all, given the swept spectrogram, a binary series for each PU signal has to be generated which in 

turn will be used for parameter estimation. The NFCS presented in chapter 4 will be used for this task. 

However, the spectral incompleteness hardens the classification task and increases the values of Pfa and 

Pmiss. Hence, the first task is to process the swept spectrogram in order to handle the spectral 

incompleteness and generate the binary time series with minimal Pfa and Pmiss. Note that there is yet 

another factor of Pmiss caused by temporal missing therefore this binary time series will be referred as 

missing binary series. The next step is to treat the missing binary time series to reduce the effect of 

temporal missing and obtain unbiased parameter estimation. The system model of OSA using bandwidth 

independent parameter estimation is presented in Fig. 5.8. 

Section 5.2.2 presents an analysis of detection probability of the swept sensing method and also 

introduces a method named as selective spectral projection to treat the spectral incompleteness. 

Section 5.2.3 to section 5.2.5 present methods to minimize the impact of temporal missing in order to 

obtain an unbiased parameter estimation.  

5.2.2 Detection Performance of Swept Sensing 

The probability to detect a transmission (i.e the ON state) of a PU signal is specified as probability of 

detection Pd. It will be used as the measure to analyze the performance of swept sensing. In case of a 

binary hypothesis of signal detection given by eq. (2.1), a signal is considered as detected no matter 

whether its bandwidth is captured completely or partially. However, in case of an M-ary hypothesis given 

by eq. (2.2) using NFSC, a signal is considered detected only if enough spectral part of it is captured to 

identify the signal on the basis of its bandwidth. Although, this chapter considers M-ary hypothesis and 

attempts to identify the signals using NFSC but for the time being let’s assume the binary hypothesis case 

until explicitly specified.  

Binary hypothesis case: The detection probability of a PU signal using swept sensing depends on four 

system parameters which are sensor bandwidth BS, total bandwidth BW and bandwidth BP and center 

frequency fc of the PU signal. Mathematically, it is specified by the following equation. 

�dLM  = Total	number	of	sensor	crossings	in	LM  	signal-{W {S⁄ .  (5.2) 

Where - . is the ceil function and the value of ‘total number of censor crossings’ depends on Bs and the 

location (fc) of the signal within total band of interest and its width (Bp). It is the count of total number of 

times the sensor samples within the PU channel during one sweep as shown in Fig. 5.9a. In order to grasp 

the concept let say that if BS, BW, BP and fc are known then one can exactly compute the detected (Pd) and 

missing (Pmiss = 1 – Pd) proportions of the sensed signal using eq. (5.2). Detected and missing parts of 
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missing binary series for PU1 are shown in Fig. 5.9b. Table 5.3 includes algorithm for computation of 

theoretical detection probability given by Eq. (5.2). 

 

Figure 5.9: (a) Illustration of computation of total number of sensor crossings using swept sensing       

(b) Illustration of the proportion of missed and detected parts in the missing binary series of PU1 for one 

sweep. Note that a 0 represent a truly detected OFF state as well as the missed parts. 

Table 5.3: MATLAB code for computation of theoretical detection probability. 

BW = 80, Bs = specify; 

[fc,Bp]= NFSC(); 

sensor_crossings = count_crossings(Bw,Bs,Bp,fc); 

Pd = 
������_)������/�-{W {S⁄ . ; 

function sensor_crossings = count_crossings(Bw,Bs,Bp,fc) 

sensor_crossings = 1; 

for i = 1 to -cW cS⁄ . - 1 
    if (

Ûc,	{P
� ) < (i × Bs)) && ((i × Bs) < (Ûc	�	{P

� ) 

        sensor_crossings = sensor_crossings + 1; 

    end 

end 
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Proof-of-concept: In order to prove this argument, theoretical results generated using eq. (5.2) are 

compared with simulation results in Fig. 5.10.  

   

Theoretical Pd Simulated Pd  

(a) Single PU is operating at 2) = 2440	MHz 

  
Theoretical Pd Simulated Pd, 

(b) Single PU is operating at 2) = 2400 + {0
� 	MHz 

Figure 5.10: Simulated results vs. theoretical values of the detection probability of swept sensing. 

BW = 80 MHz in 2.4 GHz ISM band, PU duty cycle ~ 20 %, TS = 625 µs, random PU traffic. 

 

These results are generated in the 2.4 GHz ISM band (BW = 80 MHz) for two different values of fc in a 

standalone noiseless environment. While, both BP and BS are in the range 1 MHz, 2 MHz,…,BW and are 

specified on corresponding axis. The primary traffic is random as specified by eq. (5.1) and the average 
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ON time or duty cycle of the primary traffic is approximately 20 %. However, it is worth mentioning that 

this computation of detection probability of swept sensing method is not limited to the random primary 

traffic only and is equally valid for any type of primary traffic. 

In order to further investigate the accuracy of eq. (5.2), Fig. 5.11 plots percentage error for IEEE 802.11g 

and IEEE 802.15.4 based signals against different sensor bandwidths and duty cycles. The error is 

computed as follows: 

error	in	% = ��*��������)}� − �*��|��}����� × 100 (5.3) 

The value of error remains less than 2 % for all values of sensor bandwidth except for extremely low duty 

cycle systems. When the PU duty cycle is less than 5 %, the worst case error is ~4.5 %. Furthermore, the 

value of error does not depend on which channel the IEEE 802.11/IEEE 802.15.4 based PU system is 

operating. Moreover, by comparing both error plots it can be observed that the value of error is also 

independent of bandwidth of PU system since both systems have very different bandwidths but are 

generating very similar error plots. 

  

Figure 5.11: Detection probability error for IEEE 802.11 signal (left) and IEEE 802.15.4 (right) with 

respect to different duty cycles and BS values. The error is computed using eq. (5.3). 
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occurrences in a swept spectrogram then the detection probability of the PU signal using the NFSC is 

given by eq. (5.2). In other words, for a binary series generated by the swept sensing based NFSC, 
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Pmiss = 1 - Pd specifies the missing information because of the temporal missing phenomenon as illustrated 

by Fig. 5.9b.  

Meanwhile, in order to compute the detection probability, the values of BP and fc can be obtained from the 

NFSC along with the binary series while the values of BW and BS are already known (see MATLAB based 

algorithm of eq. (5.2) in Table 5.3 and the system model in Fig. 5.8). The next section describes how the 

spectral incompleteness can be treated using the selective spectral projection method whereas sections 

5.2.3 and onwards use the knowledge of Pd/Pmiss to estimate parameters of the MM2 and MM4 based 

OSA methods. 

5.2.3 Treatment of Spectral Incompleteness Using Selective Spectral Projection   

Since bandwidth and center frequency of the PU signals are key distinct features used by the NFSC to 

classify the PU signals, a spectrally incomplete signal may result in incorrect identification. It will raise 

Pfa for incorrectly detected signal and Pmiss for actual signal that remains undetected. As discussed earlier 

in section 4.1.1 the MaxHold operation can be used to improve the spectral incompleteness. In order to 

realize the MaxHold operation, a sensor sweeps through the entire band of interest and records only the 

maximum value at each spectral point resulting in a single frame no matter what is the total sensing 

duration (or time window). In this way it loses all temporal information of the signal which is vital for the 

statistical estimation and modeling. In order to preserve the time related information, the MaxHold 

operation is altered to realize a new concept named as selective spectral projection. 

The idea of selective spectral projection is different from the traditional MaxHold operation in a sense 

that instead of holding the running maximum value, post processing of the swept spectrogram is done to 

compute the maximum value within a time window for only a filtered part of the swept spectrogram. 

Where, filtering is done over each channel of every PU system. The maximum value is then projected to 

all those frames where the signal partially occurs. Meanwhile, the partial occurrence of the signal simply 

means that at least one spectrogram bin is higher than the expected noise floor as shown in Fig. 5.12. 

Fig. 5.13 shows filtered projected spectrograms for the first 12 channels of the IEEE 802.11 based signal 

and Fig. 5.14 shows three projected spectrograms with different window sizes. The swept spectrogram 

used in these two figures is shown in Fig. 5.7. This projected swept spectrogram can be fed to NFSC to 

generate the missing binary series for all coexisting PU signals. Note that in the best case scenario, this 

missing binary series includes detected occurrences of the corresponding PU system with probability Pd 

while the occurrences with probability Pmiss = 1 - Pd are still missing because of the temporal missing 

phenomenon. However, in real-time scenarios one should also expect some false alarms (represented by 

Pfa), therefore the target of selective spectral projection method is to generate a binary series with missing 
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data as close as possible to Pmiss with minimum Pfa. Section 5.2.2.1 investigates the performance of the 

selective spectral projection method in detail.   

It is worth mentioning that major beneficiaries of this method are the PU systems with bandwidth larger 

than the bandwidth of sensor. A PU system with bandwidth smaller than that of sensor will only need 

spectral projection if it lies somewhere on the boundary of two steps of the sensor such as the third PU in 

Fig. 5.9a. Hence, it should be applied only when partial occurrences are expected, where the possibility of 

presence of partial occurrences can be tested using the method count_crossing(BP, BS, BP, fc) given in 

Table 5.3. If this method returns a value greater than 1, only then selective spectral projection should be 

performed for that channel of that PU system.  

 

Figure 5.12: Illustration of the selective spectral projection method. The reason to use the prefix 

‘selective’ is to stress that spectral projection is performed separately within each channel for each PU 

system. 
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Figure 5.13: Spectral projection of swept spectrogram shown in Fig. 5.7 in first 12 channels of the 

IEEE 802.11 based signal with window size = 10. The x-axis corresponds to frequency in MHz and the y-

axis to the discrete time n in all these plots.  

 

Figure 5.14: The selective spectral projection of the spectrogram shown in Fig. 5.7 with two different 

window sizes. Each of these plots is a merger of 29 plots out of which, 16 plots corresponds to IEEE 

802.15.4 channels and 13 plots to IEEE 802.11 channels. 12 constituent plots of the left most plot are 

shown in Fig. 5.13. 
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5.2.3.1 Performance Analysis of the Selective Spectral Projection 

As mentioned earlier, in a noiseless standalone environment, if an ideal method can treat all spectrally 

incomplete occurrences of the PU signal with Pfa = 0 then the probability of detection (M-ary context) is 

given by eq. (5.2). Such ideal method can be the selective spectral projection method, if primary signals 

do not overlap each other and number of frames in the swept spectrogram is statistically large enough and 

the length of the swept spectrogram is chosen as window size. The results presented in previous section in 

Fig. 5.10c, Fig. 5.10d and Fig. 5.11 are generated using such scenarios. However, such a large window 

size can only be used if the PU signals are not overlapping. The possibility of overlapping signals 

demands choosing the window size carefully because the spectral projection method can incorrectly 

project the overlapping PU signals on each other raising the value of Pfa. Furthermore, the duty cycle of 

the PU systems will also influence the choice of widow size because more frequent signals are expected 

to generate spectrally complete signal in less time than the signals occurring less often. Fig. 5.15 –

 Fig. 5.17 present detection probability of three scenarios that can influence the window size as discussed 

in the following: 

A hopping system occasionally overlaps a non-hopping primary system: Fig. 5.15 plots Pmiss and Pfa 

of an IEEE 802.11 based PU system operating in the coexistence of a Bluetooth system for different 

window sizes. The duty cycles of IEEE 802.11 and Bluetooth systems are ~20 % and 100 % respectively. 

The blacklisting procedure using adaptive frequency hopping is turned off for the Bluetooth system.  

 

 

Figure 5.15: Impact of spectral projection on detection probability of an IEEE 802.11 based WLAN 

system in coexistence of a Bluetooth system. Ts = 625 µs, �SM	= 0.4, duty cycle of WLAN ~ 20 %, duty 

cycle of Bluetooth ~ 100 %, Ttraining = 0.625 sec. 
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At very small window size Pmiss is too biased in comparison to the theoretical values. However, as the 

window size increases, the value of Pfa also increases because some Bluetooth hops are also swept and 

projected incorrectly as the wider signal of the IEEE 802.11 based PU. Furthermore, the value of Pfa is 

higher for larger sensor bandwidths because there are more chances to acquire the hopping signals and 

hence more chances to incorrectly project them. A window size of 20 frames will be used as optimal 

value in rest of this chapter where worst case Pfa is ~5 % for BS = 10 MHz and worst case detection error 

is ~15 % for BS = 1 MHz. It is important to note that since duty cycle of the Bluetooth PU is 100 % 

therefore it gives the worst case scenario and one can expect less interference with smaller duty cycles. 

Furthermore, there can be no overlapping at all in real-time coexistence scenario of these two systems 

because of the Bluetooth system’s capability to blacklist active channels of the IEEE 802.11 based 

system.     

Non-hopping overlapping systems: Fig. 5.16 a & b plots the detection probability of IEEE 802.11 and 

IEEE 802.15.4 based non-hopping systems in an overlapping scenario for different window sizes and a 

fixed ~20 % duty cycle. It is to be noted that the wider IEEE 802.11 signal can’t be incorrectly projected 

as the narrower IEEE 802.15.4 signal hence, the value of Pfa of the narrower signal is not influenced by 

the selective spectral projection method. However, since the reverse of it is possible, i.e. the narrower 

signal can be incorrectly projected as the wider signal therefore, the measured value of Pmiss is expected to 

increase for narrower signal. On the other hand, both Pmiss and Pfa are expected to be influenced for the 

wider signal, Pmiss can be lower than the theoretical value at an expense of increased value of Pfa because 

many narrower signals are incorrectly projected and identified. Another reason for the value of Pmiss of 

narrower signal to be higher than the theoretical value is the fact that all simultaneous occurrences of 

narrower signal are buried under wider signal because of the inability of energy detection method to dig 

into to find the buried signals. Only a more complicated spectrum sensing strategy such as the CFD 

method can detect these buried signals. The results plotted in Fig. 5.16 a & b support these arguments. 

Once again, a window size of 20 frames is found optimal for both systems with Pfa less than 1 % for all 

investigated scenarios and worst case detection error ~10 % with BS = 1 MHz for the IEEE 802.11 based 

system.  

Very low duty cycle systems require larger window size to produce optimal results and vice versa as 

shown in Fig. 5.16 c & d for IEEE 802.11 and IEEE 802.15.4 based signals with 

window size = 20 frames. Increasing the duty cycle of narrower signal increase the value of Pfa for wider 

signal whereas increasing the duty cycle of wider signal buries more occurrences of narrower signal 

resulting in higher Pmiss for the narrower signal. However, in real-time scenarios it is unlikely to have 

multiple systems with high duty cycles operating in overlapping channels (except systems with some 
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robust strategies such as TDMA, CDMA etc.) because high data loss due to high interference will 

possibly force them to choose safer channels. 

