341,221 research outputs found

    Sample path large deviations for a class of Markov chains related to disordered mean field models

    Get PDF
    We prove a large deviation principle on path space for a class of discrete time Markov processes whose state space is the intersection of a regular domain \L\subset \R^d with some lattice of spacing \e. Transitions from xx to yy are allowed if \e^{-1}(x-y)\in \D for some fixed set of vectors \D. The transition probabilities p_\e(t,x,y), which themselves depend on \e, are allowed to depend on the starting point xx and the time tt in a sufficiently regular way, except near the boundaries, where some singular behaviour is allowed. The rate function is identified as an action functional which is given as the integral of a Lagrange function. %of time dependent relativistic classical mechanics. Markov processes of this type arise in the study of mean field dynamics of disordered mean field models.Comment: 56pp, AMS-Te

    The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt

    Full text link
    The persistence length of a single, intrinsically rigid polyelectrolyte chain, above the Manning condensation threshold is investigated theoretically in presence of added salt. Using a loop expansion method, the partition function is consistently calculated, taking into account corrections to mean-field theory. Within a mean-field approximation, the well-known results of Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that density correlations between counterions and thermal fluctuations reduce the stiffness of the chain, indicating an effective attraction between monomers for highly charged chains and multivalent counterions. This attraction results in a possible mechanical instability (collapse), alluding to the phenomenon of DNA condensation. In addition, we find that more counterions condense on slightly bent conformations of the chain than predicted by the Manning model for the case of an infinite cylinder. Finally, our results are compared with previous models and experiments.Comment: 13 pages, 2 ps figure

    Differential equation approximations of stochastic network processes: an operator semigroup approach

    Full text link
    The rigorous linking of exact stochastic models to mean-field approximations is studied. Starting from the differential equation point of view the stochastic model is identified by its Kolmogorov equations, which is a system of linear ODEs that depends on the state space size (NN) and can be written as u˙N=ANuN\dot u_N=A_N u_N. Our results rely on the convergence of the transition matrices ANA_N to an operator AA. This convergence also implies that the solutions uNu_N converge to the solution uu of u˙=Au\dot u=Au. The limiting ODE can be easily used to derive simpler mean-field-type models such that the moments of the stochastic process will converge uniformly to the solution of appropriately chosen mean-field equations. A bi-product of this method is the proof that the rate of convergence is O(1/N)\mathcal{O}(1/N). In addition, it turns out that the proof holds for cases that are slightly more general than the usual density dependent one. Moreover, for Markov chains where the transition rates satisfy some sign conditions, a new approach for proving convergence to the mean-field limit is proposed. The starting point in this case is the derivation of a countable system of ordinary differential equations for all the moments. This is followed by the proof of a perturbation theorem for this infinite system, which in turn leads to an estimate for the difference between the moments and the corresponding quantities derived from the solution of the mean-field ODE

    Pair Density Waves in coupled doped two-leg Ladders

    Full text link
    Motivated by Resonant X-ray scattering experiments in cuprate ladder materials showing charge order modulation of period λ=3\lambda=3 and 5 at specific hole densities, we investigate models involving the electronic t-J ladders and bosonic chains coupled via screened Coulomb repulsion. Extensive density matrix renormalization group calculations applied to the ladders/chains supplemented by a self-consistent mean-field treatment of the inter-ladder/chain coupling provide quantitative estimates of the charge order for λ=3,4\lambda=3,4 and 5. As previously proposed, such patterns correspond to the emergence of pair density waves which stem from the strong electronic correlations. We comment on the existence of a λ=4\lambda=4 modulation not seen so far in experiment.Comment: 4 pages, 4 figure

    Macromolecular theory of solvation and structure in mixtures of colloids and polymers

    Full text link
    The structural and thermodynamic properties of mixtures of colloidal spheres and non-adsorbing polymer chains are studied within a novel general two-component macromolecular liquid state approach applicable for all size asymmetry ratios. The dilute limits, when one of the components is at infinite dilution but the other concentrated, are presented and compared to field theory and models which replace polymer coils with spheres. Whereas the derived analytical results compare well, qualitatively and quantitatively, with mean-field scaling laws where available, important differences from ``effective sphere'' approaches are found for large polymer sizes or semi-dilute concentrations.Comment: 23 pages, 10 figure

    Static Rouse Modes and Related Quantities: Corrections to Chain Ideality in Polymer Melts

    Full text link
    Following the Flory ideality hypothesis intrachain and interchain excluded volume interactions are supposed to compensate each other in dense polymer systems. Multi-chain effects should thus be neglected and polymer conformations may be understood from simple phantom chain models. Here we provide evidence against this phantom chain, mean-field picture. We analyze numerically and theoretically the static correlation function of the Rouse modes. Our numerical results are obtained from computer simulations of two coarse-grained polymer models for which the strength of the monomer repulsion can be varied, from full excluded volume (`hard monomers') to no excluded volume (`phantom chains'). For nonvanishing excluded volume we find the simulated correlation function of the Rouse modes to deviate markedly from the predictions of phantom chain models. This demonstrates that there are nonnegligible correlations along the chains in a melt. These correlations can be taken into account by perturbation theory. Our simulation results are in good agreement with these new theoretical predictions.Comment: 9 pages, 7 figures, accepted for publication in EPJ
    • …
    corecore