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1. Introduction.

In this paper we study a class of Markov processes with discrete state space which have the

property that their transition probabilities vary slowly with time as the processes progresses

(we will give a precise meaning to this later). Such processes occur in many applications

and have been studied both in the physical and mathematical literature. For an extensive

discussion, we refer e.g. to van Kampen's book [vK], Chapter IX. It has been shown by

Kurtz [Ku], under suitable conditions, that these processes can be scaled in such a way that

a law of large numbers holds that states that the rescaled process converges, almost surely,

to the solution of a certain di�erential equation. He also established a central limit theorem

showing that the deviations from the solution under proper scaling converges to a generalized

Ornstein-Uhlenbeck process [Ku2]. The simplest example of such Markov processes are of

course symmetric random walks (in Z
d, say). In this case one the LLN scaling consists in

considering the process (for t 2 R+ ) Zn(t) =
1
n

P[nt]
i=1Xi, and one has the obvious result that

as n tends to in�nity, Zn(t) converges to 0, which solves the di�erential equation is X 0(t) = 0.

The corresponding central limit theorem is then nothing but Donsker's invariance principle

[Do] which asserts that
p
nZn(t) converges to Brownian motion. In this simple situation,

the LLN and the CLT are accompanied by a large deviation principle, due to Mogulskii [Mo]

that states that the family of laws of the processes Zn(t); t 2 [0; T ] satis�es a large deviation

principle with some rate function of the form S(x) =
R T
0
dtL( _x(t)). This LDP is the analog

of Schilder's theorem for Brownian motion (in which case the function L is just the square).

Generalizations of Mogulskii's theorem were studied in a series of paper by Wentzell [W1-4].

A partial account of this work is given in Section 5 of the book by Wentzell and Freidlin [WF].

The class of locally in�nitely divisible processes studied there include Markov jump processes.

Wentzell proved large deviation principles under some spatial regularity assumptions on the

moment generating functions of the local jump-distributions and its Legendre transforms.

The particular case of pure Markov jump processes is worked out in [SW]. This theory has

been developed considerably in a large number of works principlly by Dupois, Ellis, and

Weiss and co-workers (see e.g. [DEW,DE,DE1,DE2,DR,AD,SW] and references therein).

The main thrust of this line of research was to weaken the spatial regularity hypothesis on

the transition rates to include situations with boundaries and discontinuities. The main

motivation was furnished by applications to queing systems. Given the variety of possibls

situations, is not surprising that there is no complete theory availble, but rather a large set

of examples satisfying particular hypothesis. Among the rare general results is an upper

large deviation bound proven in [DEW] that holds under measurability assumptions only;
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the question under which conditions these bounds are sharp remain open in general. The

upper bounds in [DEW] are also stated for discrete time Markov processes. Needless to

say, the bulk of the literature is concerned with the di�usion case, i.e. large deviations for

solutions of stochastic di�erential equations driven by Wiener processes [WF,Az]. Questions

of discontinuous statistics have been considered in this context in [BDE,CS]. For other related

large deviation principles, see also [Ki1,Ki2].

In the present case we consider discrete time Markov chains depending on a small pa-

rameter � de�ned on a state space �� � R
d that have transition rates p�(x; y; t) of the form

p�(x; x + ��; t) = exp(f�(x; �; t)), for � 2 � where � is some �nite set and f� is required

to satisfy some regularity conditions to be speci�ed in detail later. The new feature of our

results are

(i) The functions f� themselves are allowed to depend (in a controlled way) on the small

parameter �.

(ii) Regularity conditions are required in the interiors of the domains, but some singular be-

haviour near the boundary is allowed.

(iii) The transition rates are time-dependent.

Features (i) and (ii) are motivated from applications to stochastic dynamics in disor-

dered mean-�eld models of statistical mechanics which we will not discuss here. See e.g.

[BEGK,BG]. Let us mention that the large deviations results obtained in the present pa-

per were needed (in the particular setting of time-homogeneous and reversible processes)

in [BEGK] to show that a general transition between metastable states proceeds along a

(asymptotically) deterministic sequence of so-called admissible transitions. The necessity to

consider (i) arises mainly from the fact that in such systems, rather strong �nite size e�ect

due to the disorder are present and these e�ect the transition probabilities. Control of this

dependence requires a certain amount of extra work.

The problem at boundaries (ii) is also intrinsic for most of the systems we are interested

in. While for many application it would be su�cient to have an large deviation estimates for

sets of paths that stay away from the boundary, we feel that it is more satisfactory to have

a full LDP under conditions that are generally met in the systems we are interested in. The

types of singularities we must deal with di�er from those treated in the queing motivated

literature cited above.
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(iii) is motivated by our interest to study the behaviour of such systems under time de-

pendent external variations of parameters, and in particular to study hysteresis phenomena.

This causes no particular additional technical di�culties.

We have chosen to give complete and elementary proves of our results, even though the

basic ideas are now standard in large deviation theory and any technical lemmata (mainly

from convex analysis) are also served in similar situations in the past. But there are some

subtle points, mainly in the dealing with boundary e�ects, and we feel that it is easier and

more instructive to follow a complete line of argument using only the minimal amount of

technical tools.

The remainder of the paper is organized as follows. In Section 2 we give precise formulation

of our results. Section 3 states the basic large deviation upper and lower bounds and shows

why they imply our theorems, Section 4 establishes some elementary fact from convex analysis

that will be needed later, and in Section 5 the upper and lower bounds are proven.