  

(a) PU = IEEE 802.11, channel # = 2.  (b) PU = IEEE 802.15.4, channel # = 3 

  

(c) PU = IEEE 802.11, channel # = 2.  (d) PU = IEEE 802.15.4, channel # = 3 

Figure 5.16: Detection probability of the specified PU systems coexisting in overlapping channels 

using selective spectral projection with a) & b) window size = x-axis, duty cycle of both PU systems ~ 

20 %, c) & d) window size = 20, duty cycle of both PU systems is specified on x-axis. Moreover, 

Ts = 625 µs, �SM	= 0.4, Ttraining = 0.625 sec (see Fig. 6.15 for legend). 

 

The window size will also be influenced by the sample time and for higher sample rates a smaller window 

size has to be chosen and vice versa for same reasons as given for the duty cycle of PU systems. The 

influence of noise is not considered on the detection probability of signals firstly because noise has to be 

dealt at NFSC or earlier stages which has already been discussed in chapter 5. Another reason to ignore 
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noise related issues is because the goal of this chapter is to handle missing data caused by bandwidth 

limitations but not by noise.  

5.2.4 Estimation of PON (POFF = 1 - PON) 

It is the measure of average time the primary signal remains in ON state and is required by both MM2 and 

MM4 based OSA methods. It is given by: 

��� = t2 = �
�∑ t����� ;where	t� ∈ 60,18 (5.4) 

Where ½  is the average operator, n is the total number of samples or the length of the missing binary 

series X and x represents a single sample. If this average value is computed using the missing binary 

series then it will be a biased value because of temporal missing information with probability Pmiss. Let’s 

call this average value ���3when it is computed using missing binary series, where superscript ‘s’ stands 

for swept. This value can be combined with Pd to get an unbiased estimation, ����, of the average ON 

state of the corresponding PU signal, as specified by the estimation process given in Table 5.4. 

5.2.4.1 Analysis of Results  

The percentage error as an absolute difference of true and computed values is plotted in Fig. 5.17a and 

Fig. 5.17b for ���  directly computed from missing binary series using eq. (5.4) and estimated using 

method in Table 5.4 respectively. Non-overlapping scenario is considered in these plots with varying 

values of BS and BP. The primary statistics are randomly changed every second and with 

Ttraining = 0.625 sec, a single point in these plots is an average of 10 consecutive measurements. The 

average error remains higher than 20 % for computed ���3  as long as Pmiss is 0.5 or higher. For very 

small combinations of BP and BS the average error up to 40 % can be expected. On the other hand, the 

average error remains below 2 % except for very small values of BP and BS for ����. The worst case 

estimation error is almost 5 % when both BP and BS are 1 MHz.  

Running results for two standard technologies are plotted in Fig. 5.18 for non-overlapping and 

overlapping scenarios. It can be seen from these plots that the error in ���4 is higher for higher duty 

cycles hence average error can be much higher than the one stated in last paragraph if the primary signal 

remains highly active all the time.  

On the hand the value of ����  is expected to be overestimated with an increase in the value of Pfa. For 

example consider plots shown in Fig. 5.18c & d for two specified standard technologies coexisting with a 

Bluetooth system. It can be seen that higher values of BP and BS increase the chances of incorrect 

detection of Bluetooth hops that eventually result into overestimation of PON.   
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Table 5.4: Algorithm for estimation of ����. SS: swept spectrogram, FSS: filtered swept spectrogram, 

PFSS: projected FSS, PSS: projected swept spectrogram. 

 Process Output 

1 Perform swept sensing for Tlearning to acquire the training data. SS 

2 

for �XN ∈ 6all expected PUs8 and 2) ∈ 6all	channels	of	�XN8,  
FSS = filter(BP, fc, SS) 

if  count_crossing(BP, BS, BP, fc) > 1 

PFSSj = selective_spectral_projection(BP, fc, FSS) 

else 

PFSSj = FSS 

end 

end 

PSS = ∑ �311�/5/»É	���67Ë	5Û	LM�	×	���67Ë	5Û	8å»��7É�	5Û	7»8å	LM
���  

PSS 

3 6ÆN, c+N , 2)N8 = Î31A
�11� 6ÆN, c+N , 2)N8	* 

4 ���3N = �
$9:;<= =>∑ t�N$9:;<= =>��� ; where Tlearning is discrete valued. ���3N  

5 Compute the value of �d
N for c+N , 2)N using eq. 5.2. �d

N 

6
11

 ����
N = ���3N

�*N  ����
N  

* X is the random variable represented as missing binary series extracted by NFSC and its 

realizations are represented by x. 

 

 

 

                                                           
11

 If two events A and B are defined as, A = sensor detects the primary occurrence, and B = PU is in ON state, then 

Pd, the conditional probability of detecting PU occurrences given the PU is in ON state, is given as follows: 

 �* = �
s|c� = L
A∩B�
L
B� = +?@4+?@ ⇒ ��� = +?@4+B , where ��� is in fact the estimated value i.e. ���� . 
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(a) Error in computation of ���4 (b) Estimation error for ����  

Figure 5.17: Comparison of % error in ���4and ����in non-overlapping scenario. Ts = 625 µs, �SM	= 

0.4, Window size = 20, Tlearning = 0.625 sec, fc = 2.44 GHz.   

 

  

(a) IEEE 802.11, no overlapping (b) IEEE 802.15.4, no overlapping 

  
(c) IEEE 802.11, BT overlapping (d) IEEE 802.15.4, BT overlapping 

Figure 5.18: Running results of estimated, swept and actual values of PON	in a) & b) non-overlapping 

scenario c) & d) Bluetooth overlapping. Tlearning = 0.625 sec, �SM	 = 0.4, TS = 625 µs, 

window size = 20, BS is specified in legend, values corresponding to BS = 80 MHz are true values. 
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5.2.5 Estimation of the Transition Probability Matrix, ó = 4F\C5 
5.2.5.1 Renewal theory based approach 

According to renewal theory [COX67], the equilibrium probability of an alternating renewal primary 

signal, given that the signal is in ON state at the time of origin, to be in ON state at some later time t is 

given by: 

g��
(� = ∫ ÖÏ
;�
Ñ¥$?@¦0§ + ∫ ℎ��
t�/

�
&
/ Ö�
( − t�0t (5.5) 

Where Ö
∙� is the survivor function given by eq. (2.29) and ℎ��
t� is the renewal density of the OFF state 

of the primary signal, given that the renewal process started from the ON state. The eq. (5.5) can be 

written as follows by using the Laplace transform: 

g��∗ = 6Ñ¥$?@¦�,��Û?@∗ 
��8
Ñ¥$?@¦� + ℎ��∗ 
l� ∙ �,Û?@∗ 
���   (5.6) 

Where 
∙�∗ is the Laplace transform. It is also proved in [COX67] that: 

 ℎ��∗ 
l� = Û?DD∗ 
��6�,Û?@∗ 
��8
Ñ¥$EF¦�6�,Û?@∗ 
��Û?DD∗ 
��8  (5.7) 

Substituting the value of ℎ��∗ 
l� in eq. (5.6) and simplifying gives: 

g��∗ 
l� = �� − 6�,Û?@∗ 
��86�,Û?DD∗ 
��8
Ñ¥$EF¦�¼6�,Û?@∗ 
��Û?DD∗ 
��8 (5.8) 

Where fON and fOFF are specified by eq. (5.1) and their corresponding Laplace transforms are 2��∗ = Í?@
Í?@�� 

and 2�ÕÕ∗ = Í?DD
Í?DD�� respectively. By substituting these values, eq. (5.8) becomes: 

g��∗ 
l� = �� − e�, G?@G?@Ó�re�, G?DDG?DDÓ�r
Ñ¥$?@¦�¼e�,H G?@G?@Ó�I∙H G?DDG?DDÓ�Ir (5.9) 

Taking inverse Laplace transform of eq. (5.9): 

g��
(� = 1 − �
Ñ¥$?@¦ ï− �


Í?@�Í?DD� j,
Í?@�Í?DD�/ + �

Í?@�Í?DD�ð (5.10) 

For exponential distribution ¤¥ON¦ = �
Í?@ and ¤¥OFF¦ = �

Í?DD hence, eq. (2.28) can be written as: 

£�� = ��� = Í?DD
Í?@�Í?DD , £�ÕÕ = ��ÕÕ = Í?@

Í?DD�Í?DD¦  (5.11) 

Where ��� is already estimated in section 5.2.4. Hence, the transition probability from ON state to ON 

state is given by: 
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g��
(� = ���� + 
1 − ����� ∙ j,
Í?@�Í?DD�/ (5.12)  

By merely exchanging the roles of ON and OFF in eq. (5.5) to eq. (5.10) one can obtain the transition 

probability from OFF state to OFF state which is given as follows: 

g��
(� = �1 − ����� + ����j,
Í?@�Í?DD�/ (5.13) 

The remaining two transition probabilities can be simply obtained by using eq. (5.12) and eq. (5.13) with 

the fact that summation of each row of the transition probability matrix is equal to 1 as specified by 

eq. (2.14). These are given in the following: 

g��
(� = 1 − g��
(� = �1 − ����� − 
1 − ����� ∙ j,
Í?@�Í?DD�/ (5.14) 

g��
(� = 1 − g��
(� = ���� − ���� ∙ j,
Í?@�Í?DD�/ (5.15) 

However, these equations also need the knowledge of Ì�� and Ì�ÕÕ in order to estimate the transition 

probabilities and both of these parameters are unknown. Knowledge of one of these parameters is enough 

as the other can be computed using eq. (5.11). 

Maximum Likelihood Estimator (MLE): The likelihood function of the parameter set θ is specified as 

follows:  

ℒ
J|Æ� = Pr
Æ|J� = ∏ Pr
tN|J�ËN��  (5.16) 

Where r is the total number of samples or the length of the missing binary series. The MLE estimate can 

be obtained by solving the following partial differential equation: 

Kℒ
L|;�KL  = 0;where	J = 6J� = Ì��,J� = Ì�ÕÕ8 (5.17) 

∏ Pr
tN|J�ËN��  in eq. (5.16) is the joint probability mass function of all samples and can be expressed as a 

function of initial probability distribution and the transition probability matrix for a Markov process. 

Using the Markovian property specified by eq. (2.11), eq. (5.16) can be written as: 

ℒ
J|Æ� = Pr
t�; J� ∙ ∏ Pr
t�|t�,�; J�Ë��� 	where	tN ∈ the	state	space	vector	1 (5.18) 

Using eq. (2.13) and eq. (2.15) the above equation can be written as: 

ℒ
J|Æ� = £N ∙ ¥g��
(�¦�MM ∙ ¥g��
(�¦�MÏ ∙ ¥g��
(�¦�ÏM ∙ ¥g��
(�¦�ÏÏ (5.19) 

Where n00, n01, n10, n11 give the count of corresponding state transitions from a total of r – 1 transitions in 

a binary series of r samples. The initial state probability £N  is ����or ��ÕÕ� = 1 − ����depending on the 

value of the first sample. 
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Substituting the values given by eq. (5.12) – eq. (5.15) in eq. (5.19) and solving the differential equation 

given by eq. (5.17) for λON or λOFF gives the estimation of corresponding parameter. In [HYO08], the 

solution of these equations is given for λOFF as follows: 

Ìº�ÕÕ = − L?@�
$3 ?� N,{�√{¼,�z�

�z P ; 	where	QR
Ss = ï���� − ������

�ð 
m − 1�
c = −2s + 
m − 1� − ����1 − ����� − ���� ∙ ���
A = s − ���� ∙ ��� − ����1 − �����

 (5.20) 

where 	� is the time between two consecutive samples and can also be used in eq. (5.12) – eq. (5.15) 

instead of t. 

State Transition Count: In order to estimate λOFF using eq. (5.20) the count of state transitions i.e. n00, 

n01, n10, n11 is still to be estimated. Let say �N�� = total	number	of	trnsitions	from	state	1N	to	state	1�, is 

the state transition count obtained from the missing binary series. It can be used with already known 

values of Pd and ����to estimate true count of state transitions, �N��  as discussed in the following. 

Note that a ‘1’ in the missing binary series never corresponds to a missed value. Although the processing 

at NFSC or selective spectral projection may generate ‘1’ with some Pfa however, for sake of simplicity it 

is assumed that Pfa = 0. On the other hand, the missing binary series includes 0 for both correctly detected 

OFF states and the missing values (see Fig. 5.9b).  

Consequently, a state transition count to and from state 1 in the missing binary series can never be wrong 

whereas, all state transition counts to and from state 0 may contain an incorrectly counted factor 

proportional to Pmiss. It means that some counts in ����  can be actually either ��� or ���if one of the 0’s 

corresponds to a missed ON state or ��� if both consecutive 0’s are missed occurrences. Similarly, both 

����  and ���� may contain some incorrect parts of ��� if 0 is actually a missed ON state.  

Moreover, according to the memoryless property of exponential distribution, the occurrence of any state 

at t-1 does not change the probability of occurrence of the state at next time t, i.e. 

�
t/ = 1N|t/,� = 1N� = ��t/ = 1N�t/,� = 1�� = �
1N� = £N  (5.21) 

In other words, the probability of occurrence of a state is given by the initial probability irrespective of 

the neighboring state. Hence, in a given missed binary series, the probability of ‘00’ being truly ‘00’ is 

��ÕÕ�  and being any of ‘01’ or ‘10’ or ‘11’ is ����. Similarly, the probability of ‘10’ being truly ‘10’ is 

��ÕÕ�  and being ‘11’ is ����and the probability of ‘01’ being truly ‘01’ is ��ÕÕ�  and being ‘11’ is ����. 
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Based on the above discussion, it is concluded that ����  includes truly detected OFF states as well as the 

missing part whereas, the missing part also includes ��� with probability ��ÕÕ� . Hence, the estimation of 

��� is given as follows: 

���� = ���� × �* + 
���� × �|���� × ��ÕÕ�  (5.22a) 

However, it is observed that following provides better estimation in most cases:  

���� = ���� × ��ÕÕ�  (5.22b) 

Similarly, the occurrence of ‘0’ in ����  and ����  include true OFF states with probability ��ÕÕ�and missed 

ON states with ���� . Finally, missed ON states in ����  represented by =����
���� × �|����> has to be 

distributed among ���, ��� and ���. One possibility is to distribute this part equally in these three counts 

however, it often generates biased results. Another solution, which gave promising results during 

simulations, is to distribute this factor proportional to the ‘so far’ estimated counts of the respective state 

transitions as specified by the following three equations:  

���� = ���� × ��ÕÕ� + =����
���� × �|�> �MÏ4 ×L?DD�T��MÏ4 ×L?DD�����ÏM4 ×L?DD���ï�ÏÏ4 ���MÏ4 ×L?@�����ÏM4 ×L?@��ðU (5.23) 

���� = ���� × ��ÕÕ� + =����
���� × �|�> �ÏM4 ×L?DD�T��MÏ4 ×L?DD�����ÏM4 ×L?DD���ï�ÏÏ4 ���MÏ4 ×L?@�����ÏM4 ×L?@��ðU (5.24) 

���� =
���� + ����� × ����� + ����� × ����� +
=����
���� × �|�> =�ÏÏ4 ���MÏ4 ×L?@�����ÏM4 ×L?@��>T��MÏ4 ×L?DD�����ÏM4 ×L?DD���ï�ÏÏ4 ���MÏ4 ×L?@�����ÏM4 ×L?@��ðU (5.25) 

Analysis of results: Two of the four state transition probabilities computed using eq. (5.12) – eq. (5.15), 

eq. (5.20), eq. (5.22) – eq. (5.25) for different sensor and PU bandwidths are plotted in Fig. 5.19. The 

remaining state transition probabilities can be computed by using the identity given by eq. (2.14).  

