1,202 research outputs found

    Bootstrapping Cognitive Radio Networks

    Get PDF
    Cognitive radio networks promise more efficient spectrum utilization by leveraging degrees of freedom and distributing data collection. The actual realization of these promises is challenged by distributed control, and incomplete, uncertain and possibly conflicting knowledge bases. We consider two problems in bootstrapping, evolving, and managing cognitive radio networks. The first is Link Rendezvous, or how separate radio nodes initially find each other in a spectrum band with many degrees of freedom, and little shared knowledge. The second is how radio nodes can negotiate for spectrum access with incomplete information. To address the first problem, we present our Frequency Parallel Blind Link Rendezvous algorithm. This approach, designed for recent generations of digital front-ends, implicitly shares vague information about spectrum occupancy early in the process, speeding the progress towards a solution. Furthermore, it operates in the frequency domain, facilitating a parallel channel rendezvous. Finally, it operates without a control channel and can rendezvous anywhere in the operating band. We present simulations and analysis on the false alarm rate for both a feature detector and a cross-correlation detector. We compare our results to the conventional frequency hopping sequence rendezvous techniques. To address the second problem, we model the network as a multi-agent system and negotiate by exchanging proposals, augmented with arguments. These arguments include information about priority status and the existence of other nodes. We show in a variety of network topologies that this process leads to solutions not otherwise apparent to individual nodes, and achieves superior network throughput, request satisfaction, and total number of connections, compared to our baselines. The agents independently formulate proposals based upon communication desires, evaluate these proposals based upon capacity constraints, create ariii guments in response to proposal rejections, and re-evaluate proposals based upon received arguments. We present our negotiation rules, messages, and protocol and demonstrate how they interoperate in a simulation environment

    A Survey on the Communication Protocols and Security in Cognitive Radio Networks

    Get PDF
    A cognitive radio (CR) is a radio that can change its transmission parameters based on the perceived availability of the spectrum bands in its operating environment. CRs support dynamic spectrum access and can facilitate a secondary unlicensed user to efficiently utilize the available underutilized spectrum allocated to the primary licensed users. A cognitive radio network (CRN) is composed of both the secondary users with CR-enabled radios and the primary users whose radios need not be CR-enabled. Most of the active research conducted in the area of CRNs has been so far focused on spectrum sensing, allocation and sharing. There is no comprehensive review paper available on the strategies for medium access control (MAC), routing and transport layer protocols, and the appropriate representative solutions for CRNs. In this paper, we provide an exhaustive analysis of the various techniques/mechanisms that have been proposed in the literature for communication protocols (at the MAC, routing and transport layers), in the context of a CRN, as well as discuss in detail several security attacks that could be launched on CRNs and the countermeasure solutions that have been proposed to avoid or mitigate them. This paper would serve as a good comprehensive review and analysis of the strategies for MAC, routing and transport protocols and security issues for CRNs as well as would lay a strong foundation for someone to further delve onto any particular aspect in greater depth

    Providing efficient services for smartphone applications

    Get PDF
    Mobile applications are becoming an indispensable part of people\u27s lives, as they allow access to a broad range of services when users are on the go. We present our efforts towards enabling efficient mobile applications in smartphones. Our goal is to improve efficiency of the underlying services, which provide essential functionality to smartphone applications. In particular, we are interested in three fundamental services in smartphones: wireless communication service, power management service, and location reporting service.;For the wireless communication service, we focus on improving spectrum utilization efficiency for cognitive radio communications. We propose ETCH, a set of channel hopping based MAC layer protocols for communication rendezvous in cognitive radio communications. ETCH can fully utilize spectrum diversity in communication rendezvous by allowing all the rendezvous channels to be utilized at the same time.;For the power management service, we improve its efficiency from three different angles. The first angle is to reduce energy consumption of WiFi communications. We propose HoWiES, a system-for WiFi energy saving by utilizing low-power ZigBee radio. The second angle is to reduce energy consumption of web based smartphone applications. We propose CacheKeeper, which is a system-wide web caching service to eliminate unnecessary energy consumption caused by imperfect web caching in many smartphone applications. The third angle is from the perspective of smartphone CPUs. We found that existing CPU power models are ill-suited for modern multicore smartphone CPUs. We present a new approach of CPU power modeling for smartphones. This approach takes CPU idle power states into consideration, and can significantly improve power estimation accuracy and stability for multicore smartphones.;For the location reporting service, we aim to design an efficient location proof solution for mobile location based applications. We propose VProof, a lightweight and privacy-preserving location proof scheme that allows users to construct location proofs by simply extracting unforgeable information from the received packets

    Study and Development of Power Control Schemes within a Cognitive Radio-based Game Theoretic Framework

    Get PDF
    Projecte final de carrera fet en col.laboració amb Nokia Siemens NetworksThe requirements of the International Telecommunication Union (ITU) for the 4th generation of mobile devices raised up to 100 Mbps for high and 1Gbps for low mobility conditions. Reaching such challenging targets requires the deployment of picocells and femtocells. These techniques permit to achieve large cell capacity but also lead to di culties in terms of interference. The GRACE algorithm, based on Cognitive Radio and Game Theory, has shown a fair balance between cell capacity and outage as well as short convergence time, low complexity and easy scalability. The aim of this work is to find an e cient power control algorithm that fits GRACE these goals. Therefore, a study of Cognitive Radio, Game Theory and Power Control algorithms is developed and a new power control algorithm is proposed. The simulation results show that the Fractional Power Control can increase notably the outage performance and the energy saving to the mobile devices

    Spectrum sharing and aggregation for future wireless networks, part II

    No full text
    The papers in this special issue represent the second one in the sequel of three special issues on spectrum sharing and aggregation for future wirelessn networks

    Design, Analysis, Implementation and Evaluation of Real-time Opportunistic Spectrum Access in Cloud-based Cognitive Radio Networks

    Get PDF
    Opportunistic spectrum access in cognitive radio network is proposed for remediation of spectrum under-utilization caused by exclusive licensing for service providers that are intermittently utilizing spectrum at any given geolocation and time. The unlicensed secondary users (SUs) rely on opportunistic spectrum access to maximize spectrum utilization by sensing/identifying the idle bands without causing harmful interference to licensed primary users (PUs). In this thesis, Real-time Opportunistic Spectrum Access in Cloud-based Cognitive Radio Networks (ROAR) architecture is presented where cloud computing is used for processing and storage of idle channels. Software-defined radios (SDRs) are used as SUs and PUs that identify, report, analyze and utilize the available idle channels. The SUs in ROAR architecture query the spectrum geolocation database for idle channels and use them opportunistically. The testbed for ROAR architecture is designed, analyzed, implemented and evaluated for efficient and plausible opportunistic communication between SUs
    corecore