Acknowledgements: We thank J.-D. Deuschel and O. Zeitouni for pointing out some

interesting recent references. This paper was written during visits of the authors at the Centre

de Physique Th�eorique, Marseille, the Weierstrass Institut f�ur Angewandte Analysis, Berlin,

the D�epartment de math�ematiques de l'EPFL, Lausanne, and EURANDOM, Eindhoven. We

thank these institutions for their hospitality and �nancial support.
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2. Statements of results

Let � denote some lattice in R
d and let � � R

d be a convex set (�nite or in�nite) that

is complete w.r.t. the Euclidean metric. De�ne, for � > 0, the rescaled lattice �� and its

intersection with the set �, �� � � \ (��). We consider discrete time Markov chains with

state space ��. � will play the rôle of a small parameter3. Let � � � denote a �nite subset

of lattice vectors.

The time t-to-(t + 1) transition probabilities, (t; x; y) 2 N � �� � �� 7! p�(t; x; y) 2 [0; 1]

are of the form

p�(t; x; y) �

8><>:
g�

�
�t; x; �

�1(y � x)
�

if ��1(y � x) 2 �; x 2 ��; y 2 ��

0 otherwise

(2:1)

where the functions fg�; � > 0g, g� : R+ � R
d ��! [�1; 0], are obviously required to meet

the condition X
�2�

g�(s; x; �) = 1; 8s 2 R
+
;8x 2 � (2:2)

We will set

f�(t; x; �) �
�
ln g�(t; x; �); if g�(t; x; �) > 0

�1; if g�(t; x; �) = 0
(2:3)

These functions will be assumed to verify a number of additional hypothesis; in order to state

them we need some notation: For any set S in Rd the convex hull of S is denoted by convS;
the closure, interior and boundary of S are denoted by clS, intS and bdS = ( clS)n( intS).
For each � > 0 we de�ne the �-interior of S, denoted by int�S, to be:

int�S = fx 2 S j 8� 2 �; x+ �� 2 Sg (2:4)

Note that int�S is not necessarily open. The �-boundary of S is then de�ned by bd�S =

( clS) n ( int�S). For each � > 0 we set:

�(�;�) = fx 2 � j x+ �� 2 �g ; � 2 �

�(�) = fx 2 � j 9� > 0 s:t: x+ �� 2 �g ; � 2 �
(2:5)

Obviously [
�2�

�(�;�) = � and
\
�2�

�(�;�) = int��[
�2�

�(�) = � and
\
�2�

�(�) = int�
(2:6)

3In applications to dynamics of mean �eld models � will enter as the the inverse of the system size N ,

hence only take discrete values. This will not be important here.
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Moreover we have:

Lemma 2.1:

(i) int�0� � int�� for all �0 > � > 0;

(ii) int�� � int� for all � > 0;

(iii) int� = fx 2 � j 9� > 0 s:t: x 2 int��g.

Proof: (i) is immediate. Given x 2 int�� each of the points x + ��, � 2 �, belongs to

�. Forming the convex hull of this set of points we have, by convexity of �: convfx + �� j
� 2 �g = x + � conv� � �. Let B be the closed unit ball in R

d centered at the origin.

Since by assumption conv� is a d-dimensional set, there exists r � r( diam�) > 0 such that

rB � conv�. Hence x+�rB � � and int�� � fx 2 � j x+�rB � �g, proving (ii). Similarly

we obtain that for any x 2 S�>0 int�� = fx 2 � j 9� > 0 s:t: 8� 2 �; x+ �� 2 �g there exists
�
0
> 0 such that x+ �

0
B � �, which yields (iii). The lemma is proven. }.

Hypothesis 2.2:4 For each � > 0 and each � 2 �,

g�(s; x; �) > 0; 8(s; x) 2 R
+ � �(�;�)

g�(s; x; �) = 0; 8(s; x) 2 R
+ � � n �(�;�)

(2:7)

and

g�(s; x; �) = 0; 8(s; x; �) 2 R
+ � (Rd n �)�� (2:8)

Moreover,

8x 2 int�;9�0 > 0 and c > 0 such that 80 < � < �
0,

g�(s; x; �) > c; 8(s; �) 2 R
+ �� (2:9)

8x 2 bd�;9�0 > 0 and c > 0 such that 80 < � < �
0,

g�(s; x; �) > c; 8s 2 R
+
;8� 2 f�0 2 � j �(�0) 3 xg (2:10)

and

g�(s; x; �) = 0; 8s 2 R
+
;8� =2 f�0 2 � j �(�0) 3 xg (2:11)

4The statements \for each � > 0" should in fact be replaced by \for each � > 0 su�ciently small".
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Remark: Hypothesis 2.2 implies in particular that for each � > 0,

f�(s; x; �) > �1; 8(s; x; �) 2 R
+ � int���� (2:12)

and

8x 2 bd��;9� 2 � s.t. f�(s; x; �) > �1 (2:13)

Remark: Lemma 2.1 and Hypothesis 2.2 also imply that for any x 2 �, 9�0 > 0 s.t.

80 < � < �
0 n

� 2 �
���(�;�) 3 x

o
=
n
� 2 �

���(�) 3 x
o

(2:14)

Hypothesis 2.3: There exist functions, f
(0)
� and f

(1)
� such that

f� = f
(0)
� + �f

(1)
� ; (2:15)

satisfying:

(H0) f
(0)
� (s; x; �) = �1 if and only if f�(s; x; �) = �1.

(H1) For any closed bounded subset S � int� there exists a positive constant K � K(S) < 1
such that, for each � > 0,

sup
x2S

sup
�2�:

S\�(�;�)3x

���f (1)� (s; x; �)
��� � K; 8s 2 R

+ (2:16)

(H2) There exists a constant 0 < � <1 such that, for each � > 0,

sup
x2�

sup
�2�:

�(�;�)3x

���f (0)� (s; x; �) � f
(0)
� (s0; x; �)

��� � �js� s
0j; 8s 2 R

+
;8s0 2 R

+
: (2:17)

(H3) For any closed bounded subset S � int� there exists a positive constant # � #(S) < 1
such that, for each � > 0,

sup
s2R+

sup
�2�:

S\�(�;�)3fx;x0g

���f (0)� (s; x; �) � f
(0)
� (s; x0; �)

��� � #jx� x
0j; 8x 2 S;8x0 2 S (2:18)

Hypothesis 2.4: The functions g� converge uniformly to a function g on the set R+����.