It can be observed from these plots that the estimation error remains well below 10 % for both transition 

probabilities for any values of BP and BS. However, at all those places where Pd is 0.5 (e.g. BP = 1 MHz, 

fc = 2.44 GHz, 80 MHz < BS > 40 MHz), n11 is slightly overestimated causing comparatively higher 

estimation error for a11 and obviously for a10 too. Fortunately, this overestimation only occurs when 

BS ≥ 50 % of BW. Clearly, such situations are not the actual target area of estimation methods presented in 

this chapter because with so large BS any traditional parameter estimation approach will provide 

reasonable estimation accuracy.  
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(a) Estimation error for g�� (b) Estimation error for g�� 

Figure 5.19: The percentage estimation error for a00 and a11 using renewal theory based approach in 

non-overlapping scenario with non-stationary primary traffic. The primary statistics are changed and 

re-estimated after every second hence, the % error is the average value computed over 

10 measurements. r = 1000, fc = 2.44 GHz, Tlearning = 0.625 sec, �SM	 = 0.4, TS = 625 µs, 

window size = 80. 
 

  

  

(a) PU = IEEE 802.11 (b) PU = IEEE 802.15.4 

Figure 5.20: Estimation of specified state transition probabilities using renewal theory approach in a 

non-overlapping scenario. Non-stationary primary traffic is used where traffic statistics i.e. λON or λOFF 

vary after every one second. The respective values of PON (estimated) are plotted in Fig. 5.18 a&b. The 

values corresponding to BS = 80 are true values used for reference. Total number of samples for each 

point i.e. r = 1000, Ttraining = 0.625 sec, �SM	= 0.4, TS = 625 µs, window size = 20, BS is specified in 

legend. 
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Running results of two standard wireless technologies are presented in Fig. 5.20. A significant 

observation is the occurrence of large estimation error in a00 when duty cycle is too high (higher than 

~90 %) and large error in a11 when the duty cycle of the primary signal is too low (lower than 10 %). For 

example, time 10, 22 and 23 for IEEE 802.15.4 signal plot in Fig. 5.20b. Meanwhile, corresponding 

running results of PON are already plotted in Fig. 5.18 a & b. 

5.2.5.2 HMM based approach 

Baum-Welch algorithm, an EM procedure, is a maximum-likelihood approach for HMM parameter 

learning. Given observation sequences L = {O
k
}, it learns the optimal parameters of λ i.e. λλλλ∗ =

argmaxλλλλ�
Ã|λλλλ�. The idea is to divide the observation sequence, O, into two parts, the first part is from 

time 1 to time t and the other part is from time t+1 to time T as shown in Fig. 5.21. A so-called forward-

backward procedure [ETH10] is used to compute two variables αi(t) and βi(t) for these parts of the 

observation sequence which are then used for estimation of Â∗.  

αi(t) is called the forward variable and is defined as the probability of seeing the partial sequence o1, …,ot 

and ending up in state Si at time t, i.e. 

WN
(� = �
·� = n�, … , ·/ = n/ , �/ = 1N|Â� (5.26) 

It can be recursively calculated as follows: 

Initialization: WN
1� = £N©N
n�� (5.27)  

Recursion: W�
( + 1� = =∑ WN
(�gN��N�� >©�
n/��� (5.28)  

where £N , gN�  and ©N
n�� are initial, state transition and emission probabilities specified by eq. (2.15), 

eq. (2.13) and eq. (2.20) respectively and N is the number of states.  

 

Figure 5.21: Illustration (concept from [LAW89]) of the computation process of probability of joint 

event that the system is in state Si at time t and Sj at time t+1 for a two state Markov process with 

symbol set V ={0, 1}.  
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Similarly, βi(t), called the backward variable, is the probability of being in state Si at time t and observing 

the partial sequence ot+1,…,oT i.e. 

XN
(� = �
·/�� = n/��, … , ·$ = n$ , �/ = 1N|Â� (5.29) 

It can be recursively computed as follows: 

Initialization: XN
	� = 1 (5.30) 

Recursion: XN
(� = ∑ gN�©�
n/���X�
( + 1�����  (5.31) 

As per Rabiner’s HMM tutorial [LAW89], Baum-Welch algorithm defines YN�
(� as the probability of 

being in state Si at time t and in state Sj at time t+1 given the model and the observation sequence, i.e. 

 YN�
(� = �
�/ = 1N , �/�� = 1�|·, Â	� (5.32) 

This equation can be expanded as
12

: 

YN�
(� = L
�Ò�� ,�ÒÓÏ��¡,Z|Â	�
L
Z|Â�  (5.33) 

Where numerator is the joint probability as illustrated by Fig. 5.21. By using the forward and the 

backward variables eq. (5.33) can be written as: 

YN�
(� = � 
/�» ¡6¡
5ÒÓÏ�[¡
/���
∑ ∑ � 
/�» ¡6¡
5ÒÓÏ�[¡
/���F¡\ÏF \Ï

 (5.34) 

Note that summation of eq. (5.34) over time is the expected number of transitions from state Si to state Sj 

for observation sequence O, i.e. 

�N� = ∑ YN�
(�$,�/��  (5.35) 

Furthermore, the probability of being in state Si at time t for the observation sequence O can be calculated 

by summing up the probabilities for all possible next states from state Si, i.e.  

�N
(� = �
�/ = 1N|·, Â� = ∑ YN�
(�����  (5.36) 

Summation of eq. (5.36) across time gives the expected number of times in state Si and hence the 

expected number of transitions from state Si, as given below: 

                                                           
12

 If two events A and B are defined as, A = Being in state Si at time t and in state Sj at time t+1 given the model, 

and B = observing the sequence O given the model, then YN�
(� is the conditional probability of being in state Si at 

time t and in state Sj at time t+1 given the observation sequence and the model, and is given as follows: 

 YN�
(� = �
s|c� = �
A∩B�
�
B�  
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�N = ∑ �N
(�$/��  (5.37) 

The goal is to use YN�	and	�N  to estimate the parameters of the HMM, λ = (A, B, π), for observation 

sequence O, which are given in the following: 

£2N = jxpected	number	of	times	in	state	1N	at	time	
( = 1� = �N
1� (5.38) 

g2N� = � ¡
� 

= ∑ ] ¡
/�^�ÏÒ\Ï
∑ _ 
/�^�ÏÒ\Ï

 (5.39) 

©̀N
f� = �~��)��*	��|���	��	��|�	��	��}��	�	}�*	�����a��/	�b|���	cd
� 

= ∑ _ 
/��
5Ò�cd�^�ÏÒ\Ï
∑ _ 
/�^�ÏÒ\Ï

 (5.40) 

Now the model parameters are computed as follows: 

E-Step: Let say an initial guess of model parameters is defined as λ = (A, B, π). 

M-Step: Use the initial guess in eq. (5.38) – eq. (5.40) to obtain a re-estimation of model parameters 

specified by Ầ = 
sº, c,½ £2�.  Iteratively use Ầ instead of λ in these equations until some limiting point is 

reached. 

In order to apply the Baum-Welch algorithm to the problem of parameter estimation using swept sensing, 

the missing binary series is considered as the observed sequence O. While, the complete state sequence 

that can only be observed by a wideband sensor is the hidden sequence Q. Initial guess of parameters is 

given in the following: 

£N = 
�Z�7 , 1 − �Z�7 � (5.41) 

gN� = e �MM�
��,LEF: �×���/��	��	|�����/	���}�b	������ �MÏ�

��,LEF: �×���/��	��	|�����/	���}�b	������
�ÏM�

LEF: ×���/��	��	|�����/	���}�b	������ �ÏÏ�
LEF: ×���/��	��	|�����/	���}�b	������ f (5.42) 

Where �N�7  is given by eq. (5.22) - eq. (5.25). 

©�
f� =
Nprobability	to	observe	a	0	given	an	OFF	state probability	to	observe	a	1	given	an	OFF	state
probability	to	observe	a	0	given	an	ON	state	 probability	to	observe	a	1	given	an	ON	state	P (5.43) 

Assuming that Pfa = 0, it is known that an OFF state always generates a ‘0’ in O. On the other hand, an 

ON state can be missed with Pmiss generating a ‘0’ or can be detected with Pd generating a ‘1’ in O as 

illustrated by HMM model for swept sensing in Fig. 5.22. Hence, the matrix in eq. (5.39) can be written 

as:  

©�
f� = N 1 0
�|��� �*P (5.44) 
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If there is some false alarm probability that can be estimated then the emission probability matrix can be 

adjusted accordingly however, false alarms are not considered in this document. 

 

Figure 5.22: The HMM model for swept sensing. 

 

 

  

(a) Estimation error for g�� (b) Estimation error for g�� 

Figure 5.23: The percentage estimation error for a00 and a11 using Baum-Welch algorithm in non-

overlapping scenario with non-stationary primary traffic. The primary statistics are changed and re-

estimated after every second hence, the % error is the average value computed over 10 measurements. 

r = 1000, fc = 2.44 GHz, Tlearning = 0.625 sec, �SM	= 0.4, TS = 625 µs, window size = 80. 
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Analysis of results: The average estimation error in a00 and a11 using Baum-Welch algorithm is presented 

in Fig. 5.23. The results are very identical to those produced by renewal theory based approach with slight 

differences. For higher values of Pmiss, i.e. for smaller values of BP and BS, the estimation of a11 is ~ 2-3 % 

better than the renewal theory based estimation. However, at BS ≥ 50 % of BW and Pd = 0.5, the 

overestimation of n11 is ~ 2-3 % worse than the estimation done by renewal theory. Finally, the estimation 

of a00 is also ~2 % worse than that of renewal theory based approach for larger values of Pmiss. 

5.2.5.3 Renewal theory based approach vs. Baum-Welch algorithm 

Since both methods relays on same parameters i.e. ����  and �N��  and produces almost identical results, the 

only significant point of comparison is the computational time required to estimate the model parameters. 

The renewal theory based approach has to compute only five equations (eq. (5.20), eq. (5.22) –

 eq. (5.25)). On the other hand, the computational time required to calculate the forward and the backward 

variables is h
Î�	��}����/� [ETH10]. It further requires K number of iterations in M-Step to reach to the 

convergence point. Hence, the computation complexity of the Baum-Welch algorithm is i ×h
Î�	��}����/�. Because of such large computational time this method may not be feasible at all with 

traditional microcontroller/FPGA based platforms particularly in situations where either large training 

time is required e.g. in the presence of primary signals with low duty cycles or when the model 

parameters has to be re-estimated very often e.g. in case of non-stationary traffic.  
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Chapter 6 

Implementation of Selected Scenarios 

A COCE based SU demonstrator is presented in this chapter for proof-of-concept of some selected 

scenarios. The overall chapter is divided into two sections. Section 6.1 explains implementation details 

and the experimental setup while section 6.2 discusses experimental results of the SU in coexistence of 

IEEE 802.11g WLAN, IEEE 802.15.1 BT and nanoNET based PU systems. 

6.1 Implementation 

An HDR based CC2500 transceiver and a MSP430 microcontroller from Texas Instruments (TI) are 

employed to implement the SU testbed. SDR based systems are still in their research phase and almost all 

existing automation systems are implemented using HDR based platforms. Therefore, instead of choosing 

a modern SDR platform, which is often preferred to realize proof-of-concept demonstrators in CR 

research, a traditional HDR based platform is chosen to demonstrate the suitability of the proposed 

cognitive strategies with platforms that are still dominant in real world applications. 

A master-slave setup (see Fig. 6.1) using cyclic round-trip communication is realized. All cognitive tasks 

are implemented in the SU master device as illustrated by flow graphs shown in Fig. 6.3. The main 

features of the SU demonstrator are summarized in Table 6.1. 

The master node senses the spectrum, measures the QoS, and decides about necessary tuning. It controls 

tuning of the slave node via special control packets. The slave acknowledges after executing the tuning 

command of the master. Eventually, the master tunes its own parameters to the new values.   

Transmitted data packets of the master node with fixed size and contents are always echoed back by the 

slave node. The master node calculates the QoS from this round-trip communication in terms of BER and 

PLR. 

6.1.1 Experimental setup 

The SU master and slave nodes are placed 6 m apart from each other with non-line-of-sight as shown by 

the constellation of the experimental setup in Fig. 6.1. An IEEE 802.15.1 based frequency hopping SDR 

system named SDR-BT, a nanoNET system and three IEEE 802.11g based WLAN APs are used as PU 
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systems as briefly described in table 6.2. The WLAN APs are installed at different locations and are 

operating at channel no. 1, 6 and 11. The AP at channel 1 is closest to the SU and is also the busiest one 

and hence is the worst interferer among all three WLAN networks. The cyclic nanoNET and the BT-SDR 

systems are manually turned on and off at random times. 

 

Table 6.1: Main features of the SU Testbed 

Platform CC2500 TRX + MSP430 µC 

Spectrum sensing RSSI 

Sample time (RSSI read time) ~ 100 µs 

Frequency switching time ~ 90 µs 

Operating band 2.4 GHz ISM band 

Bandwidth 812 kHz 

Total no. of channels* 

Data 

transmission 

70 channels are used for data transmission with fc = 2405 + 

k in MHz;  

where k = 1,2,3,…,70 

Spectrum 

sensing 

407 channels are used for spectrum sensing with fc = 2400 

+ channel_spacing × k in MHz;  

where channel_spacing = 200 kHz, k = 1,2,3,…,400 

TX power 0 dBm 

Modulation MSK 

Bitrate 500 kbps 

Traffic type Cyclic 

CRC CRC-16 

QoS BER, PLR 
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Table 6.2: PU systems used to create the experimental coexisting environment. See Appendix B for a 

detailed description of these radio systems. 

