6,609 research outputs found

    Dynamic Channel Allocation Techniques Using Adaptive Modulation and Adaptive Antennas

    No full text
    This contribution studies the impact of adaptive quadrature amplitude modulation (AQAM) on network performance when applied to a cellular network, using adaptive antennas in conjunction with both fixed channel allocation (FCA) and locally distributed dynamic channel allocation (DCA) schemes. The performance advantages of using adaptive modulation are investigated in terms of the overall network performance, mean transmitted power, and the average network throughput. Adaptive modulation allowed an extra 51% of users to be supported by an FCA 4-QAM network, while in conjunction with DCA, an additional 54% user capacity was attained. Index Terms—Adaptive antennas, adaptive modulation, adaptive arrays, beam-steering, DCA, dynamic channel allocation

    Adaptive Antenna Array Assisted Dynamic Channel Allocation Techniques

    No full text
    Abstract—The performance of base station adaptive antenna arrays (AAAs) is investigated in conjunction with fixed channel allocation (FCA) and dynamic channel allocation (DCA) schemes. Locally distributed DCAarrangements are studied and benchmarked against standard FCA, in the context of both line-of-sight (LOS) and multipath propagation environments. One-, two-, four-, and eight-element AAAs are employed using the sample matrix inversion (SMI) beamforming algorithm, in both the up- and the down-link. In most investigated scenarios, the locally optimized least interference algorithm (LOLIA) exhibited the best overall compromise in terms of a set of combined metrics, such as the forced termination probability, new call blocking probability, and the probability of a low quality access. Index Terms—Adaptive antennas, adaptive array, beamforming, dynamic channel allocation (DCA), network capacity, wireless networks

    Data Detection and Code Channel Allocation for Frequency-Domain Spread ACO-OFDM Systems Over Indoor Diffuse Wireless Channels

    Get PDF
    Future optical wireless communication systems promise to provide high-speed data transmission in indoor diffuse environments. This paper considers frequency-domain spread asymmetrically clipped optical orthogonal frequency-division multiplexing (ACOOFDM) systems in indoor diffuse channels and aims to develop efficient data detection and code channel allocation schemes. By exploiting the frequency-domain spread concept, a linear multi-code detection scheme is proposed to maximize the signal to interference plus noise ratio (SINR) at the receiver. The achieved SINR and bit error ratio (BER) performance are analyzed. A computationally efficient code channel allocation algorithm is proposed to improve the BER performance of the frequency-domain spread ACO-OFDM system. Numerical results show that the frequency-domain spread ACO-OFDM system outperforms conventional ACO-OFDM systems in indoor diffuse channels. Moreover, the proposed linear multi-code detection and code channel allocation algorithm can improve the performance of optical peak-to-average power ratio (PAPR

    Performance Evaluation of Variable Bandwidth Channel Allocation Scheme in Multiple Subcarrier Multiple Access

    Get PDF
    Multiple Subcarrier Multiple Access (MSMA) enables concurrent sensor data streamings from multiple wireless and batteryless sensors using the principle of subcarrier backscatter used extensively in passive RFID. Since the interference cancellation performance of MSMA depends on the Signal to Interference plus Noise Ratio of each subcarrier, the choice of channel allocation scheme is essential. Since the channel allocation is a combinatorial problem, obtaining the true optimal allocation requires a vast amount of examinations which is impracticable in a system where we have tens of sensor RF tags. It is particularly true when we have variable distance and variable bandwidth sensor RF tags. This paper proposes a channel allocation scheme in the variable distance and variable bandwidth MSMA system based on a newly introduced performance index, total contamination power, to prioritize indecision cases. The performance of the proposal is evaluated with existing methods in terms of average communication capacity and system fairness using MATLAB Monte Carlo simulation to reveal its advantage. The accuracy of the simulation is also verified with the result obtained from the brute force method

    Distributed Channel Allocation Algorithms for Wireless Sensor Networks

    Get PDF
    Interference between concurrent transmissions can cause severe performance degradation in wireless sensor networks (WSNs). While multiple channels available in WSN technology such as IEEE 802.15.4 can be exploited to mitigate interference, channel allocation can have a significant impact on the performance of multi-channel communication. This paper proposes a set of distributed algorithms for near-optimal channel allocation in WSNs with theoretical bounds. We first consider the problem of minimizing the number of channels needed to remove interference in a WSN, and propose both receiver-based and link-based distributed channel allocation protocols. For WSNs with an insufficient number of channels, we formulate a fair channel allocation problem whose objective is to minimize the maximum interference (MinMax) experienced by any transmission link in the network. We prove that MinMax channel allocation is NP-hard and propose a distributed link-based MinMax channel allocation protocol. We also propose a distributed protocol for link scheduling based on MinMax channel allocation. Simulations based on real topologies and data traces collected from a WSN testbed consisting of 74 TelosB motes, and using random topologies have shown that our channel allocation protocols significantly outperform a state-of-the-art channel allocation protocol

    Optimal channel allocation with dynamic power control in cellular networks

    Full text link
    Techniques for channel allocation in cellular networks have been an area of intense research interest for many years. An efficient channel allocation scheme can significantly reduce call-blocking and calldropping probabilities. Another important issue is to effectively manage the power requirements for communication. An efficient power control strategy leads to reduced power consumption and improved signal quality. In this paper, we present a novel integer linear program (ILP) formulation that jointly optimizes channel allocation and power control for incoming calls, based on the carrier-to-interference ratio (CIR). In our approach we use a hybrid channel assignment scheme, where an incoming call is admitted only if a suitable channel is found such that the CIR of all ongoing calls on that channel, as well as that of the new call, will be above a specified value. Our formulation also guarantees that the overall power requirement for the selected channel will be minimized as much as possible and that no ongoing calls will be dropped as a result of admitting the new call. We have run simulations on a benchmark 49 cell environment with 70 channels to investigate the effect of different parameters such as the desired CIR. The results indicate that our approach leads to significant improvements over existing techniques.Comment: 11 page
    • …
    corecore