Moreover, for any (s; x; �) 2 R
+ � ���,

lim
�!0

g�(s; x; �) = lim
�!0

e
f(0)� (s;x;�) (2:19)
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Remark: Note that Hypothesis 2.4 together with Hypothesis 2.2 implies that the limits

lim
�!0

f�(s; x; �) = lim
�!0

f
(0)
� (s; x; �) = f(s; x; �) (2:20)

exist and are �nite at every (s; x; �) in the set de�ned by:

s 2 R
+
; x 2 �; � 2 f�0 2 � j �(�0) 3 xg (2:21)

We put f(s; x; �) = �1 on the complement of (2.21).

Remark: For x 2 int� then f�0 2 � j �(�0) 3 xg = �.

Remark: The limiting function f of course inherits the properties (H2) and (H3) of Hy-

pothesis 2.3 with �(�;�) replaced by �(�).

As a consequence of Hypothesis 2.3 and 2.4 we have:

Lemma 2.5:

(i) For each � > 0 and each � 2 �, the function (s; x) 7! f
(0)
� (s; x; �) is jointly continuous in

s and x relative to R+ � int( int��).

(ii) For each � 2 �, the function (s; x) 7! f(s; x; �) is jointly continuous in s and x relative to

R
+ � int�.

Proof: It follows from (H2) of Hypothesis 2.3 that the collection of functions ff (0)� ( : ; x; �) j
x 2 int��; � 2 �g is equi-Lipshitzian on R

+ , implying that the function s 7! f
(0)
� (s; x; �) is

continuous relative to R+ for each x 2 int�� and � 2 �. Using Lemma 2.1, (ii), it follows

from (H3) of Hypothesis 2.3 that the collection of functions ff (0)� (s; : ; �) j s 2 R
+
; � 2 �g is

equi-Lipshitzian on all closed bounded subsets S � int( int��) and hence, in particular, the

function x 7! f
(0)
� (s; x; �) is continuous relative to int( int��) for each s 2 R

+ and � 2 �.

The joint continuity of f
(0)
� (s; x; �) in s and x simply results from the fact that R+ and

int( int��) are locally compact topological space. This proves (i). In view of the remark

following Hypothesis 2.4, the proof of (ii) is identical to that of (i). The lemma is proven.}

Each of the following functions are mapping R+ � R
d � R

d into [�1;+1]:

L(t; u; v) = log
X
�2�

e
(v;�)+f(t;u;�) (2:22)
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L�(t; u; v�) = sup
v2Rd

f(v; v�)�L(t; u; v)g (2:23)

L�(t; u; v) = log
X
�2�

e
(v;�)+f�(t;u;�) (2:24)

L
�
� (t; u; v

�) = sup
v2Rd

f(v; v�)� L�(t; u; v)g (2:25)

We set

L(r)�
� (t; u; v�) � inf

t0:jt0�sj�r
inf

u0:ju0�uj�r
L
�
� (t

0
; u
0
; v
�); r > 0 (2:26)

Finally, we set

L(r)�(t; u; v�) � inf
t0:jt0�sj�r

inf
u0:ju0�uj�r

L�(t; u; v�); r > 0 (2:27)

and

L�(t; u; v�) � lim
r#0

L(r)�(t; u; v�) (2:28)

The main function spaces appearing in the text are listed hereafter. All of them are spaces

of Rd -valued functions on some �nite interval [0; T ]. By C([0; T ]) we denote the space of

continuous functions equipped with the supremum norm: k�(:)kC = max0�t�T j�(t)j, where
j : j denotes the Euclidean norm on R

d (i.e. jxj =
p
(x; x)). Lp([0; T ]), 1 � p < 1, is the

familiar space of Lebesgue measurable functions for which
R T
0
j�(t)jpdt is �nite and is equipped

with the norm k�(:)kp =
�R T

0
j�(t)jpdt

�1=p
. W ([0; T ]) denotes the Banach space of absolutely

continuous functions and can be equipped, e.g., with the norm, k�(:)kW = j�(0)j + k _�(:)k1.
Recall that

W ([0; T ]) =
n
� 2 C([0; T ])

���8� > 09� > 0 s:t:

kX
l=1

jtl � tl�1j < � )
kX
l=1

j�(tl)� �(tl�1)j < �

o
(2:29)

or, equivalently,

W ([0; T ]) =

�
� 2 C([0; T ])

���8t0 2 [0; T ]; 8t 2 [t0; T ]; �(t)� �(t0) =

Z t

t0

_�(s)ds; _� 2 L1([0; T ])

�
(2:30)

As a rule all spaces above are metrized with the norm-induced metric and are considered in

the metric topology (i.e., the topology of uniform convergence).