WLAN Several IEEE 802.11 based networks are active in channel numbers 1, 6 and 11. Fig. 6.2 

presents a snapshot of WLAN activity in the experimental area captured at the location 

of the SU master device. It is worth noting that the WLAN network in CH1 is the worst 

interferer for the SU system because it is the closest to SU transceivers as well as the 

busiest system. The farthest and the least busy, hence the weakest interferer among all 

three is the one active in CH6. 

SDR-BT A USRP2 based SDR is used to employ an adaptive hopping system as described by 

IEEE 802.15.1 standard. It blacklists active WLAN channels. However, this system 

significantly differs from the standard BT system in terms of length of a single time slot. 

Because of a slow host PC, the SDR-BT transmits for ~20 ms at each hop frequency 

instead of traditional 625 µs time slot based 1-slot, 3-slot and 5-slot packets. Only one 

transmitter of this system is used.   

NanoNET A nanoNET master-slave pair is used. The master device transmits cyclically. Each 

transmission is echoed back by the nanoNET slave device.  
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Figure 6.1: Node constellation of the experimental setup. In fact there are more WLAN APs operating in 

three specified channels as listed in Fig. 6.2. However, this picture only depicts the position of the closest, 

hence the most influential AP in each active channel.  

 

Figure 6.2: WLAN activity in the experimental area. 
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Figure 6.3: Flow graph of the proof-of-concept SU demonstrator. 
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6.1.2 Opportunistic Spectrum Access Algorithms 

The SU calculates its QoS after each transmission and compares this QoS with a predefined threshold 

value periodically after every N
QoS

 transmissions. It initiates the sensing and decision making process 

whenever the measured QoS is worse than the threshold value. Intelligent hole detection (IHD), first 

free (FF) and Markov model (MM) based methods are used for decision making. Where, FF, MM2 and 

MM4 TYPE-I based OSA algorithms, presented in section 5.1.2 are incorporated with suitable 

amendments needed for real-time implementation as described in the following: 

6.1.3 First Free 

Starting from the first channel, the RSSI reading for a channel is acquired and averaged over a time TAVG, 

and this process is performed for all channels in a sequential order until a channel (first free channel) is 

found that has an average RSSI value smaller than a predefined threshold value THRESHOLD
RSSI

. If such 

a channel is not found in one scan then the entire process is repeated until a free channel is found.  

6.1.4 MM2, MM4 TYPE-I 

The Markov model parameters, π = {P(i)}, and A ={aij} of the PU systems, are computed using the 

bandwidth independent parameter estimation method (BIPE) presented by the flow graph in Fig. 5.8. The 

SU first attempts to find a channel for its transmission with �ON < 	��¤1�·Ã�ON, if such a channel is 

not found then the channel with max
0º� − 0º�� is chosen. 

Furthermore, Markov model parameters are estimated using either the traditional multi-channel approach 

or the multi-PU approach presented in chapter 5. 

6.1.5 Intelligent Hole Detection 

As already discussed in chapter 3, the IHD method classifies coexisting systems and uses the existing 

knowledge of features of the detected PU systems to explore hyperspace opportunities. Its performance 

depends on reliable classification and the extent of reconfigurability of the underlying SU radio platform. 

The CC2500 transceiver does not offer much reconfigurability and only operating frequency, 

transmission time and transmission power can be reconfigured by the cognitive engine. In order to 

demonstrate the significance of classification based cognitive decision making using this limited 

reconfigurability, the selected PU systems are accommodated using methods explained in the following: 

SDR-BT: The SU system knows the blacklisting feature of the SDR-BT system. The narrowband sensor 

of the SU system cannot detect all hops of the SDR-BT system. However, based on its prior knowledge it 

assumes that all inactive WLAN channels are being used by the hopping system whenever even a single 
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SDR-BR hop is detected. Furthermore, on the basis of prior experimentation (presented later in Fig. 6.7) 

it is known to the cognitive engine that the SDR-BT system is a worse interferer to the SU than the 

boundary areas (see Fig. 6.6) of the WLAN system no matter what is the strength of WLAN interference 

at the SU antenna. Where, the strength of the WLAN interference depends on the traffic load of the 

WLAN network and distance of WLAN nodes form the SU antenna. Hence, in the presence of an SDR-

BT system, transmitting at the boundary of an active WLAN channel is a safer option for the SU system.  

WLAN:  

• If SDR-BT is not active then an inactive WLAN channel is selected.  

• If SDR-BT is active then the cognitive engine uses MM2/MM4 method to find the least active 

WLAN channel. Based on prior experiments (presented later in Fig. 6.6) it is known to the SU 

that choosing a channel at the boundary of an active WLAN channel offers much weaker 

interference than at closer to that channel’s center frequency (see Fig. 6.7b and related 

discussion). Where, precise interpretation of center and boundary of a 22 MHz IEEE 802.11g 

channel is given in Fig. 6.6. Thanks to the signal classification, it is possible for the SU to identify 

center and boundary areas of a PU system. Eventually, the cognitive engine chooses a channel at 

the boundary of the WLAN channel selected by MM2/MM4 based method.    

 

Figure 6.4: Interpretation of center and boundary of a 22 MHz IEEE 802.11g channel. 

NanoNET: It covers the entire ISM band and virtually leaves no free spectral space. Consequently, 

traditional predictive and non-predictive OSA methods fail to find a safe channel. A method named cycle 

time configuration, proposed in [AHM10], is used to locate opportunities in time domain to accommodate 

the SU system. It is explained in the following paragraphs. 

Most of the communication in industrial automation systems works cyclically where fixed small data 

packets are exchanged after a predefined fixed time interval called the cycle time. There is some white 

space between the start of the next packet transmission and the completion of the previous transmission 

which can be used as temporal gap by the SU. However, the length of this useful white space can be 

variable and is calculated as follows (see Fig. 6.4): 
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white_space = cycle_time - max_packet_delay - packet_size 

Where max_packet_delay depends on the following: 

• Max. number of retransmissions 

• Response time of the transceiver 

The CR system knows a-priori that the nanoNET based PU system is a cyclic system; however the cycle 

time is not known. Whenever, the CR detects a nanoNET system it attempts to reconfigure its own cycle 

time to exploit the available temporal gaps as explained in the following.  

 

Figure 6.5: a) Depiction of cyclic transmission. b) 

4 seconds transmission trace of a cyclic master-

slave system measured by a spectrum analyzer in 

zero-span mode. The cycle time is 50 ms. c) 

Enlarged view of consecutive packets. 

Figure 6.6: Cycle time configuration. a) 

Appearance of collisions; b) collision avoidance 

 

The idea is to detect the cycle time TPU of the PU and choose the cycle time TSU of the secondary CR user 

as follows:   

	SU = e	PU																				or

an integer multiple or divisor of		PU
   

Once TSU is selected the CR can slide its transmission by inserting and controlling a delay d to provide an 

optimal synchronization between the CR and the coexisting system as illustrated by Fig. 6.5. 
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6.2 Results 

In the absence of any PU system, the SU system sees a ‘coexistence free channel’. The QoS achieved in 

such a coexistence free channel is considered optimal. The optimal QoS of the CC2500 TRX is 

BER ~ 10
-3

 and PLR ~ 10
-3

 measured at 6 m transmitter-receiver separation with NLOS in same 

experimental vicinity where all experiments reported in this section are done. Moreover, coexistence 

optimization in the context of these experiments means to find an optimal channel for the SU radio 

system with an aim to achieve QoS better than a predefined threshold QoS. Table 6.3 lists different 

threshold values used in experiments.  

Description of experimental results is divided into three subsections as listed in Table 6.4. Section 6.2.1 

presents QoS of the SU platform in coexistence of selected interferers without any coexistence 

management. These results are used as reference in later sections to compare improvement in QoS of the 

SU system caused by various OSA approaches. Section 6.2.2 evaluates the performance of different 

predictive modeling based OSA approaches and section 6.2.3 compares the performance of IHD and 

DHD based OSA approaches. 

Table 6.3: Different threshold values set in the SU testbed 

Threshold Selected value 

THRESHOLD
RSSI

 -80 dBm 

N
QoS

 50 packets 

THRESHOLD
ON

 0.1 

THRESHOLD
BER

 , THRESHOLD
PLR

 1%, 2% 

THRESHOLD
SM

 0.5 

Table 6.4: Summary of section 6.2 

1 Reference measurements  No coexistence management is used by the SU system  Section 6.2.1 

2 

Performance analysis of 

predictive modeling 

based OSA 

Traditional reactive/proactive OSA approach (FF) vs 

Multi-channel predictive modelling based OSA 
Section 6.2.2.1 

Multi-channel predictive modelling based OSA vs 

Multi-PU predictive modelling based OSA 
Section 6.2.2.2 

3 IHD based OSA vs. DHD based OSA Section 6.2.3 
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6.2.1 Reference measurements: SU employs no coexistence management strategy 

Figure 6.7a plots QoS of the SU system measured when the non-cognitive SU system is operating in the 

coexistence of exactly one of the selected PU systems. These results are considered reference 

measurements and explain the impact of each interferer on the performance of the SU system. Both 

nanoNET and SDR-BT systems are used with fixed transmission power and are placed at fixed distance 

in the experimental constellation as already shown in Fig. 6.1. PLR of the SU system is recorded 6.4 % 

and 4.3 % in the presence of nanoNET and SDR-BT interferers respectively. BER is 0.52 % and 0.29 % 

in the presence of nanoNET and SDR-BT interferers respectively.  

Since, there are several WLAN APs operating in the experimental area at different distances from the SU 

system, different values of RSSI are felt at SU antenna because of different locations of the WLAN APs. 

Furthermore, traffic load (or duty cycle) of WLAN networks felt by the SU system in different WLAN 

channels is also highly variable. Because of these reasons, interference strength of the WLAN system is 

time varying in nature unlike fixed interference strength of nanoNET and SDR-BT systems. Therefore, it 

is useful to plot SU QoS measurements with all possible values of RSSI and duty cycle of the WLAN 

system. These measurements are taken by changing the location and traffic load of an AP. The reason to 

choose the RSSI value instead of the distance of the AP from SU is the fact that it is the RSSI value that 

defines the strength of interference not the distance. But the RSSI value is not merely varied by the 

distance but also with the locality of the AP because of different obstacles and channel conditions 

between the WLAN AP and the SU nodes. Experimental results show that the PLR value is almost 

proportional to both RSSI and the duty cycle of the WLAN system. As long as RSSI < -50 dBm and 

duty cycle < 80 % the WLAN system offers less interference than both SDR-BT and nanoNET systems. 

The highest value of PLR is almost ~13 % at maximum observed RSSI and duty cycle. On the other hand 

BER remains between 0.5 % - 1.8 % except for lower values of RSSI. For RSSI < -60 dBm, the value of 

BER remains well below 0.5 %.     

Furthermore, the observed value of PLR at the boundary of an active WLAN channel is approximately 4 

times less than at the center of that channel as shown by Fig. 6.7b. The value of BER at the boundary of 

an active WLAN channel is approximately 2-3 times less than at the center of that channel particularly in 

high BER scenarios i.e. when the values of RSSI and/or duty cycle are high. In order to generalize this 

observation to use later during coexistence optimization using IHD it is concluded that the QoS of the SU 

system operating at the boundary of a WLAN channel is always better than the QoS achieved while 

operating in a channel occupied by the SDR-BT system. 
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These reference measurements and related observations are stored in the radio knowledge base of the IHD 

based SU. Using these measurements, the cognitive engine can estimate the expected QoS at different 

spectral areas in a given coexistence scenario if the PU systems are correctly classified. 

  

(a) Reference QoS measurements of the SU system in the presence of selected interferers. The names of 

interferers are specified on respective plots. NanoNET and SDR-BT systems operate with fixed 

transmission power at fixed distances as specified in Fig. 6.1, therefore, the axis corresponding to 

RSSI and duty cycle are only meaningful for measurements with WLAN as an interferer.  

Note: PLR in % and BER in % are QoS parameters of the SU system. RSSI in dBm and Duty cycle in 

% are features of the PU system.   

 

(b): Comparison of the SU system at center and boundary areas of an active WLAN channel (CH11). 

Figure 6.7: Reference QoS measurements of the SU system in the presence of selected interferers. 
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6.2.2 Performance analysis of predictive modeling based OSA 

6.2.3 FF vs multi-channel MM 

Experimental results using FF and multi-channel MM based SU testbeds in coexistence of WLAN and 

SDR-BT systems are presented in Fig. 6.8. For each OSA method four different parameters are plotted for 

two different averaging/training time values. First of these parameters is a binary variable that marks the 

discrete points of time when spectrum sensing and decision making is performed to find a new channel. It 

describes how frequently the SU system has to spend its resources for channel selection. Second 

parameter is the channel number used for next N
QoS

 transmissions. Last two parameters describe the rate 

of data loss. 

 

  

 

 

 

 

(a) Performance trace of the FF based SU 
(b) Performance trace of the Multi-channel MM 

based SU 

Figure 6.8: FF vs Multi-channel MM. 
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6
th
 channel of the WLAN system is the least used part of the spectrum but the FF based CR system never 

continues its search till that part of the spectrum as shown by the spectral traces of the coexistence 

environment in Fig. 6.9. It always chooses a channel that overlaps either with the first channel of the 

WLAN system or with SDR-BT hops. Even averaging over longer time does not always guarantee that an 

optimal channel is selected. For instance, with TAVG = 50 ms (500 samples), the CR system mostly 

chooses a channel overlapping with first channel of the WLAN system which offers very strong 

interference. The average values of PLR and BER are 8.47 % and 0.21 % respectively in this case. 

Furthermore, it can be noticed by comparing top two plots of Fig. 6.8a that many times the spectrum 

sensing process proves to be a useless practice because the SU kept operating in the same channel rather 

to find a better one.  

On the other hand, with TAVG = 200 ms (2000 samples), the CR system mostly chooses a channel that is 

actually occupied by the hopping SDR-BT system. It generates slightly better results with 

PLR
AVG

 = 3.91 % and BER
AVG

 = 0.16 %, but still fails to find the optimal solution. It proves the fact that 

even high averaging time does not guarantee an optimal solution in traditional FF type OSA approaches. 

Although, further increasing the averaging time may leads the SU system to an optimal solution yet it 

depends on the transmission pattern of the PU system. For instance, bursty nature of the WLAN traffic 

may contain very long inactive periods between successive data transmissions and sensing the channel 

during that inactive period even for very long time may fail to detect the PU system. However, despite 

these long inactive periods, such PU systems can still offer considerable interference to the coexisting 

system.  

