1,279 research outputs found

    Non-classical Rotational Inertia in a Two-dimensional Bosonic Solid Containing Grain Boundaries

    Full text link
    We study the occurrence of non-classical rotational inertia (NCRI) arising from superfluidity along grain boundaries in a two-dimensional bosonic system. We make use of a standard mapping between the zero-temperature properties of this system and the statistical mechanics of interacting vortex lines in the mixed phase of a type-II superconductor. In the mapping, the liquid phase of the vortex system corresponds to the superfluid bosonic phase. We consider numerically obtained polycrystalline configurations of the vortex lines in which the microcrystals are separated by liquid-like grain boundary regions which widen as the vortex system temperature increases. The NCRI of the corresponding zero-temperature bosonic systems can then be numerically evaluated by solving the equations of superfluid hydrodynamics in the channels near the grain boundaries. We find that the NCRI increases very abruptly as the liquid regions in the vortex system (equivalently, superfluid regions in the bosonic system) form a connected, system-spannig structure with one or more closed loops. The implications of these results for experimentally observed supersolid phenomena are discussed.Comment: Ten pages, including figure

    Optimal Cloning of Pure States, Judging Single Clones

    Full text link
    We consider quantum devices for turning a finite number N of d-level quantum systems in the same unknown pure state \sigma into M>N systems of the same kind, in an approximation of the M-fold tensor product of the state \sigma. In a previous paper it was shown that this problem has a unique optimal solution, when the quality of the output is judged by arbitrary measurements, involving also the correlations between the clones. We show in this paper, that if the quality judgement is based solely on measurements of single output clones, there is again a unique optimal cloning device, which coincides with the one found previously.Comment: 16 Pages, REVTe

    A complete design path for the layout of flexible macros

    Get PDF
    XIV+172hlm.;24c

    Integrated silicon assembly

    Get PDF

    Correlated microtiming deviations in jazz and rock music

    Full text link
    Musical rhythms performed by humans typically show temporal fluctuations. While they have been characterized in simple rhythmic tasks, it is an open question what is the nature of temporal fluctuations, when several musicians perform music jointly in all its natural complexity. To study such fluctuations in over 100 original jazz and rock/pop recordings played with and without metronome we developed a semi-automated workflow allowing the extraction of cymbal beat onsets with millisecond precision. Analyzing the inter-beat interval (IBI) time series revealed evidence for two long-range correlated processes characterized by power laws in the IBI power spectral densities. One process dominates on short timescales (t<8t < 8 beats) and reflects microtiming variability in the generation of single beats. The other dominates on longer timescales and reflects slow tempo variations. Whereas the latter did not show differences between musical genres (jazz vs. rock/pop), the process on short timescales showed higher variability for jazz recordings, indicating that jazz makes stronger use of microtiming fluctuations within a measure than rock/pop. Our results elucidate principles of rhythmic performance and can inspire algorithms for artificial music generation. By studying microtiming fluctuations in original music recordings, we bridge the gap between minimalistic tapping paradigms and expressive rhythmic performances
    • …
    corecore