We need to introduce some subsets of this space. Recall that the e�ective domain of a

an extended-real-valued function g on X is the set domg � fx 2 X j g(x) < 1g. For each

(t; u) 2 R
+ � � de�ne the extended-real-valued function �

�
t;u through:

�
�
t;u(v

�) = L�(t; u; v�) (2:31)
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Setting

Du = dom�
�
t;u; D = conv� (2:32)

we de�ne,

D([0; T ]) �
n
� 2W ([0; T ])

����(t) 2 �and _�(t) 2 D�(t) for Lebesgue a.e. t 2 [0; T ]
o

(2:33)

D�([0; T ]) �
n
� 2W ([0; T ])

����(t) 2 int� and _�(t) 2 D for Lebesgue a.e. t 2 [0; T ]
o

(2:34)

Our prime interest will be in the large deviation behaviour of a family of continuous time

processes constructed from the Markov chains fX�; � > 0g by linear interpolation on the

coordinate variables and rescaling of the time. More precisely, let [0; T ] be an arbitrary but

�nite interval and de�ne the process Y� on sample path space (C([0; T ]);B(C([0; T ]))) by

setting, for each t 2 [0; T ],

Y�(t) = X�

��
t
�

��
+
�
t
�
�
�
t
�

�� �
X�

��
t
�

�
+ 1
�
�X�

��
t
�

���
(2:35)

Let eP�;�0 � P�;�0 � Y �1� denote it's law. We are now in a position to state our main result.

Theorem 2.6: Assume that the Hypothesis 2.2, 2.3, 2.4 are satis�ed. If moreover

(H4) For any convex set A �W ([0; T ])

inf
��A\D([0;T ])

Z T

0

L�(t; �(t); _�(t))dt = inf
��A\D�([0;T ])

Z T

0

L�(t; �(t); _�(t))dt (2:36)

then the family of measures
n eP�;�0 ; � > 0

o
on (C([0; T ]);B(C([0; T ]))) obeys a full large

deviation principle with good rate function I : C([0; T ])! R
+ given by

I(�(:)) =

8>><>>:
Z T

0

L�(t; �(t); _�(t))dt if �(:) 2 D([0; T ]) and �(0) = �0

+1 otherwise

(2:37)

Proposition 2.7: Condition (H4) is satis�ed if the following two conditions hold:

(i) At each (t; u; v�) 2 R
+ � �� R

d

lim
i!1

L�(t; ui; v�) � L�(t; u; v�) (2:38)

for every sequence u1; u2; : : : in int� converging to u 2 �.
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(ii) For some function g : R+ ! R
+ satisfying lim�#0 �g(�) = 0, for all (s; u; v�) 2 R

+ �
int��D,

L�(s; u; v�) � g ( dist(u;�c)) (2:39)

Remark: Since L� � L�, it is of course enough to verify (2.39) for the more explicitly given

function L�. This condition is realized in most examples of interest. Condition (H4) is of

course always realized in situations where the process cannot reach the boundary of � in

�nite time, and in particular if � = R
d .

Proposition 2.7 will be proven in Section 4.

For later reference the properties of I are given explicitly in the proposition below.

Proposition 2.8: The function I de�ned in (2.37) veri�es:

(i) 0 � I(�(:)) � 1 and domI = D([0; T ])

(ii) I(�(:)) is lower semi continuous.

(iii) For each l <1, the set f�(:) j I(�(:)) < lg is compact in C([0; T ]).

Proof: The proof of this proposition is in fact a more or less identical rerun of the proof

given Section 9.1 of Io�e and Tihomirov [IT] and we will not repeat it here. }

By de�nition (i) and (ii) are the standard properties of a rate function while goodness is

imparted to it by property (iii).

Remark: The LDP of Theorem 2.6 can easily be extended beyond the continuous setting

arising from the de�nition of Y� in that, instead of Y�, we could consider the process Z�

de�ned by,

Z�(t) = X�

��
t
�

��
; for each t 2 [0; T ] (2:40)

Naturally the path space of Z� is now the spaceD([0; T ]) of functions that are right continuous

and have left limits which, equipped with the Skorohod topology, S, is rendered Polish

(we refer to the beautiful book by [Bi] for questions related to this space). It can then

be shown that the family of measures
n bP�;�0 ; � > 0

o
on (D([0; T ]);S) obeys a full large

deviation principle with good rate function I 0 where I 0 = I on C([0; T ]) and I 0 = 1 on

D([0; T ])nC([0; T ]). The basic step needed to extend the LDP of Theorem 2.6 to the present

case is to establish that the measures eP�;�0 and bP�;�0 , both de�ned on (D([0; T ]);S), are
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exponentially equivalent. As will become clear in the next chapter (see Lemma 3.1), this

property is very easily seen to hold.

Let us �nally make some remarks on the large deviation principle we have obtained. The

rate function (2.37) has the form of a classical action functional with �
�
(t; x; v) being a (in

general time dependent) Lagrangian. Note however that in contrast to the setting of classical

mechanics, the function space is one of absolutely continuous function, rather than functions

with absolutely continuous derivatives. Therefore the minimizers in the LDP need not be

solutions of the corresponding Euler-Lagrange equations everywhere, but jumps between

solutions can occur. A particular feature, that is due to the discrete-time nature of the

process is the presence of a maximal velocity (i.e. a \speed of light"), due to the fact that

the Lagrangian is in�nite for v 62 D. In that respect one can consider the rate function as

the action of a relativistic classical mechanics.
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3. The basic large deviation estimates.

The aim of this short chapter is to bring into focus the basic large deviation estimates

on which the proof of Theorem 2.6 relies. These estimates are established in a subset of

the continuous paths space, chosen in such a way as to retain the underlying geometrical

properties of the paths of Y . Assuming these estimates we then proceed to give the proof of

Theorem 2.6.

More precisely set:

E([0; T ]) =
n
� 2 C([0; T ])

��� �(t)� �(t0)

t� t0
2 D 8t 2 [0; T ]; 8t0 2 [0; T ]; t 6= t

0
o

(3:1)

Lemma 3.1: eP�;�0(E([0; T ])) = 1 for all � > 0.

Proof: Assume that t > t
0 and set t = (i + 
)�, t0 = (j + 


0)� where i; j 2 N, 
; 
0 2 [0; 1).