On the other hand, the multi-channel MM based approach is almost always able to choose the optimal 

channel if it exists or the best channel otherwise. However, the performance of this approach also highly 

depends on the training time. With larger values of the training time the SU achieves better estimation of 

the model parameters resulting in better decision making. For instance, with a training time of 

200 ms/channel, the SU system achieves PLR
AVG

 = 1.4 % and BER
AVG

 = 0.035 % and needs less frequent 

channel switching in comparison to 50 ms training time that achieves PLRAVG = 2.3 % and 

BER
AVG

 = 0.18 % with more frequent channel selection as shown in Fig. 6.8b. The spectral trace of the 

coexisting environment when the multi-channel MM based SU is operating is plotted in Fig. 6.9.    
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Figure 6.9: The multi-channel MM based SU operates in the coexisting environment using training 

time = 200ms/channel. 

 

6.2.4 Multi-channel MM vs Multi-PU MM 

Performance trace of multi-PU MM based SU is presented in Fig. 6.10 for two different training times.  

 

 

 

Figure 6.10: Performance trace of multi-PU MM.  
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It is worth noting that multi-PU uses identification of PU systems to compute MM model parameters. 

Hence, parameters are computed only at center frequencies of detected PU systems unlike multi-channel 

MM approach that compute parameters for all 70 channels. The coexistence environment being discussed 

in section 6.2.2 only consists of three WLAN instances (WLANCH1, WLANCH6, WLANCH11) and SDR-BT 

as already mentioned in the beginning of this section. Eventually, model parameters are only computed at 

center frequencies of three active WLAN channels. SDR-BT is stronger interferer than WLAN system in 

most cases (except for very strong WLAN signals) therefore the SU system never attempts to transmit in 

a channel that is occupied by it. Eventually, the SU system always chooses one of three active WLAN 

channels as can be seen in channel # plot in Fig. 6.10.   

The SU system achieves PLR = 1.7%, BER = 0.084 and PLR = 0.68%, BER ~ 10
-3

 for 20ms and 45ms 

training times respectively, which is better than the QoS of multi-channel MM based SU presented in 

section 6.2.2.1. Because of better decision making for channel selection, channel switching is also 

performed less often than multi-channel MM based approach as shown in top two plots of Fig. 6.10.   

Coexistence of the SU system using FF and MM based OSA approaches in the presence of the nanoNET 

PU is not included here because all channels are equally occupied by the nanoNET system and these 

methods always struggle to find an optimal channel. Coexistence of the SU system with nanoNET PU 

will be further discussed in section 6.2.3. 

6.2.5 Intelligent Hole Detection vs. Dumb Hole Detection 

The opportunistic operation of the IHD based SU relies on the classification information provided by the 

NFSC and the information stored in the radio knowledge base about the transmission characteristics of 

the PU systems extracted from documented standards. Furthermore, the reference measurements 

presented in Fig. 6.7 are also stored in the radio knowledge base which helps the cognitive engine to 

estimate the expected level of interference in different channels in a given coexistence scenario. It is 

further strengthened by multi-PU MM based OSA. On the other hand DHD approach could only employ 

either FF or multi-channel MM and the better of these is selected. Table 6.5 lists down constituents of 

IHD and DHD based approaches.  

Coexisting environment: The coexisting environment used for measurements in this section includes 

three WLAN networks, one SDR-BT transmitter and a nanoNET master-slave system (see Fig. 6.1).    

Since spectral projection and classification provide foundation of the IHD method, results of these two 

processes are presented in the next subsection. Coexistence performance of IHD and DHD methods will 

be discussed afterwards. 
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Table 6.5: Constituents of IHD and DHD based OSA approaches 

IHD DHD 

Identification of PU systems 

Multi-PU MM 

Cycle time detection 

Knowledge of reference measurements 

Multi-channel MM 

 

Spectral projection and classification: Fig. 6.11 presents a swept spectrogram and the corresponding 

selective projected spectrogram generated by the SU system using a window size of 1 sec. The NFSC 

score of the SU testbed for all PU systems for three possible scenarios is plotted in Fig. 6.12. Note that 

classification is first done using MaxHold operation as described in chapter 4 and the selective spectral 

projection method is only performed for active WLAN channels, which significantly reduces the 

computational complexity. Selective spectral projection is not performed for nanoNET and SDR-BT 

systems because the MM based approach is never used for these two PU systems. 

  

Figure 6.11: Swept spectrogram (left plot) and the selective projected spectrogram (right plot). 

Projection is performed only for active WLAN channels. Where active WLAN channels are found 

using MaxHold based NFSC. Window size = 1 sec, however, only 100 ms fraction of the complete 

spectrogram is displayed.  

Fig. 6.12a plots the SM score when WLAN and SDR-BT PU systems are operating simultaneously. The 

SU system generates reasonably prominent scores for the SDR-BT signals although there are also some 

false alarms for the SDR-BT system in the presence of the wider IEEE 802.11 based signals. A false 
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alarm for the SDR-BT system will force the cognitive engine to choose a WLAN boundary channel 

although a completely free spectral area is present. These false alarms can be reduced by choosing a 

higher THRESHOLDSM but it will obviously increase the probability of miss detection for the SDR-BT 

system. However, as discussed earlier failing to choose the completely free channel because of a false 

alarm is less costly than choosing a channel that is actually occupied by the SDR-BT system because of a 

miss detection. On the other hand, channels of the IEEE 802.11g based PU overlap each other therefore, 

the SM score for the neighboring channels of a truly active channel is also very high but surly smaller 

than the truly active channel. For instance, in Fig. 6.12a channel 2 is not active but its SM score is higher 

than the other inactive channels. It is assumed during these experiments that WLAN systems are never 

active in adjacent channels which, is mostly true in real-time environments. Therefore, local maximum 

value of the SM score is computed to find the truly active WLAN channel whenever multiple adjacent 

channels generate scores higher than THRESHOLDSM. The nanoNET PU system can be clearly 

distinguished as inactive in this scenario even though more or less the entire 80 MHz band is occupied by 

WLAN and SDR-BT systems. 

Fig. 6.12b plots the SM score of a scenario when only IEEE 802.11 based PU is active. Once again there 

are few false alarms for the SDR-BT system. The IEEE 802.11 PU system is correctly identified whereas 

the nanoNET system is also clearly identified as inactive.  

Fig. 6.12c plots the SM score for scenario when all three PU systems are active simultaneously. Very 

prominent SM scores are generated for the SDR-BT system at the boundary areas of the ISM band 

because the wider nanoNET system is very weak at these points. However, in other spectral areas the 

SDR-BT signals are somewhat buried under the nanoNET signal and the resulting SM score is not very 

prominent but still mostly above the threshold value. The IEEE 802.11 based signals are still 

distinguishable although the SM score corresponding to the inactive WLAN signals is slightly raised 

because of the wider nanoNET signals. Finally, the truly active nanoNET system is always clearly 

detected. 
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(a) SDR-BT is also active, IEEE 802.11 is active in CH1, CH6 and CH11, NanoNET is inactive 

  

(b) Only IEEE 802.11 is active in CH1, CH6 and CH11, SDR-BT and NanoNET are inactive 

   

(c) SDR-BT is active, IEEE 802.11 is active in CH1, CH6 and CH11, NanoNET is active 

Figure 6.12: The SM score generated by the SU demonstrator for three different scenarios. Note that 

the SM score of the SDR-BT system is only plotted for 7 selected frames instead of plotting against 

time like other two PU systems because plotting all 79 channels in a single graph makes it impossible 

to understand the plot. 
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Figure 6.13: 5 minutes long spectral trace of 80 MHz wide 2.4 GHz ISM band taken by a real-time 

spectral analyzer. The IHD based SU operates in the coexisting environment where WLAN, SDR-BT 

and nanoNET systems are operating. Because of very low resolution in time domain cyclic activity is 

not visible. The smaller plot taken in zero span mode shows how SU is accommodated using cycle-

time exploitation method whenever it has to coexist with the nanoNET system. 

Performance analysis: Spectral trace of working of the IHD based SU in coexistence of all three PU 

systems is shown in Fig. 6.13. It can be seen in this spectral trace that the SU switches to only some 

selected channels. If an SDR-BT system is not detected then the SU transmits at fc = 2.424 GHz which is 

a completely free channel in this case. However, if the SDR-BT system is detected then the SU uses 

multi-PU approach to find the least used but active WLAN channel. Once the least used channel is found 

the SU opts to transmit on the boundary channel of the selected WLAN channel. It can be seen from the 

spectral trace that either a boundary channel of WLANCH6 or of WLANCH11 is mostly selected. It is also 

worth noting that the WLAN system at CH6 is not very active and the signal is also too weak to be 

always detected. Whenever a WLAN system at CH6 is not detected the cognitive engine assumes that it is 

also occupied by the SDR-BT system because it is known to the cognitive engine that only active WLAN 

channels are skipped by the hopping system. Hence, a miss detection of the WLAN PU leads to the 
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selection of a channel that may not be optimal because in fact WLANCH6 is the least active channel and is 

also not occupied by the hooping system as can be seen from the spectral trace. A solution is to lower 

down the threshold values of the NFSC to decrease the probability of miss detection but obviously at the 

expense of increased false alarms. However, the cost that has to be paid in the case of a miss detection is 

smaller than the cost in case of a false alarm. It is because transmitting at the boundary of even a very 

active WLAN channel offers less interference than the SDR-BT system as it is already known from the 

reference measurements. Hence, failing to choose the boundary of the least active channel is better than 

falsely detecting a WLAN system where actually the hopping system is operating.  

Fig. 6.14 presents results of the IHD based SU in left hand side plots and DHD based SU in right hand 

side plots. During these experiments nanoNET and SDR-BT based PU systems are switched ON and OFF 

randomly while the SU is running. Fig. 6.14a presents classification trace of the coexistence environment 

generated by the SU system. Top most plot in Fig. 6.14b presents the decision method used to choose the 

channel at any discrete time, middle plot in Fig. 6.14b presents the selected channel. Fig. 6.14c plots 

estimated values of three Markov model parameters. Once again it is stressed that in case of IHD, the MM 

method is only used to find the least used WLAN channel when an SDR-BT based PU is active. 

Therefore, MM parameter values are only plotted at times when SDR-BT is marked active in Fig. 6.14a. 

Left hand side plot of Fig. 6.14c presents the MM parameters for all active WLAN channels. On the other 

hand, in right hand side plot of Fig. 6.14c, the MM parameters of only selected SU channel are plotted. 

Fig. 6.14d presents parameters describing the rate of data loss.   

The SU has to find an optimal channel using only MM based approach in right hand side plots and using 

a combination of MM, radio knowledge and cycle time detection in left hand side plot in Fig. 6.14. In the 

absence of the nanoNET PU system, the MM based approach always successfully steers the SU systems 

to an optimal channel as shown by the QoS plotted in right plot in Fig. 6.14d. However, the presence of 

nanoNET system creates a situation where all channels are apparently equally busy as it covers the entire 

ISM band and leaves no completely free spectral area. In such situations neither the traditional OSA 

methods like FF nor the predictive models such as MM can find an optimal channel. In Fig. 6.14 right 

hand side plots, it can be seen that whenever a nanoNET system is turned ON the SU struggles to find a 

good channel and keeps on switching to a new channel at each discrete step without any improvement in 

the QoS. However, the SU equipped with IHD successfully accommodates itself in the current channel by 

merely adjusting its cycle time whenever a nanoNET PU is active as shown in left hand side plot of 

Fig. 6.14.  
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(a) Detection trace of PU systems 

  

(b) Decision method, selected channel and total time taken to take the decision (from top to bottom) 

  

(c) Estimated MM parameters. Estimated parameters of three active WLAN systems using multi-PU 

method (left plot), estimated parameters of only the selected channel where estimation is done using 

traditional multi-channel based parameter estimation method (right plot).  
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(d) QoS 

Figure 6.14: Performance analysis of IHD based SU (left plot) and DHD based SU (right plot). 1 

sample ~ 100 us, first channel = 4.  

Note: Note that identity of the coexisting systems presented by the detection trace shown in part ‘a’ of 

this figure is only used by IHD for decision making. DHD method does not use this information and it 

is plotted here only for better understanding of other DHD based results.   

6.3 Conclusion 

Predictive OSA methods perform better than the traditional non-predictive methods because they always 

choose the optimal channel if it exists and the best channel otherwise. On the other hand traditional non-

predictive approaches often fail to find the optimal/best channel. However, predictive approaches also fail 

to optimally exploit available hyperspace opportunities because of their inability to learn the complete 

coexistence behavior of the coexisting radio systems. In contrast to the traditional non-predictive and 

predictive approaches, the IHD based OSA approach can better plan opportunistic operation of a SU radio 

system in a coexistence environment where primary systems with diverse radio characteristics are 

operating.  

The proof-of-concept IHD based SU system presented in this chapter uses prior knowledge of two 

transmission characteristics, i.e. adaptive hopping and cyclic transmission, of primary systems for 

decision making. Furthermore, it is equipped with reference measurements, which helps the cognitive 

system to estimate the expected strength of interference at different spectral areas in a given coexistence 

scenario. The SU system classifies the primary systems and relates all this information in order to 

optimally tune the SU radio platform. The CC2500 TRX used as SU radio platform is a traditional HDR 

platform and doesn’t offer much flexibility. But the proof-of-concept SU system demonstrates the fact 
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that the ideas involved in IHD based OSA can be successfully employed even with traditional HDR based 

rigid platforms. However, more flexible software radio platforms will certainly be able to better exploit 

the advantages of the IHD based OSA scheme. 
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Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

Cognitive radio is being considered as a platform to realize strategies to improve the wireless coexistence. 

It operates as a secondary user (SU) and opportunistically fits its transmission to spectral holes left by the 

coexisting primary user (PU) systems. Despite the promising results shown so far, the existing 

opportunistic spectrum access strategies suffer from some critical limitations. Firstly, proactive and 

reactive types of spectrum sensing limit the vision of a cognitive radio system making it unable to reliably 

gauge the activity of primary systems resulting in harmful collisions and unnecessary interruptions in 

secondary transmissions. Predictive approaches have already been suggested to improve the deficiencies 

of proactive and reactive spectrum sensing methods but the presence of data loss due to limited sensor 

bandwidth, and false alarms and miss detections because of difficult environmental conditions makes the 

modeling task very challenging in real-time environments. Secondly, the existing dumb hole detection 

(DHD) methods do not provide enough knowledge for optimal cognitive decision making. This thesis 

work presents cognitive strategies that use documented knowledge of coexisting radio systems to 

overcome these two limitations. 

Neuro-Fuzzy Signal Classifier (NFSC): A common requirement of the proposed cognitive strategies is 

the classification and extraction of primary systems. A NFSC is presented in chapter 4 that uses 

bandwidth, operating frequency, pulse shape, hop behavior and time behavior of radio systems as distinct 

features. It uses fuzzy logic based rules and a neural network based connectionist structure to classify 

primary radio systems with respect to standard technologies. Furthermore, it disintegrates the 

amalgamated coexisting environment and extracts distinct radio systems from a given spectrogram 

without losing any spectral and temporal information of the original signals.   

