11,254 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Spectrum Map and its Application in Cognitive Radio Networks

    Get PDF
    Recent measurements on radio spectrum usage have revealed the abundance of underutilized bands of spectrum that belong to licensed users. This necessitated the paradigm shift from static to dynamic spectrum access. Cognitive radio based secondary networks that utilize such unused spectrum holes in the licensed band, have been proposed as a possible solution to the spectrum crisis. The idea is to detect times when a particular licensed band is unused and use it for transmission without causing interference to the licensed user. We argue that prior knowledge about occupancy of such bands and the corresponding achievable performance metrics can potentially help secondary networks to devise effective strategies to improve utilization. In this work, we use Shepard\u27s method of interpolation to create a spectrum map that provides a spatial distribution of spectrum usage over a region of interest. It is achieved by intelligently fusing the spectrum usage reports shared by the secondary nodes at various locations. The obtained spectrum map is a continuous and differentiable 2-dimension distribution function in space. With the spectrum usage distribution known, we show how different radio spectrum and network performance metrics like channel capacity, secondary network throughput, spectral efficiency, and bit error rate can be estimated. We show the applicability of the spectrum map in solving the intra-cell channel allocation problem in centralized cognitive radio networks, such as IEEE 802.22. We propose a channel allocation scheme where the base station allocates interference free channels to the consumer premise equipments (CPE) using the spectrum map that it creates by fusing the spectrum usage information shared by some CPEs. The most suitable CPEs for information sharing are chosen on a dynamic basis using an iterative clustering algorithm. Next, we present a contention based media access control (MAC) protocol for distributed cognitive radio network. The unlicensed secondary users contend among themselves over a common control channel. Winners of the contention get to access the available channels ensuring high utilization and minimum collision with primary incumbent. Last, we propose a multi-channel, multi-hop routing protocol with secondary transmission power control. The spectrum map, created and maintained by a set of sensors, acts as the basis of finding the best route for every source destination pair. The proposed routing protocol ensures primary receiver protection and maximizes achievable link capacity. Through simulation experiments we show the correctness of the prediction model and how it can be used by secondary networks for strategic positioning of secondary transmitter-receiver pairs and selecting the best candidate channels. The simulation model mimics realistic distribution of TV stations for urban and non-urban areas. Results validate the nature and accuracy of estimation, prediction of performance metrics, and efficiency of the allocation process in an IEEE 802.22 network. Results for the proposed MAC protocol show high channel utilization with primary quality of service degradation within a tolerable limit. Performance evaluation of the proposed routing scheme reveals that it ensures primary receiver protection through secondary power control and maximizes route capacity

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft
    • …
    corecore