By (2.24),

Y (t)� Y (t0)

t� t0
=
X(i) �X(j) + 
[X(i+ 1)�X(i)] � 


0[X(j + 1)�X(j)]

[(i+ 
)� (j + 
0)]�
(3:2)

Using that all sample paths of X have increments of the form X(k+1)�X(k) = ��k+1 with

�k 2 �, (3.2) yields

Y (t)� Y (t0)

t� t0
=

8>>><>>>:
�i+1 if i = j

(1� 

0)�j+1 +

�Pi
k=j+2 �k1Ifi>j+1g

�
+ 
�i+1

(1� 
0) + (i� j � 1) + 

if i � j + 1

(3:3)

The last line in the r.h.s. of (3.3) is a convex combination of elements of �. Thus, remem-

bering that D = conv�, the lemma is proven. }

Being a subset of a metric space, E([0; T ]) is itself a metric space with metric given

by the supremum norm-derived metric, and thus, can be considered a topological space

in it's own right in the metric topology. In addition, it inherits the topology induced

by C([0; T ]). But those two topologies are easily seen to coincide, i.e., B(E([0; T ])) =

fA \ E([0; T ]) : A 2 B(C([0; T ])g. From this and Lemma (3.1) it follows that�
E([0; T ]);B(E([0; T ])); eP�;�0� is a measure space.

Let B�(�) 2 E([0; T ]) denote the open ball of radius � around � and let �B�(�) be it's

closure. Our �rst result will be a pair of upper and lower bounds that hold under much

weaker hypothesis than those of Theorem 2.6.
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Proposition 3.2: Assume that Hypothesis 2.2, 2.3 and 2.4 hold. Let
n eP�;�0 ; � > 0

o
be

de�ned on (E([0; T ]);B(E([0; T ]))). Then, for any � > 0 and � 2 E([0; T ]),

lim sup
�!0

� log eP�;�0( �B�(�)) � � inf
 2 �B�(�)\D([0;T ]):

 (0)=�0

Z T

0

dtL�(t;  (t); _ (t)) (3:4)

lim inf
�!0

� log eP�;�0(B�(�)) � � inf
 2B�(�)\D�([0;T ]):

 (0)=�0

Z T

0

dtL�(t;  (t); _ (t)) (3:5)

In Section 4 we will prove the following lemma:

Lemma 3.3: Under the same hypothesis as Proposition 3.2, for all  2 D�([0; T ]),Z T

0

dtL�(t;  (t); _ (t)) =
Z T

0

dtL�(t;  (t); _ (t)) (3:6)

This lemma together with hypothesis (H4) will in fact imply the stronger

Proposition 3.4: If in addition to the assumptions of Proposition 3.2 condition (H4) is

satis�ed. Then, for any � > 0 and � 2 E([0; T ]),

lim sup
�!0

� log eP�;�0( �B�(�)) � � inf
 2 �B�(�)

J ( ) (3:7)

lim inf
�!0

� log eP�;�0(B�(�)) � � inf
 2B�(�)

J ( ) (3:8)

where J : E([0; T ]) 3  7! J ( ) � I( ) is the restriction of I to E([0; T ]).

Proof: We prove the proposition assuming Proposition 3.2 and Lemma 3.3. Using �rst (H4)

and then (ii) of Lemma 3.3, we get

inf
 2 �B�(�)\D([0;T ])

Z T

0

dtL�(t;  (t); _ (t)) = inf
 2 �B�(�)\D�([0;T ])

Z T

0

dtL�(t;  (t); _ (t))

= inf
 2 �B�(�)\D�([0;T ])

Z T

0

dtL�(t;  (t); _ (t)) � inf
 2 �B�(�)\D([0;T ])

Z T

0

dtL�(t;  (t); _ (t))
(3:9)

which implies (3.7).

On the other hand, using �rst (ii) of Lemma 3.3, then (H4), and �nally the fact that, since

for any r; � > 0, L(r)�
� (t; u; v�) � L�� (t; u; v�), we have L(t; u; v�) � L�(t; u; v�), we also get

inf
 2B�(�)\D�([0;T ])

Z T

0

dtL�(t;  (t); _ (t)) = inf
 2B�(�)\D�([0;T ])

Z T

0

dtL�(t;  (t); _ (t))

= inf
 2B�(�)\D([0;T ])

Z T

0

dtL�(t;  (t); _ (t)) � inf
 2B�(�)\D([0;T ])

Z T

0

dtL�(t;  (t); _ (t))
(3:10)
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which implies (3.8). }

The proof of Theorem 2.6, assuming Proposition 3.4 and Proposition 2.8, is now classical.

Proof of Theorem 2.6: Assume Proposition 3.2 and Proposition 2.3 to hold. Then, on the

one hand, since C([0; T ]) is Polish, goodness of the rate function entails exponential tightness

of the family
n eP�;�0 ; � > 0

o
, which implies that the full LDP obtains whenever it's weak

version obtains. On the other hand, since E([0; T ]) is compact, it follows from Proposition

3.2 that the family
n eP�;�0 ; � > 0

o
on E([0; T ]) obeys a weak LDP with rate function J . The

connection between these LDP's is made in through:

Lemma 3.5: ([DZ], Lemma 4.1.5) Let S be a regular topological space and f��; � � 0g a

family of probability measures on S. Let S be a measurable subset of S such that ��(S) = 1

for all � > 0. Assume S equipped with the topology induced by S.

(i) if S is a closed subset of S and f��g satis�es the LDP in S with rate function J , then

f��g satis�es the LDP in S with rate function I = J on S and I =1 on S n S.

(ii) If f��g satis�es the LDP in S with rate function I and domI � S, then the same LDP

holds in S.

Remark: Lemma 3.5 holds for the weak as well as the full LDP.