Bandwidth Independent Parameter Estimation: A bandwidth independent parameter estimation 

method is presented in chapter 5 that enables a cognitive radio system to estimate model parameters 

accurately in the presence of missing data because of limited sensor bandwidth. This bandwidth 

independent parameter estimation method enables a multi-PU modeling approach instead of a traditional 

multi-channel approach. Meanwhile, the PU signals are modeled as Markov processes and estimated 
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parameters are the duty cycle and transition probabilities of the primary signals. Given an extracted binary 

stream provided by NFSC along with identification of the corresponding PU system, theoretical value of 

probability of detection of a primary system is computed. This theoretical value is in turn used to estimate 

the model parameters using Baum-Welch algorithm and Renewal theory based approaches.  

Intelligent Hole Detection (IHD): IHD based opportunistic spectrum access is proposed to overcome the 

limitations of conventional DHD based opportunistic spectrum access approaches. It suggests radio 

resource allocation on the basis of a-priori known technologies in order to optimally utilize available 

opportunities in the multidimensional coexisting environment. Fundamental problems to realize this idea 

are classification of signals and multi-objective resource allocation to tune the underlying SU radio 

platform. This thesis work uses the NFSC for the PU classification part and addresses the resource 

allocation in coexisting environment for some limited scenarios in chapter 6 using a hardware defined 

radio based platform.   

Proof-of-concept: A CC2500 TRX and MSP430 µC based platform is used to implement a testbed that 

uses bandwidth independent parameter estimation and classification information of radio systems to 

accommodate itself in the presence of WLAN, SDR-BT and nanoNET based primary systems. An IHD 

based SU demonstrator clearly outperforms a conventional DHD based demonstrator by successfully 

finding an optimal channel in all presented situations.   

7.2 Future Work 

Radio Resource Allocation and RKB maintenance: Given the environmental knowledge using 

presented strategies it will be interesting to research efficient methods to tune the SU radio system to 

optimally utilize the hyper-spatial opportunities in more generic scenarios under conflicting goals and 

constraints. Genetic algorithms and game theory based methods can be particularly focused since their 

effectiveness have already been demonstrated successfully for resource allocation problems in cognitive 

radio systems, e.g. in [MAC09, THO07]. Furthermore, techniques to maintain a useful radio knowledge 

base (RKB) is another important area which require more focused research in subjects like data mining 

and artificial intelligence.  

Extending NFSC:  The functionality of the NFSC can be further extended to distinguish between 

overlapping signals by employing cyclostationary feature detection (CFD) based spectrum sensing 

strategies. The existing connectionist structure of the NFSC can be extended by adding new CFD based 

processing elements. However, because of very high computational complexity of CFD, it should be used 

as an optional feature. The cognitive radio can be empowered to enable or disable the CFD based 

processing elements on demand. 
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Investigation of Influence of channel conditions: Influence of channel conditions such as noise and 

fading is not particularly focused. It can be interesting to study the parameter estimation methods 

presented in chapter 5 for time varying channels under different fading conditions. The false alarm and 

miss detection probabilities should be estimated for different types of fading environments and estimated 

parameters should be compensated accordingly. 
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Appendix A1 

A1: Existing Radio Technologies, Coexistence 

and Cognitive Radio: State-of-the-art 

A1.1 Problems with existing radio technologies 

Immense research has been done to investigate the performance of existing radio technologies in a variety 

of environments. An overview on the performance investigation of existing radio technologies in 

coexisting environments is provided in the following: 

[JIN07] discusses three major sources that caused interference among existing radio systems: transmitter 

noise, receiver blocking, and inter-modulation, and emphasizes that they can occur among radios even 

when they are operated in different bands in both collocated and close proximity environments. 

Regulatory standards related to coexistence are inadequate to provide interference protection in these 

environments. 

[AHM08] investigated the coexistence properties of WPAN systems like Bluetooth IEEE 802.15.1, 

ZigBee IEEE 802.15.4, IEEE 802.15.4a based CSS, and narrow-band FSK, and suggests that without 

careful selection of communication parameters each of these technologies can suffer performance 

degradation in coexistence environments.  

In [KON06] the authors have analyzed the coexistence of Bluetooth and UMTS FDD for collocated 

frequency bands (2.4 GHz ISM band / 2.5 GHz IMT-2000 extension band) with a separation of 

16.5 MHz. It is shown by means of radio network simulations and a mathematical model of Bluetooth 

(BT) radio frequency (RF) receiver blocking that the reception of an external BT signal in an UMTS 

terminal with integrated BT is seriously disturbed by strong UMTS uplink signals. In a worst case 

scenario when a 12.2 kbit/s UMTS voice or a 64 kbit/s UMTS data service is used, a BT link failing up to 

90% and 100% was observed. 

In [SUA07] the impact of BT modeled as uniformly spread interference on WiMAX IEEE 802.16 is 

evaluated and compared with that of WLAN IEEE 802.11b. It is shown that the probability of collision of 

BT with WLAN IEEE 802.11b can be as high as 0.5 for 20m distance. The level of BT interference on 
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WiMAX 802.16 is much less than that of WLAN IEEE 802.11b and is observed to be less than 0.1 at 

20m distance but can be higher for greater distances.  

BT was considered as an optimal solution for industrial coexisting applications [AHM08, MEI07] 

because of its ability to identify ‘good’ and ‘bad channels’ with the help of adaptive algorithms. But when 

multiple WLANs and/or BT piconets coexist, the number of 'good' channels can be very low and the BT 

devices may be starved of radio resources due to their excessive courtesy [QIX07] hence even making the 

adaptive algorithms unsuccessful. While the packet error probability also increases [TIN03] as the traffic 

load or the number of piconets grows. Small packets (DH1) suffer fewer collisions than large ones (DH5) 

due to shorter transmission durations.  

[WEI07] presents a coexistence model of IEEE 802.15.4 and IEEE 802.11b/g based on two aspects: 

power and timing. With IEEE 802.11b interference the throughput of the IEEE 802.15.4 node goes down 

to zero in a worst case scenario. The cross-channel interference in IEEE 802.15.4 networks [TOS08] can 

also affect its performance while the beacon enabled mode has shown better performance than the 

nonbeacon-enabled mode. Bluetooth interference degraded the performance of IEEE 802.15.4 in both 

modes [HER08]. 

The coexistence constraints may lead to a significant underutilization of the available UWB capacity 

[CAS07], and as a result the system may be ‘coexistence limited’ or ‘interference limited’ depending on 

whether the coexistence constraints are satisfied or not. [HAM02] shows that the system performance 

suffers most if the interference and the nominal center frequency of the UWB system are overlapping. 

A1.2 Performance Analysis of State-of-the-Art Wireless Technologies 

Atmel, Bluetooth, NanoNET, ZigBee, and WLAN and are used in these experiments. Performance of 

each of these technologies, except WLAN, is studied as recipient as well as an interferer. Moreover, all 

these experiments are done in a lab environment and the QoS is measured in terms of BER and PLR only. 

Each experiment includes only two technologies, one as a recipient and the other one as an interferer. The 

experimental setup includes one pair of nodes for each participant technology where respective nodes are 

placed in a cross sectional constellation with 3 m distance as shown in Fig. A.1. Except for the WLAN 

system, all demonstrators employ cyclic traffic. The parameters studied are transmission power, 

retransmission mechanism, bitrate, cycle time, packet size, bandwidth, no. of interferers, traffic load and 

signal-to-interference ratio (SIR). It is worth mentioning that each parameter could not be configured for 

each participant technology because of limitations of available devices. Therefore the aim of these 

experiments was to study each parameter at least for one technology either as recipient or interferer. 
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Figure A.1: Experimental setup used for performance analysis of state-of-the-art technologies 

The following is a summary of reconfigurable parameters of the demonstrators: 

• The Bluetooth based demonstrator allows only choosing a packet type. A single slot, 3-slot or 5-

slot packet can be used. 

• NanoNET transmission power and retransmission mechanism can be reconfigured.  

• The Atmel demonstrator can choose either 72 kbps or 500 kbps bitrate. 

• The ZigBee system operates with its default parameters that can’t be tuned. 

• The WLAN system is studied only as an interferer. Running more than one parallel WLAN 

networks helps to study the influence of increased occupied bandwidth particularly in case of a 

recipient Bluetooth system. Furthermore, download type internet based traffic is used for the 

WLAN system where traffic load can also be changed by changing the number of nodes 

connected to an access point at any time. I performed experiments with only one (best case) and 

two connected nodes (worst case), however increasing the number of nodes is expected to make 

the WLAN interference further stronger for coexisting systems.  

A1.3 Reference Measurements without interferers 

The QoS of selected technologies without any interference, presented in Fig. A.2, are taken as reference 

measurements. The Bluetooth system has no errors at all. The BER for ZigBee also remains zero while 

the PLR is almost 0.28 %. For the nanoNET system the PLR is zero while the BER is in the order of 1e–

4. For the Atmel system the BER is 0.2 %, and the PLR is 0.76 %. 
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Figure A.2: Reference measurement: PLR and BER in lab without any interference for Bluetooth(1-

slot packet), nanoNET(6.90 dBm), Atmel(500 kbps), ZigBee(default). 

 

A1.3.1 Performance in Coexisting Environments 

Only the worst case and the best case results of all experiments, shown in Fig. A.3 and Fig. A.4 

respectively, are presented in this section. The combinations of parameters causing these results are 

mentioned in captions of these figures and are briefly discussed in the following paragraphs for each 

participant technology.  

Figure A.3: The worst case PLR and BER for tested systems in the presence of selected interferers 

(legend shows interferers). Bluetooth(5-slot packet), nanoNET(6.90 dBm and retransmission as 

interferer, -16 dBm without retransmission as recipient), Atmel(72 kbps), WLAN(two parallel 

networks with 2 active nodes in each network). 
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Figure A.4: The best case PLR and BER for tested systems in the presence of selected interferers 

(legend shows interferers). Bluetooth(1-slot packet), nanoNET(-16 dBm, with retransmission as 

recipient and without retransmission as interferer), Atmel(500 kbps), WLAN(one network with single 

node). 

Bluetooth: Longer packet length made the Bluetooth system worse interfere and more vulnerable to 

interference of coexisting systems. Moreover, by increasing the occupied bandwidth the Bluetooth system 

starts suffering higher losses. For example, the worst case measured PLR and BER are 5.0 % and ~1e-5 

when two parallel WLAN networks (working in WLAN channel 2 and WLAN channel 7), each with two 

nodes, are used for interference.  

 

Table A.1: SIR values for selected technologies (with nanoNET’s minimum transmission power) 

 Bluetooth ZigBee nanoNET Atmel 

Bluetooth - -20dB -36dB -16dB 

WLAN 0dB -20dB -36dB -16dB 

ZigBee 20dB - -16dB 4dB 

nanoNET 36dB 16dB - 20dB 

Atmel 16dB -4dB -20dB - 

Recipient and interferer technologies are listed in row and column order respectively. 
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WLAN: WLAN is the worst interferer for the FHSS based Bluetooth system as it offers 0 dB SIR and 

covers 20 MHz of the frequency band. I.e. 20 Bluetooth channels will be skipped by the adaptive 

frequency hopping algorithm for a single active WLAN channel. Increasing the number of active WLAN 

channels and active nodes in each network worsen the interference of WLAN system.  

NanoNET: Using retransmission mechanism and higher transmission power i.e. 6.90 dBm provides best 

combination for nanoNET system as a recipient. But, both these parameters increase the physical strength 

of interference of nanoNET system. However, the nanoNET system with -16 dBm transmission power is 

the best as interferer among all technologies because of lowest offered SIR. Consequently, though it 

affects three times more Bluetooth channels than a single WLAN network, but the Bluetooth system still 

suffers almost negligible interference. Other technologies are also least affected with -16 dBm nanoNET 

interference. 

 ZigBee: Since the ZigBee based system is using acknowledgement and retransmission mechanism it is 

not the hardest affected recipient. Moreover, because of error correction/detection codes it always 

discards packets with bit errors and consequently it never produce any bit errors in these experiments. But 

more discarded packets also trigger more retransmissions, eventually increasing the strength of ZigBee 

interference to other coexisting systems. 

Atmel: It is the hardest affected recipient system because it does not employ any error correction/detection 

mechanisms. A low bit rate for the Atmel system increases the collision probability of its symbols with 

those of the interfering systems because of longer symbol durations. Eventually, the Atmel system with 

72 kbps is more vulnerable to interference and worse interferer than 500 kbps variant of it. 

A1.4 Existing non cognitive solutions to improve coexistence 

An overview of existing non-cognitive solution to improve wireless coexistence is presented in the 

following. It can be observed that none of these methods is generic and each addresses the improvement 

of a specific DUT in the coexistence of a particular interferer.  

[HSU06] presents Dynamic Fragmentation Algorithm (DFA) using dynamic fragmentation to improve 

the coexistence ability of Wi-Fi in the presence of Bluetooth interference. The proposed scheme tries to 

optimize the MAC layer packet length such that a Wi-Fi device has a better chance to avoid the 

interference caused by Bluetooth devices.  

[JIN07] compares various coexistence techniques and relevant standardization efforts and proposes a 

media independent coexistence service (MICE) layer. It suggests that the performance of a multi-radio 
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system can be further improved if necessary support and modification is added to individual wireless 

technology, e.g. air interface / wireless protocols. 

UWB in coexistence of different systems is studied in [OHN05-PEN05].  [OHN05] evaluates the effect of 

interference between pulse bi-phase IR-UWB and MB-OFDM. It proposes a multi-carrier type template 

waveform to mitigate the influence of interference from MB-OFDM to IR-UWB.  A pulse shaping 

method for UWB has been proposed in [PEN05] to generate pulses whose power spectra fit to the FCC 

frequency mask and thus improves the coexistence of UWB with IEEE802.11a WLAN. 

Relying on a blind hop timing and frequency estimation algorithm, [JIN06] proposes a collision 

resolution technique that resolves collided data packets without retransmission to enable coexistence of 

multiple Bluetooth piconets. While [YUK04] suggests an approach called ISOAFH (Interference Source 

Oriented adaptive frequency hopping). It proposes a customized channel classification process, thereby 

simplifying the time and space complexity of the mechanism. 

Two coexistence strategies for a non-coherent MIR-UWB system are proposed in [DEH09]. First is a 

static coexistence approach, in which sub-bands of the MIR-UWB system are completely deactivated 

before any data transmission occurs. In contrast, a more dynamic coexistence strategy is based on system 

specific channel estimation in conjunction with a robust interference detection algorithm. Thereby, 

without any adaptation of the MIR-UWB system parameters, sub-bands are used for data transmission in 

accordance to an adapted two-dimensional bandplan array which considers interference-free time-

frequency gaps. 

