15,068 research outputs found

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Data in Business Process Models. A Preliminary Empirical Study

    Get PDF
    Traditional activity-centric process modeling languages treat data as simple black boxes acting as input or output for activities. Many alternate and emerging process modeling paradigms, such as case handling and artifact-centric process modeling, give data a more central role. This is achieved by introducing lifecycles and states for data objects, which is beneficial when modeling data-or knowledge-intensive processes. We assume that traditional activity-centric process modeling languages lack the capabilities to adequately capture the complexity of such processes. To verify this assumption we conducted an online interview among BPM experts. The results not only allow us to identify various profiles of persons modeling business processes, but also the problems that exist in contemporary modeling languages w.r.t. The modeling of business data. Overall, this preliminary empirical study confirms the necessity of data-awareness in process modeling notations in general

    Artifact Lifecycle Discovery

    Get PDF
    Artifact-centric modeling is a promising approach for modeling business processes based on the so-called business artifacts - key entities driving the company's operations and whose lifecycles define the overall business process. While artifact-centric modeling shows significant advantages, the overwhelming majority of existing process mining methods cannot be applied (directly) as they are tailored to discover monolithic process models. This paper addresses the problem by proposing a chain of methods that can be applied to discover artifact lifecycle models in Guard-Stage-Milestone notation. We decompose the problem in such a way that a wide range of existing (non-artifact-centric) process discovery and analysis methods can be reused in a flexible manner. The methods presented in this paper are implemented as software plug-ins for ProM, a generic open-source framework and architecture for implementing process mining tools

    Guided Interaction Exploration in Artifact-centric Process Models

    Get PDF
    Artifact-centric process models aim to describe complex processes as a collection of interacting artifacts. Recent development in process mining allow for the discovery of such models. However, the focus is often on the representation of the individual artifacts rather than their interactions. Based on event data we can automatically discover composite state machines representing artifact-centric processes. Moreover, we provide ways of visualizing and quantifying interactions among different artifacts. For example, we are able to highlight strongly correlated behaviours in different artifacts. The approach has been fully implemented as a ProM plug-in; the CSM Miner provides an interactive artifact-centric process discovery tool focussing on interactions. The approach has been evaluated using real life data sets, including the personal loan and overdraft process of a Dutch financial institution.Comment: 10 pages, 4 figures, to be published in proceedings of the 19th IEEE Conference on Business Informatics, CBI 201

    Verification of Agent-Based Artifact Systems

    Full text link
    Artifact systems are a novel paradigm for specifying and implementing business processes described in terms of interacting modules called artifacts. Artifacts consist of data and lifecycles, accounting respectively for the relational structure of the artifacts' states and their possible evolutions over time. In this paper we put forward artifact-centric multi-agent systems, a novel formalisation of artifact systems in the context of multi-agent systems operating on them. Differently from the usual process-based models of services, the semantics we give explicitly accounts for the data structures on which artifact systems are defined. We study the model checking problem for artifact-centric multi-agent systems against specifications written in a quantified version of temporal-epistemic logic expressing the knowledge of the agents in the exchange. We begin by noting that the problem is undecidable in general. We then identify two noteworthy restrictions, one syntactical and one semantical, that enable us to find bisimilar finite abstractions and therefore reduce the model checking problem to the instance on finite models. Under these assumptions we show that the model checking problem for these systems is EXPSPACE-complete. We then introduce artifact-centric programs, compact and declarative representations of the programs governing both the artifact system and the agents. We show that, while these in principle generate infinite-state systems, under natural conditions their verification problem can be solved on finite abstractions that can be effectively computed from the programs. Finally we exemplify the theoretical results of the paper through a mainstream procurement scenario from the artifact systems literature

    Design-time Models for Resiliency

    Get PDF
    Resiliency in process-aware information systems is based on the availability of recovery flows and alternative data for coping with missing data. In this paper, we discuss an approach to process and information modeling to support the specification of recovery flows and alternative data. In particular, we focus on processes using sensor data from different sources. The proposed model can be adopted to specify resiliency levels of information systems, based on event-based and temporal constraints

    Query Stability in Monotonic Data-Aware Business Processes [Extended Version]

    Get PDF
    Organizations continuously accumulate data, often according to some business processes. If one poses a query over such data for decision support, it is important to know whether the query is stable, that is, whether the answers will stay the same or may change in the future because business processes may add further data. We investigate query stability for conjunctive queries. To this end, we define a formalism that combines an explicit representation of the control flow of a process with a specification of how data is read and inserted into the database. We consider different restrictions of the process model and the state of the system, such as negation in conditions, cyclic executions, read access to written data, presence of pending process instances, and the possibility to start fresh process instances. We identify for which facet combinations stability of conjunctive queries is decidable and provide encodings into variants of Datalog that are optimal with respect to the worst-case complexity of the problem.Comment: This report is the extended version of a paper accepted at the 19th International Conference on Database Theory (ICDT 2016), March 15-18, 2016 - Bordeaux, Franc

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF
    • …
    corecore