Theorem 2.6 now follows from Lemma 3.5 together with Lemma 3.1 and the fact that

being compact, E([0; T ]) is closed in C([0; T ]) }
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4. Convexity related results

This rather lengthy chapter establishes most of the basic analytic properties of the loga-

rithmic moment generating functions and their Legendre transforms that will be needed to

prove the upper and lower large deviation estimates in Section 5. We begin by �xing some

notations.

Let L� and L�� be the functions, mapping R+ � R
d � R

d into R, de�ned by:

L�(s; u; v) = log
X
�2�

e
(v;�)+f(0)� (s;u;�) (4:1)

L�� (s; u; v�) = sup
v2Rd

f(v; v�)�L�(s; u; v)g (4:2)

It plainly follows from Hypothesis 2.2 and (H0) of Hypothesis 2.3 that on R+� (Rd n�)�Rd ,
L� = �1, L�� = +1, L � �1 , and L� = +1. We will thus limit our attention to the

behaviour of these functions on R+ � �� R
d .

Let M(�) denote the set of all probability measures on �. The support of a measure

� 2 M(�), denoted supp�, is de�ned by supp� = f� 2 � j �(�) > 0g. For any �xed

(s; u) 2 R
+ � � and any v 2 R

d let �v�;s;u be the probability measure on M(�) that assigns

to � 2 � the density

�
v
�;s;u(�) =

e
(v;�)+f(0)� (s;u;�)P

�2� e
(v;�)+f

(0)
� (s;u;�)

(4:3)

Similarly �vs;u 2M(�) is de�ned by (4.3) with f
(0)
� (s; u; �) replaced by f(s; u; �).

Observe that if u 2 � then either u 2 int�� or u 2 bd�� and, according to the remark

following Hypothesis 2.2,

supp �0�;s;u = �; 8(s; u) 2 R
+ � int�� (4:4)

whereas

; 6= supp �0�;s;u � �; 8(s; u) 2 R
+ � bd�� (4:5)

Moreover, for � a random variable with law �
v
�;s;u,

L�(s; u; v) = E �0�;s;u
e
(v;�) + log

X
�2�

e
f(0)� (s;u;�) (4:6)

where E�v�;s;u denotes the expectation w.r.t. �v�;s;u. Thus, up to a small term (which goes to

zero as � # 0) L� is the logarithmic moment generating function of �v�;s;u, L�� being termed

it's conjugate.
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With L and L� given by (2.22) and (2.23), for �xed (s; u) 2 R
+ ��, we further de�ne the

functions, mapping Rd into R:

��;s;u(v) = L�(s; u; v)

���;s;u(v
�) = L�� (s; u; v�)

�s;u(v) = L(s; u; v)

��s;u(v) = L�(s; u; v�)

(4:7)

This chapter is divided into �ve subchapters. In the �rst subchapter we establish the

properties of the functions ��, �, and their conjugates ��� , �
�. Although most of them are

well know folklore of the theory of convex analysis, it is more convenient to state them at

once rather then laboriously recall them from the literature when we need to put them in use.

The proofs are merely compilations of references, chie
y taken from the books by Rockafellar

[Ro] and Ellis [E]. In the second subchapter we go back to the functions L�, L�, and their

limits, and establish their topological properties. The third subchapter establishes some basic

properties of semi-continuous regularisations of our functions, and in particular provides an

important result on the uniform convergence of the regularised functions as � # 0. In the

forth subsection we present a result, based on these topological properties, which shall be

crucial in establishing the large deviation bounds, while the last subsection is devoted to the

proof of Proposition 2.7.

Most of the results of this section will be established simultaneously for either the function

L� or L�� at �xed �, and (what we shall see are their limits) L or L�. We stress here once for

all that, according to the remark following Hypothesis 2.4, all results for L� or L�� directly

infered from Hypothesis 2.2 and 2.3 obviously carry through to the limiting functions. As

a rule we systematically skip the proofs of results for L or L� whenever they are simple

repetitions of those for L� or L�� .

4.1. The functions ��, �, and their conjugates.

We begin with a short reminder of terminology and a few de�nitions. Recall that domg �
fx 2 X j g(x) <1g. All through this chapter we shall adopt the usual convention that con-

sists in identifying a convex function g on domg with the convex function de�ned throughout

R
d by setting g(x) = +1 for x =2 domg. A real valued function g on a convex set C is said

to be strictly convex on C if

g((1 � �)x+ �y) < (1� �)g(x) + �g(y); 0 < � < 1 (4:8)
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for any two di�erent points x and y in C. It is called proper if g(x) < 1 for at least one x

and g(x) > �1 for every x. The closure of a convex function g is de�ned to be the lower

semi-continuous hull of g if g nowhere has value �1, whereas the closure of g is de�ned to

be the convex function �1 if g is an improper convex function such that g(x) = �1 for

some x. Either way the closure of g is another convex function and is denoted cl g. A convex

function is said to be closed if g = cl g. For a proper convex function closedness is thus

the same as lower semi-continuity. A function g on Rd is said to be continuous relative to a

subset S of Rd if the restriction of d to S is a continuous function.

For any set C in Rd we denote by clC, intC and by bdC = ( clC) n ( intC) the closure,
interior and boundary of C. If C is convex, we denote by riC and rbdC = ( clC) n ( riC)
it's relative interior and relative boundary.

De�nition 4.1: A proper convex function g on Rd is called essentially smooth if it satis�es

the following three conditions for C = int(domg):

(a) C is non empty;

(b) g is di�erentiable throughout C;

(c) limi!1 jrg(xi)j = +1 whenever x1; x2; : : : , is a sequence in C converging to a boundary

point x of C.

Note that a smooth convex function on R
d is in particular essentially smooth (since (c)

holds vacuously).