Software upgrades to the medium access control of the 802.16 BS are proposed in [BER06] in order to 

enable its reliable operation in coexistence with 802.11. Thereby, no 802.11 frame transmissions are 

required by an 802.16 system. However from the perspective of 802.11a, the proposed method can be 

regarded as unfair as coexistence is enabled in partly blocking 802.11a out of the medium. 

Two new techniques to enhance the existing Bluetooth and WLAN coexistence mechanisms are proposed 

in [QIX06]. The first one is channel clustering, which is used to classify the channel status more 

accurately. The second one is called probabilistic channel visiting, which is used to more reasonably 

allocate the channel resources between WLAN and BT devices. 

A1.5 Cognitive radio used to improve coexistence 

Cognitive radios are being researched for use in all kind of wireless applications mainly in cellular, 

military, emergency, industrial, and consumer areas. Some important possible applications include 

increase spectral usage, interference mitigation & coexistence optimization, dynamic resource 
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management, and multi-lingual/multi-purpose communication system. Following provides an overview of 

CR research only in the area of interference mitigation and coexistence optimization. 

[ZHU07] discusses an access protocol that is based on setting a uniform transmission power and sensing 

threshold for all license-exempt band frequency channel cognitive radio based transmitters, to guarantee 

the coexistence in the sense that a certain minimum signal-to-interference ratio (SIR) is ensured at the 

receivers. In a similar research work [HOV05] local SNR of the primary signal is used as a metric for 

power control rule. The coexisting cognitive radio (SU) must adjust its power levels according to its 

potential proximity to the protected primary receiver.  

A transmit power control system using Fuzzy Logic System to provide cognitive radios the ability to 

coexist with primary (licensed) users in the same frequency band is presented in [LEH07]. With built-in 

fuzzy power controller, a cognitive radio is able to opportunistically adjust its transmit power in response 

to the changes of the interference level to primary user (PU), the distance to PU and its received power 

difference at the base station (BS) while satisfying the requirement of sufficiently low interference to PU. 

Linguistic knowledge of transmit power control (TPC) is obtained from a group of network experts rather 

than a single expert. 

An adaptive sub-band selection technique based on orthogonal frequency division multiplexing (OFDM) 

is proposed in [PIN08] to avoid interference for better system coexistence in ISM bands. Under the 

assumption that the interference power level and the interfered frequency bands are identified at the 

receiver, interference thresholds, determined over both Gaussian and multipath fading channels, are 

applied to adaptively select the transmission sub-bands so that interference is avoided and the system 

coexistence issues are relaxed. 

While [NOL07] analyzes two independently developed dynamic spectrum access test beds to exploit 

spectrum opportunities. It explores the ability of these two different cognitive radio architectures, using 

different wireless communication schemes, to coexist on non-interfering and interfering bases. 

A protocol Cognitive Medium Access (CMA) is proposed in [GEI07]. It aims at improving coexistence 

with a set of independently evolving WLAN bands. A time-slotted physical layer for the cognitive radio 

is considered and CMA is derived based on experimental models. The cognitive radio’s hopping sequence 

is altered by predicting the WLAN’s medium access based on a stochastic model such that it preferably 

hops to bands not currently used by the WLAN. 

In [ZHI08] the universal software radio peripheral (USRP)/GNURadio is used to study the coexistence of 

more than one cognitive radio in common frequency bands. [HEI08] proposes B-VHF, which is a 

cognitive radio based multi carrier aeronautical radio solution intended to coexist with existing devices. It 
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offers double capacity than current systems with the same safety level. Ultra wide bandwidth (UWB) 

technology as one of the enabling transmission techniques for the implementation of CR systems is 

investigated in [GIO06]. 

Cognitive Medium Access (CMA) schemes for sharing spectrum with a set of parallel WLAN bands are 

proposed in [GEI08]. The derivation of the scheme is based on a measurement based interference study as 

well as a stochastic model which captures the WLAN’s medium access. The CMA schemes proposed in 

this paper are classified as according to fully observable (FO-CMA) and partially observable (PO-CMA) 

systems. According to the results presented both schemes significantly outperform blind hopping 

schemes. 

A1.6 Artificial intelligence (AI) and statistical methods in cognitive 

radios (CR) 

A cognitive wrapper encapsulating a reconfigurable radio core is presented in [NOL06]. The influence 

of this wrapper can be varied in order to vary the 'intelligence' of the cognitive radio between the two 

extremes of a baseline radio, and a highly-complex and evolved system to account for scenarios where 

complex cognition may not be necessary. Observations, actions and conclusions developed by the 

cognitive radio can be stored in a variable-length memory delay-Line. A selective memory mechanism 

enables the relevance of aspect of this information to be varied. 

In [ZHI08] an autoregressive channel prediction model for cognitive radio systems to estimate spectrum 

holes is presented. This model adopts a second-order autoregressive process and a KALMAN filter. A 

BAYES risk criterion for spectrum hole detection is presented by considering interference temperature 

and channel idle probability. Theoretical analysis and simulations show that CR systems based on this 

scheme can greatly reduce the number of collisions between licensed users and rental users. 

[YAR07] proposes the use of binary time series for spectrum occupancy characterization and 

prediction. Derived time series models are tested in terms of raw residuals and AKAIKE information 

criteria (AIC). Two types of spectrum occupancy schemes, namely, deterministic and non–deterministic 

schemes, are considered. It is observed that this approach performs very well for deterministic 

occupancy schemes.  

The channel predictive modeling for time-varying channels to mitigate the uncertainties in channel state 

information (CSI) due to fading and motion effects is also a hot topic and the research done in this area 

will provide us some guideline as we are also interested to predict the behavior of channel in this 

project.  
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In [LEE08] a channel prediction method using the estimation of DOPPLER spectrum is proposed and 

investigated to predict channel state information in time varying channels. The autoregressive model for 

the DOPPLER spectrum is employed in order to get reliable channel prediction coefficients. 

Furthermore, [SHA07] proposes an approach for selecting the channel sampling rate based on SNR and 

bit-error-rate (BER) constraints. A channel model using a second-order autoregressive (AR-2) process 

is applied at the selected sampling rate to predict the channel-state.  

In mobile situations the effect of outdated channel information in the presence of quickly time-varying 

channels can be significant. The use of channel prediction is shown to mitigate the impact of outdated 

channel information and improve performance when the DOPPLER spread or mobile velocity is high 

[SOU01]. [FOR02] suggested a prediction algorithm for adaptive OFDM systems and presented 

simulation based results to show how the uncertainty in channel state information due to DOPPLER 

spread and limits on the reverse link bandwidth can be lessened by using this prediction algorithm. 

[ISU06] studied the role of ergodicity in wireless channel prediction. Following the sinusoidal channel 

model, conditions under which the ergodic assumption is valid are presented. Due to the lack of 

ergodicity in a typical real world wireless channel, least squares prediction, an approach based on time 

averages, is motivated as opposed to linear minimum mean squared error channel prediction, an 

approach based on ensemble averaging. It also studied methods such as forward-backward and rank 

reduction for high quality channel prediction. 

[AGU07] used heuristics to design complex predictors in WLAN scenarios. It used WLAN 

measurement traces for the simulative evaluation of the influence of channel prediction errors in the 

performance of a threshold-based adaptive modulation scheme, considering also the case of delayed 

channel feedback. 

[XIE06] proposed a simplified minimum mean-square error channel prediction of time-varying 

wideband channels. Furthermore, it applied an adaptive filter algorithm into channel prediction without 

any channel statistic information. 
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Appendix A2 

A2: Standardization Efforts and Notable 

Projects related to Coexistence and Cognitive 

Radios 

Related standards and patents 

[BUL09/VEN08/WEB01]  The 1900 WG projects form a new standards series within the IEEE, 

established in 2005 jointly by the IEEE Communications Society and IEEE Electromagnetic 

Compatibility Society. The objective of 1900 is to develop standards in the areas of dynamic spectrum 

access (DSA), cognitive radio (CR), interference management, coordination of wireless systems, and 

advanced spectrum management. Particularly IEEE 1900.2 will provide technical guidelines for analyzing 

the potential for coexistence or in contrast interference between radio systems operating in the same 

frequency band or between different frequency bands. On the other hand IEEE 1900.5 will define a policy 

language (or a set of policy languages or dialects) to specify interoperable, vendor-independent control of 

Cognitive Radio functionality and behavior for Dynamic Spectrum Access resources and services. 

IEEE 802.11y [WEB02] adds new cognitive oriented concepts to 802.11-2007. One is Contention based 

protocol (CBP) – It is an enhancement to the carrier sensing and energy detection mechanisms of 802.11 

in order to meet the FCC's definition of a contention based protocol. The other one is extended channel 

switch announcement (ECSA) which provides a mechanism for an access point to notify stations of its 

intention to change channel frequency or bandwidth. This mechanism will allow for the WLAN to 

continuously choose the channel that is the least noisy and the least likely to cause interference. ECSA is 

also used in 802.11n [WEB05], making it possible to switch between the 3.65GHz, 2.4GHz and 5GHz 

bands. Whereas IEEE 802.11h [WEB04], so called spectrum managed 802.11a, supports dynamic 

frequency selection and transmit power control for WLANs to share spectrum. 

[WEB03] IEEE 802.16h-License exempt task group is aimed to specify improved mechanisms, as 

policies and MAC enhancements, to enable coexistence among license-exempt systems based on IEEE 

Standard 802.16 and to facilitate the coexistence of such systems with primary users through an adaptive 

channel selection mechanism.  
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The IEEE 802.22 working group [WEB08] on wireless regional area networks (WRAN) is working to 

develop a standard for a cognitive radio-based PHY/MAC air interface for use by license-exempt devices 

on a non-interfering basis to coexist in spectrum that is allocated to the TV broadcast service.  

A multiple-objective genetic algorithm (GA) for both efficient optimizations of radio configuration and as 

the basis for machine learning is embodied in a CE in a project at Virginia Tech. In 2004, a patent 

application was filed describing this technology; this patent, titled “Cognitive Radio Engine Based on 

Genetic Algorithms in a Network” was issued in 2007 [RIE07] 

Large scale projects and research groups involved in CR research 

Many universities and organizations are involved in cognitive radio research. In some cases several 

universities and organizations across multiple countries are cooperating with each other. A glimpse of 

well known large scale projects is provided in the following.  

The XG Radio program [MCH07], from Defense Advanced Research Projects Agency (DARPA) uses 

dynamic spectrum access technology to determine locally unused spectrum, and then operates on these 

channels without causing interference to existing non-cooperative users. Initial results from tests 

conducted in August 2006 showed satisfactory results for the XG Radio system. There were three major 

test criteria: to cause no harm (avoid interference), to work (form and maintain connected networks), and 

to add value (efficiently use spectrum).  

The Adaptive Reconfigurable Access and Generic interfaces for optimization in Radio Networks 

(ARAGORN) project [WEB06] aims to explore key enabling technologies that facilitate the application 

of machine intelligence and adaptive communications technologies in the optimization of resource usage 

in wireless networks. Most particularly, the goal is to apply methods originating from the artificial 

intelligence community in order to increase the efficiency and system performance of the present day and 

future systems following the cognitive radios and networks paradigm.  

In a big project “Cognitive wireless technology” at Virginia Tech [MAC09/WEB07] the radio is being 

treated as a Biological System. This means that like animals and people radio seek their own kind (other 

radios with which they want to communicate), avoid or outwit enemies (interfering radios), find a place to 

live (usable spectrum), conform to the etiquette of their society (the federal communications 

commission), make a living (deliver the services that their user wants), and deal with entirely new 

situations and learn from experience. 

The End-to-End Reconfigurability (E2R) [GRA05], project aims at bringing full benefits of the valuable 

diversity within the Radio Eco-Space, composed of wide range of systems such as Cellular, Wireless 

Local Area and Broadcast. The key objective of the E2R project is to devise, develop and trial 
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architectural design of reconfigurable devices and supporting system functions to offer an expanded set of 

operational choices to the users, applications and service providers, operators, regulators in the context of 

heterogeneous mobile radio systems 

Some other well known groups involved in large scale research on CR are at Trinity College in Dublin 

(Ireland), WinLab at Rutgers University (USA), Kansas University (USA), and RWTH Aachen 

University (Germany), and the Berkeley Wireless Research Center at the University of California 

Berkeley (USA). 
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Appendix A3 

A3: Feature Analysis of State-of-the-art 

Wireless Technologies 

The following standard wireless technologies are used in this research work and described in Table A3.1-

Table A3.9 with respect to selected PHY/MAC layer parameters. Where, selected PHY/MAC parameters 

are channel definition (bandwidth (BW), center frequency (fc)), pulse shape, modulation, hopping pattern, 

time behavior, bitrate, symbol rate and transmission power. Moreover, all these technologies operate in 

2.4 GHz ISM band. 

5. IEEE 802.15.1 based technologies 

a. Bluetooth 

b. Wireless Interface for Sensors and Actuators (WISA) 

c. Wireless Sensor Actuator Network for Factory Automation (WSAN)  

6. IEEE 802.15.4 based technologies 

a. ZigBee/ZigBee Pro (non-hopping system) 

b. WirelessHART 

c. ISA100.11a 

d. IEEE 802.15.4a Based NanoNET  

7. IEEE 802.11 based Wireless Local Area Network (WLAN)  

8. Atmel’s ATR2406 based proprietary transceiver  

 

IEEE 802.15.1 Based Technologies 
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Table A3.1: IEEE 802.15.1/Bluetooth [SD105, BTS01] 

Features Value 

Channel definition:  
79 channels, each with 1 MHz bandwidth are defined. The center frequencies are 

given by fc= 2402 + k MHz, k = 0,…,78. 

Pulse shape  Gaussian 0.5 

Modulation Gaussian frequency shift keying (GFSK) 

Hopping pattern 

A pseudo-random sequence is used to compute following four types of channels: 

• Basic piconet physical channels: A basic channel hopping sequence, which has 

a very long period length and does not show repetitive patterns over a short 

time interval. It distributes the hop frequencies equally over the 79 MHz during 

a short time interval (see simulated signal in Fig. A3.2 right plot).  

• Adapted piconet physical channels: The slave uses the same frequency as the 

preceding master transmission when adaptive frequency hopping (AFH) is in 

effect. It is called same channel mechanism (see Fig. A3.1). AHF uses less than 

the full 79 frequencies that the basic piconet uses (see Fig A3.2 left plot). 

• Inquiry scan physical channel: An inquiry hopping sequence/ inquiry response 

hopping sequence is used with 32 wake-up frequencies distributed equally over 

the 79 MHz, with a period length of 32. 

