3,062 research outputs found

    A nonparametric approach for model individualization in an artificial pancreas

    Get PDF
    The identification of patient-tailored linear time invariant glucose-insulin models is investigated for type 1 diabetic patients, that are characterized by a substantial inter-subject variability. The individualized linear models are identified by considering a novel kernel-based nonparametric approach and are compared with a linear time invariant average model in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean squared error. Model identification and validation are based on in-silico data collected from the adult virtual population of the UVA/Padova simulator. The data generation involves a protocol designed to produce a sufficient input excitation without compromising patient safety, compatible also with real life scenarios. The identified models are exploited to synthesize an individualized Model Predictive Controller (MPC) for each patient, which is used in an Artificial Pancreas to maintain the blood glucose concentration within an euglycemic range. The MPC used in several clinical studies, synthesized on the basis of a non-individualized average linear time invariant model, is also considered as reference. The closed-loop control performance is evaluated in an in-silico study on the adult virtual population of the UVA/Padova simulator in a perturbed scenario, in which the MPC is blind to random variations of insulin sensitivity in each virtual patient. © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Continuous glucose monitoring sensors: Past, present and future algorithmic challenges

    Get PDF
    Continuous glucose monitoring (CGM) sensors are portable devices that allow measuring and visualizing the glucose concentration in real time almost continuously for several days and are provided with hypo/hyperglycemic alerts and glucose trend information. CGM sensors have revolutionized Type 1 diabetes (T1D) management, improving glucose control when used adjunctively to self-monitoring blood glucose systems. Furthermore, CGM devices have stimulated the development of applications that were impossible to create without a continuous-time glucose signal, e.g., real-time predictive alerts of hypo/hyperglycemic episodes based on the prediction of future glucose concentration, automatic basal insulin attenuation methods for hypoglycemia prevention, and the artificial pancreas. However, CGM sensors’ lack of accuracy and reliability limited their usability in the clinical practice, calling upon the academic community for the development of suitable signal processing methods to improve CGM performance. The aim of this paper is to review the past and present algorithmic challenges of CGM sensors, to show how they have been tackled by our research group, and to identify the possible future ones

    Type 1 diabetes

    Get PDF
    Type 1 diabetes is a chronic autoimmune disease characterised by insulin deficiency and resultant hyperglycaemia. Knowledge of type 1 diabetes has rapidly increased over the past 25 years, resulting in a broad understanding about many aspects of the disease, including its genetics, epidemiology, immune and β-cell phenotypes, and disease burden. Interventions to preserve β cells have been tested, and several methods to improve clinical disease management have been assessed. However, wide gaps still exist in our understanding of type 1 diabetes and our ability to standardise clinical care and decrease disease-associated complications and burden. This Seminar gives an overview of the current understanding of the disease and potential future directions for research and care

    Cell Therapy for Type 1 Diabetes

    Get PDF
    Acknowledgements The work described in this review was supported by a grant from the MRC. K.R.M. is supported by a fellowship from the Scottish Translational Medicines and Therapeutics Initiative through the Wellcome Trust.Peer reviewedPublisher PD

    Improving the clinical value and utility of CGM systems: issues and recommendations : a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group

    Get PDF
    The first systems for continuous glucose monitoring (CGM) became available over 15 years ago. Many then believed CGM would revolutionise the use of intensive insulin therapy in diabetes; however, progress towards that vision has been gradual. Although increasing, the proportion of individuals using CGM rather than conventional systems for self-monitoring of blood glucose on a daily basis is still low in most parts of the world. Barriers to uptake include cost, measurement reliability (particularly with earlier-generation systems), human factors issues, lack of a standardised format for displaying results and uncertainty on how best to use CGM data to make therapeutic decisions. This scientific statement makes recommendations for systemic improvements in clinical use and regulatory (pre- and postmarketing) handling of CGM devices. The aim is to improve safety and efficacy in order to support the advancement of the technology in achieving its potential to improve quality of life and health outcomes for more people with diabetes

    Improving the clinical value and utility of CGM systems: issues and recommendations: a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group

    Get PDF
    The first systems for continuous glucose monitoring (CGM) became available over 15 years ago. Many then believed CGM would revolutionize the use of intensive insulin therapy in diabetes; however, progress toward that vision has been gradual. Although increasing, the proportion of individuals using CGM rather than conventional systems for self-monitoring of blood glucose on a daily basis is still low in most parts of the world. Barriers to uptake include cost, measurement reliability (particularly with earlier-generation systems), human factors issues, lack of a standardized format for displaying results, and uncertainty on how best to use CGM data to make therapeutic decisions. This Scientific Statement makes recommendations for systemic improvements in clinical use and regulatory (pre- and postmarketing) handling of CGM devices. The aim is to improve safety and efficacy in order to support the advancement of the technology in achieving its potential to improve quality of life and health outcomes for more people with diabetes

    Coming of age: the artificial pancreas for type 1 diabetes.

    Get PDF
    The artificial pancreas (closed-loop system) addresses the unmet clinical need for improved glucose control whilst reducing the burden of diabetes self-care in type 1 diabetes. Glucose-responsive insulin delivery above and below a preset insulin amount informed by sensor glucose readings differentiates closed-loop systems from conventional, threshold-suspend and predictive-suspend insulin pump therapy. Insulin requirements in type 1 diabetes can vary between one-third-threefold on a daily basis. Closed-loop systems accommodate these variations and mitigate the risk of hypoglycaemia associated with tight glucose control. In this review we focus on the progress being made in the development and evaluation of closed-loop systems in outpatient settings. Randomised transitional studies have shown feasibility and efficacy of closed-loop systems under supervision or remote monitoring. Closed-loop application during free-living, unsupervised conditions by children, adolescents and adults compared with sensor-augmented pumps have shown improved glucose outcomes, reduced hypoglycaemia and positive user acceptance. Innovative approaches to enhance closed-loop performance are discussed and we also present the outlook and strategies used to ease clinical adoption of closed-loop systems.Supported by National Institute of Health Research Cambridge Biomedical Research Centre, Efficacy and Mechanism Evaluation National Institute for Health Research (#14/23/09), The Leona M. & Harry B. Helmsley Charitable Trust (#2016PG-T1D045), JDRF (#2-SRA-2014-256-M-R), National Institute of Diabetes and Digestive and Kidney Diseases (1UC4DK108520-01), and Diabetes UK (#14/0004878).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00125-016-4022-

    Optimal Regulation of Blood Glucose Level in Type I Diabetes using Insulin and Glucagon

    Full text link
    The Glucose-Insulin-Glucagon nonlinear model [1-4] accurately describes how the body responds to exogenously supplied insulin and glucagon in patients affected by Type I diabetes. Based on this model, we design infusion rates of either insulin (monotherapy) or insulin and glucagon (dual therapy) that can optimally maintain the blood glucose level within desired limits after consumption of a meal and prevent the onset of both hypoglycemia and hyperglycemia. This problem is formulated as a nonlinear optimal control problem, which we solve using the numerical optimal control package PSOPT. Interestingly, in the case of monotherapy, we find the optimal solution is close to the standard method of insulin based glucose regulation, which is to assume a variable amount of insulin half an hour before each meal. We also find that the optimal dual therapy (that uses both insulin and glucagon) is better able to regulate glucose as compared to using insulin alone. We also propose an ad-hoc rule for both the dosage and the time of delivery of insulin and glucagon.Comment: Accepted for publication in PLOS ON
    • …
    corecore