De�nition 4.2: The conjugate g� of an arbitrary function g on R
d is de�ned by

g
�(x�) = sup

x2Rd
f(x; x�)� g(x)g (4:9)

Note that both ��, �
�
� and �, �� are pairs of conjugate functions.

Lemma 4.3: ([Ro], Theorem 12.2) Let g be a convex function. The conjugate function g�

is then a closed convex function, proper if and only if g is proper. Moreover ( cl g)� = g
� and

g
�� = cl g.

Finally, for g an extended-real-valued function on Rd which is is �nite and twice di�eren-

tiable throughout Rd , we denote byrg(x) �
�
@g
@x1

(x); : : : ; @g
@xd

(x)
�
,r2

g(x) �
�

@g
@xi@xj

(x)
�
i;j=1;:::;d
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and �g(x) =
Pd

i=1
@2g
@2xi

(x), respectively, the gradient, the Hessian, and the Laplacian of g

at x.

In order to unburden formulas the indices s and u in (4.7) and (4.3) will systematically be

dropped in the sequel. We start by listing some of the properties of �� and �.

Lemma 4.4: For all � > 0 the following conclusions hold. For any �xed (s; u) 2 R
+ � �,

(i) j��(v)j <1 for all v 2 R
d .

(ii) �� is a closed, convex, and continuous function on R
d .

(iii) �� has mixed partial derivatives of all order which can be calculated by di�erentiation under

the sum sign. In particular, for all v 2 R
d , if � = (�1; : : : ; �d) denotes a random vector

with law �
v
�;s;u,

r��(v) = E �v�
� =

�
E�v�

�i

�
i=1;:::;d

(4:10)

r2��(v) =
�
E�v� �i�j � E �v� �iE �

v
�
�j

�
i;j=1;:::;d

(4:11)

���(v) = E �v� j�� E �v� �j
2 =

dX
i=1

E�v� j�i � E �v� �ij
2 (4:12)

Moreover, for any �xed (s; u) 2 R
+ � int��, �� is a strictly convex function on R

d .

All assertions above hold with �� replaced by � and �v� replaced by �v.

Proof: If u 2 � then, by Hypothesis 2.2,���logP�2� e
f(0)� (s;u;�)

��� <1 (4:13)

Assertion (i) is then a consequence of (4.6). Given assertion (i), assertions (ii) and (iii) are

proven, e.g., in [E] (see pp230 for the former and Theorem VII.5.1 for the latter); formulae

(4.10), (4.11) and (4.12) may be found in [BG]. Finally, a necessary and su�cient condition

for �� to be strictly convex (see e.g. [E], Proposition VIII.4.2) is that the a�ne hull of supp�0�

coincides with Rd ; but by Hypothesis 2.1 this condition is ful�lled whenever u 2 int��. The

lemma is proven. }

We next turn to the functions ��� and �
�. We �rst state an important relationship between

the support of �0� and the e�ective their e�ective domains.

Lemma 4.5: Let d � 1, � > 0 and (s; u) 2 R
+ � �. Then,

dom��� = conv( supp �0� ) (4:14)
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In particular, if (s; u) 2 R
+ � int��,

dom��� = conv� (4:15)

The same holds with �� replaced by � and int�� replaced by int�.

Remark: Since supp�0�;s;u =
n
� 2 �

�� f (0)� (s; u; �) > �1
o
, we have by the second remark

following Hypothesis 2.2 and (H0) that 9�0 = �
0(u) > 0 s.t. 80 < � � �

0

supp �0�;s;u =
n
� 2 �

���(�) 3 u
o

(4:16)

and therefore

dom���;s;u = dom��s;u (4:17)

Proof: Obviously, if �0� is the unit mass at ��, ��� (v
�) = 0 if v� = �

� whereas ��� (v
�) = +1

if v� 6= �
�, so that (4.14) and (4.15) hold true. Assume now that �0� is non degenerate. The

starting point to prove the lemma under this assumption is a theorem by Ellis ([E], Theorem

VIII.4.3) which, rephrased in our setting and putting S � conv( supp �0� ), states that,

dom��� � S and int(dom��� ) = intS (4:18)

From this (4.14) automatically follows if we can show that ��� (v
�) < 1 for v� 2 bdS. The

proof is built upon the fact that, since supp �0� � �, the set S is a polytope and hence is

closed. Let fa1; : : : ; a�g be the subset of � generating S that is, the smallest subset of �

such that conv(fa1; : : : ; a�g) = S. Set � � j supp �0� j. By assumption �0� is non degenerate

so that � > 1. All points v of bdS can then be expressed in the form v
� =

P�
i=1 �iai whereP�

i=1 �i = 1, �i � 0, the number of non zero coe�cients �i being at most �� 1.

We now introduce a representation of ��� due to Donsker and Varadhan ([DV], p. 425).

For � 2M(�) de�ne the relative entropy of � with respect to �0� by

I(�) =
X
�2�

�(�) log
�
�(�)

�0� (�)

�
(4:19)

Then

��� (v
�) = inf

n
I(�)

���� 2M(�);
P

�2���(�) = v
�
o
� log

P
�2� e

f(0)� (s;u;�) (4:20)

First, observe that for v = a 2 fa1; : : : ; a�g the set
�
� 2M(�);

P
�2���(�) = a

	
reduces to

the unit mass at a, and, by (4.20) and (4.13),

I(�) = � log(�0� (a))� log
P
�2� e

f(0)� (s;u;�)
<1 (4:21)
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Next, by Lemma 4.3, ��� is convex so that

���

� �X
i=1

�iai

�
�

�X
i=1

�i�
�
� (ai) <1 (4:22)

proving that bdS � dom��� . The lemma is proven. }

We now list some of the properties of ��� and ��.