• Page scan physical channel: A page hopping sequence/ page response hopping 

sequence is used with 32 wake-up frequencies distributed equally over the 79 

MHz, with a period length of 32. (see measured page hopping sequence in 

Fig. A3.10) 

Temporal pattern 
TDD/TDMA with slot time 625 µs is used. Nodes can choose 1/3/5 slot packets as 

shown in Fig. A3.1. 

Bitrate /Symbol rate 1 Mbps/1 Msps 

Transmission power 
Three device classes 1, 2 and 3 are defined with maximum transmission power 

20 dBm, 4dBm and 0 dBm respectively. 
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Figure A3.1: Same channel effect and multi-slot packets of Bluetooth. 

  

Figure A3.2: Simulated Bluetooth spectrogram. 1st channel of IEEE 802.11 is blacklisted in left figure. 

Right spectrogram is without blacklisting. Duty cycle = 100%, Rayleigh fading with AWGN. 

Table A3.2: WISA [SCH07]. See Fig. A3.6 for simulated WISA spectrogram. 

Features Value 

Channel definition:  

• 77 channels, each with 1 MHz bandwidth are defined. The center frequencies 

are given by fc= 2403 + k MHz, k = 0,…,76. 

• These channels are further divided into 7 disjoint subbands (see Fig. A3.3), 

each subband containing 11 hop frequencies. 

Pulse shape  Same as IEEE 802.15.1 

Modulation Same as IEEE 802.15.1 

Hopping pattern 

• Full duplex is enabled using FDD. 4 uplinks {UL1, UL2, UL3, UL4} and 1 

downlink ‘DL’ channel is used simultaneously (see Fig. A3.4) 

• Each sensor/actuator (S/A) is part of one of four uplink. 
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• These five frequencies remains constant over one TDMA frame (defined 

later). Consequently, each hopping sequence has a period length of 7 × 11 = 

77 frames. 

• Consecutive frames must be in different subbands.  

• The (duplex) spacing between downlink and uplink frequencies is at least 

three subbands. 

• The four concurrent uplinks are in the same subband and hop with a fixed 

spacing of at least 2 MHz. 

Temporal pattern 

• 120 nodes are accommodated in a single cell using FDD/TDMA (Fig. A3.4, 

Fig. A3.5). 

• The TDMA frame length, Tframe = 2048 µs. Time slot called ‘SSlot’ is 64 µs. 

A double slot is referred as ‘DSlot and is 128 µs.  

• To support up to 120 S/As per cell, each S/A may transmit over uplink in one 

out of 30 ‘SSlots’ per frame. A ‘DSlot’ for uplink is also allowed, which 

halves the total number of nodes in a single cell. 

• Each S/A uses ‘SSlot’ to transmit using uplink, hence in total 8 nodes can 

transmit one packet each within a single ‘DSlot’ of master node.  

• Master acknowledges, over downlink link, all 8 packets in a single 128 bit 

packet in third ‘DSlot’. It gives a 256 µs turnaround time.  

Bitrate /Symbol rate Same as IEEE 802.15.1 

Transmission power 0 dBm 

 

 
Figure A3.3: WISA/WSAN sub-bands 
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Figure A3.4: FDD/TDMA based structure of 

WISA/WSAN  

Figure A3.5: WISA downlink and uplink slots. 

ACK is sent to eight nodes in a single DSlot. 

However, using DSlot for uplink will halve this 

amount. 

 

  

  
Figure A3.6: Simulated WISA/WSAN spectrograms. Upper plots are for 25% randomly active nodes, 

while lower plots are for 100% active nodes. Random numbers are based on Uniform distribution. 

Rayleigh fading with AWGN is used.  

NOTE: Note that WISA and WSAN differ from each other only in terms of slot length. 
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Table A3.3: WSAN [WSA10]. See Fig. A3.6 for simulated WSAN signal. 

WSAN is completely identical to WISA except for the following. 

• Tframe = 2304 µs.  

• SSlot = 72 µs, DSlot = 144 µs. 

 

IEEE 802.15.4 based technologies 

The ZigBee system uses the IEEE 802.15.4 specification without any amendments. The ZigBee PRO 

standard additionally supports frequency agility that consists of scanning available channels to determine 

the channel with the least interference, which is then selected and used by all ZigBee devices. Although 

the IEEE 802.15.4 standard defines PHYs in 868/915 MHz and 2.4 GHz bands but only the later one is 

discussed here. Other IEEE 802.15.4 based technologies included are wirelessHART and ISA100.11a 

both of which are hopping systems and the chirp spread spectrum (CSS) based nanoNET system.    

Table A3.4: IEEE 802.15.4/ ZigBee/ZigBee Pro [SD406, ZIGBE] 

Features Value 

Channel definition: 
16 channels are defined each with bandwidth = 2 MHz. Center frequency can be 

calculated using fc = 2405 + 5 (k – 11) MHz, for k = 11, 12, …, 26. 

Pulse shape Half sine 

Modulation DSSS/O-QPSK (Offset - Quadrature Phase Shift Keying) 

Hopping pattern No  

Temporal pattern 
CSMA-CA channel access mechanism, optional frame structure, optional 

guaranteed time slots, and optional acknowledgement. 

Bitrate /Symbol rate 250 kbps/62.5 ksps 

Transmission power In the range –3 dBm …10 dBm, with 0 dBm being typical value. 
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Table A3.5: WirelessHART [DEJ10, TSCH4]. See Fig. A3.9 for simulated spectrogram of 

wirelessHART. 

Features Value 

Channel definition:  Only first 15 channels of IEEE 802.15.4 are used, channel 26 is not supported. 

Pulse shape  Same as IEEE 802.15.4 

Modulation Same as IEEE 802.15.4 

Hopping pattern 

• Time Slotted Channel Hopping (TSCH) is used (see Fig. A3.7) 

• A node transmits using a pre-assigned link. Where, Link = (Timeslot , Channel 

Offset) and 0 ≤ channel offset < Number_of_channels. 

• Frequency hops on a per-transaction (time slot) basis and is computed on the 

basis of link's timeslot and channel offset as follows: 

Ch # = hopping table ( (SlotNo + Channel Offset) % Number_of_Channels ).  

Where the hopping table is a random sequence of active channels. 

• Channel blacklisting supported, therefore there can be less than 15 active 

channels at a particular time. 

• A link can be dedicated or shared. A link is shared using CSMA with random 

backoff method. 

Temporal pattern 

• TDMA with each time slot of 10 msec duration is used. 

• Device-to-device communication within a single timeslot includes transmission 

and reception of packet and acknowledgement. 

• A collection of time slots form a superframe. The size of a superframe may 

vary, depending on required number of slots at a particular time. The 

superframes are then repeated at a fixed rate throughout the network lifetime. 

Bitrate /Symbol rate Same as IEEE 802.15.4 

Transmission power +10 dBm  
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Figure A3.7: TSCH, supported by 

WirelessHART and ISA 100.11a. 

Figure A3.8: ISA100.11a hopping patterns a) 

slotted hopping, b) slow hopping, c) hybrid 

hopping 

Table A3.6: ISA100.11a [NGU10, KUPRI]. See Fig. A3.9 for simulated spectrogram of ISA100.11a. 

Features Value 

Channel definition:  Same as IEEE 802.15.4 

Pulse shape  Same as IEEE 802.15.4 

Modulation Same as IEEE 802.15.4 

Hopping pattern 

In addition to TSCH, it allows slow hopping and hybrid hopping techniques. A 

complete superframe can be occupied by a single node in slow hopping. Whereas, 

some nodes use multiple slots while others single slots in hybrid hopping method as 

shown in Fig. A3.8. 

Temporal pattern Superframe structure, with slot time 10 ms-15 ms 

Bitrate /Symbol rate Same as IEEE 802.15.4 

Transmission power Same as wirelessHART 

E→D

F→B
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F→E
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C→D
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A D
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Figure A3.9: WirelessHART and ISA100.11a simulated spectrograms for two superframes with 

20 nodes. Upper plots are without blacklisting, while the lower ones blacklist 25% channels 

randomly. ISA100.11a is using hybrid frequency hopping. Note that wirelessHART doesn’t use 

26th channel. Rayleigh fading with AWGN is used. 

NOTE: Please note that in TSCH only difference between wirelessHART and ISA100.11a is the 

use of 26th channel in ISA100.11a. Slow and hybrid hopping are entirely distinct features of 

ISA100.11a.  
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Table A3.7: IEEE 802.15.4a based NanoNET[NANOT]. See Fig. A3.10 for spectrogram and PSD of 

nanoNET signal. 

Features Value 

Channel definition:  
Single channel covering the entire 2.4 GHz ISM band. However effective bandwidth 

is 64 MHz. 

Pulse shape  Linear frequency modulated chirp pulse as shown in Fig. A3.10b. 

Modulation 2-ary and 4-ary CSS modulation. 

Hopping pattern Non-hopping 

Temporal pattern 
Implementation dependent, however the one used in this thesis work employs periodic 

transmissions with ~1 ms ON time and arbitrarily selected time period or cycle time.  

Bitrate /Symbol rate 500 kbps, 1 Mbps, 2 Mbps / 500 ksps, 1Msps 

Transmission power -16 dBm…+6.90 dBm 

 

IEEE 802.11 based technologies 

The IEEE 802.11 standard was first published in 1997 to implement wireless local area networks 

(WLAN). Since then it has received many amendments to become a family of standards. Important 

physical layer amendments include, ‘a’ in 1999, ‘b’ in 1999, ‘g’ in 2003 and ‘n’ in 2009. IEEE 802.11g 

based devices are used in this research work, therefore only this particular variant is discussed in 

Table A3.8. 

Table A3.8: IEEE 802.11g based WLAN [SD117].  

Features Value 

Channel definition:  
13 channels with bandwidth 20 MHz are offered in most of the world. However some 

countries use less (11 for USA) or more (14 for Japan) channels.  

Pulse shape  Window 

Modulation BPSK, QPSK, 16-QAM and 64-QAM using OFDM. 
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Hopping pattern Non-hopping 

Temporal pattern 

Implementation dependent. But mostly it is used for internet based traffic which can 

be modeled as Poisson arrival process. Expected number of arrivals in a given time 

interval, called arrival rate, is the single parameter defining this distribution. Inter-

arrival times follows Erlang or Exponential distribution as shown in Fig. A3.10 for 

skype based WLAN traffic with 2 and 3 active nodes.  

Bitrate /Symbol rate 
6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps, 54 Mbps using 52 

sub-carriers. 

Transmission power +20 dBm 

 

  

Figure A3.10: Left plot shows goodness-of-fit analysis for skype based WLAN traffic for ‘n’ number of 

active nodes. In right side plot, goodness-of-fit analysis using Kolmogorov-Smirnov (K-S) test with 

significance level α = 0.5. Erlang distribution shows better goodness of fit, while exponential distribution 

sometimes crosses the threshold defined by the K-S test.  
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Atmel, a proprietary technology 

It is a proprietary system realized using an ATR2406 transceiver from Atmel [A4779] and is used in 

experiments throughout in this thesis work. It will be shortly referred as ‘Atmel’.  

Table A3.9: Atmel.  

Features Value 

Channel definition 95 channels with channel bandwidth 0.864 MHz. 

Pulse shape Gaussian 

Modulation 2-FSK 

Hopping pattern Non-hopping 

Temporal pattern 
Implementation dependent, however the one used in this thesis work employs periodic 

transmissions using an arbitrarily selected cycle time. 

Bitrate /Symbol rate 72 kbps, 500 kbps /72 ksps, 500 ksps 

Transmission power +4 dBm 
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Appendix A4 

A4: NFSC: Special cases 

Selecting filter bandwidth: As mentioned earlier in section 4.1.3, the bandwidth of filter is controlled by 

the bandwidth of PU and a constant D. In order to avoid false detection of a narrower signal when a wider 

signal is actually present, it is necessary to filter the narrower signal wider than its actual bandwidth. I 

found DNanoNET = 1, DWLAN = 2, DIEEE 802.15.4 = 4 and DAtmel/DIEEE 802.15.1 = 8 as optimal values during 

experiments. Figure A4.1 shows SM scores of WLAN and Atmel based signals using two different values 

of D. It can be seen that using the same threshold value, one set of values of D for both systems results in 

correct detections while the other set results in false detection for the narrower signal. 

 

 

(a) WLAN and Atmel PUs are operating with weak signal levels. 

  

(b) SM of signal shown in ‘a’, DWLAN = 2, 

DAtmel = 8. Both PU signals are correctly 

identified. 

(c) SM of signal shown in ‘a’, DWLAN = 1, 

DAtmel = 1. The WLAN signal is incorrectly 

identified as an Atmel signal. 

Figure A4.1: Narrowband data acquisition: Bandwidth of filters, controlled by constant D, 

significantly influences the SM score. 
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Noisy signal: A very noisy signal acquired using the CC2500 based narrowband sensor is shown in 

Fig. A4.2a along with its FPS. Corresponding SM scores for two primary systems are plotted in A4.2b, 

which shows a global increase in SM scores but respective PU systems are still distinguishable using a 

threshold value.  

 

(a) Noisy signal, a WLAN and an Atmel PU are operating 

 

(b) SM of signal shown in ‘d’, DWLAN = 2, DAtmel = 8. Both PU signals are correctly identified. 

Figure A4.2: Narrowband data acquisition: processing a noisy signal. 
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Appendix A5 

A5: Receiver Operating Characteristics curve 

Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of sensing, 

detection, and classification. The ROC curve represents the relation of sensitivity and specificity:  

• Sensitivity is the measure of how accurately an algorithm detects a PU when it is actually 

present. It is also called true positive rate (TPR).  

• Specificity is the measure of how accurately an algorithm detects the absence of a PU when it is 

not present. It is also called true negative rate (TNR). Table A5.1 and Table A5.2 present 

formulas to calculate different statistics used for ROC curve and an example ROC curve is shown 

in Fig. A5.1.  

 

Table A5.1 Confusion matrix (positve class: PU present, negative class: PU is absent) 

 Detected Class 

Positive (PU) Negative (Noise) 

Actual Class 

Positive 

(PU) 
True Positive (TP) 

False Negative 

(FN) 

Negative 

(Noise) 
False Positive 

(FP) 

True Negative 

(TN) 

 

Table A5.2 Interpretation of some important statistics derived from the confusion matrix 

Measure Formula Intuitive Meaning 

Precision TP / (TP + FP) 
The percentage of positive predictions that 

are correct. 

Recall / Sensitivity (TPR) TP / (TP + FN) 
The percentage of positive labeled instances 

that were predicted as positive. 

Specificity (TNR) TN / (TN + FP) 
The percentage of negative labeled instances 

that were predicted as negative. 

Accuracy 
(TP + TN) / (TP + 

TN + FP + FN) 
The percentage of predictions that are correct. 
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Figure A5.1: Example ROC curves using neuro-fuzzy signal classifier (NFSC) 
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