Lemma 4.6: For all � > 0 the following conclusions hold. For any �xed (s; u) 2 R
+ � �,

(i) ��� is a closed convex function on R
d .

(ii) ��� has compact level sets.

(iii) Let v�0 = E �v� �jv=0. Then for any v� 2 R
d , ��� (v

�) � 0 and ��� (v
�) = 0 if and only if

v
� = v

�
0 .

(iv) For d = 1, ��� is strictly convex and for d � 2, ��� is strictly convex on ri(dom��� ).

(v) ��� is continuous relative to dom��� .

Moreover, for any (s; u) 2 R
+ � int��, �

�
� is essentially smooth.

All assertions above hold with �� replaced by � and �v� replaced by �v.

Proof: Assertions (i) to (iv) are taken from [E], Theorem VII.5.5. Since by Lemma 4.6

��� is closed, and since by Lemma 4.5 dom��� is a polytope, then (v) is a special case of

[Ro], Theorem 10.2. Finally, the essential smoothness of ��� follows from the fact that, by

Lemma 4.4 , �� is strictly convex for (s; u) 2 R
+ � int�� together with Theorem 26.3 of [Ro],

implying that the conjugate of a proper and strictly convex function having e�ective domain

R
d is essentially smooth. }

The following lemma �nally relates the functions �� and � to their conjugates.

Lemma 4.7: Let (s; u) 2 R
+ � �, � > 0. For any v 2 R

d , the following three conditions

on v� are equivalent to each other:

(i) v� = r��(v);

(ii) (v0; v�)� ��(v
0) achieves it's supremum in v0 at v0 = v;

(iii) (v; v�)� ��(v) = ��� (v
�).

If (s; u) 2 R
+ � int��, two more conditions can be added to this list;
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(iv) v = r��� (v�);

(v) (v; v0)� ��� (v
0) achieves it's supremum in v0 at v0 = v

�.

The same holds when �� and ��� are replaced by � and ��.

Proof: By lemma 4.4 and the de�nition of essential smoothness, �� and � are closed, proper,

convex, essentially smooth functions and are di�erentiable throughout Rd . By Lemma 4.5

and Lemma 4.6, for each (s; u) 2 R
+� int��, �

�
� and �

� are closed, proper, convex, essentially

smooth functions with e�ective domain conv�; hence they are di�erentiable on int( conv�).

Since for a closed, proper, convex, and essentially smooth function g on Rd , the subgradient

of g at x, denoted by @g(x), reduces to the gradient mapping rg(x)5 (see [Ro], Theorem

26.1), then Lemma 4.5 is a special case of Theorem 23.5 of [Ro]. }

4.2. Topological properties of the functions L�, L�� , and their limits.

We have so far gathered information on the collections of convex functions v 7! L�(s; u; v),
v 7! L�� (s; u; v�), and their limits for s 2 R

+ and u in either �, int�� or int�. We saw in

particular that L� (respectively L) is continuous in v throughout Rd and that if u 2 int��

(respectively u 2 int�) then L�� (respectively L�) is continuous in v� relative to conv�. In

order to complete this picture we shall devote this subchapter to establishing the continuity

properties of these functions in the variables t and u.

Lemma 4.8: For all � > 0,

(i) There exists a constant 0 < � <1 such that:

sup
u2�
v2Rd

jL�(s; u; v)�L�(s0; u; v)j � �js� s
0j; 8s 2 R

+
;8s0 2 R

+ (4:23)

(ii) For any closed bounded subset S � int��, there exists a positive constant # � #(S) < 1
such that:

sup
s2R+

v2Rd

jL�(s; u; v) �L�(s; u0; v)j � #ju� u
0j; 8u 2 S;8u0 2 S (4:24)

(iii) The function L�(s; u; v) is jointly continuous in s, u and v relative to R+� int( int��)�Rd .
5that is, @g(x) consists of the vector rg(x) alone when x 2 int(dom g), while @g(x) = ; when x =2

int(dom g).
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Assertions (i)-(iii) hold with L� replaced by L and int�� replaced by int�.

In addition:

(iv) For any u 2 �, s 2 R
+ , the function L�(s; u; �) converges uniformly to L(s; u; �) on R

d .

(v) For any closed bounded S � int�, L� converges uniformly to L on R
+ � S � R

d .

Proof: By Lemma 4.4, both L� and L are �nite on R+ ���R
d . Using Hypothesis 2.2 and

(H2) of Hypothesis 2.3 we may write, for any s 2 R
+ , s0 2 R

+ , and any (u; v) 2 �� R
d ,

jL�(s; u; v)�L�(s0; u; v)j � sup
�2�:

�(�;�)3u

jf (0)� (s; u; �) � f
(0)
� (s0; u; �)j � �js� s

0j (4:25)

This proves (i). Assertions (ii) and (iv) are likewise deduced from (H3) of Hypothesis 2.3 and

Hypothesis 2.4. Knowing (i), (ii), and (ii) of Lemma 4.4, the proof of assertion (iii) is similar

to that of Lemma 2.5. Assertion (iv) is an immediate consequence of Hypothesis (H4).

To prove (iv), by the second remark following Hypothesis 2.2, for any (s; u) 2 R
+ � �,

there exists �0 = �
0(u) > 0 such that for all � � �

0 such that

L�(s; u; v) = log
X

�2�:�(�)3u

e
(v;�)+f(0)� (s;u;�) (4:26)

This implies that

jL�(s; u; v) �L(s; u; v)j � sup
�2�:�(�)3u

jf (0)� (s; u; �) � f(s; u; �)j (4:27)

where the right hand side is independent of v and, by Hypothesis 2.4, converges to zero. This

yields (iv).

Finally, the prove of (v) is almost identical to that of (iv). We only need to observe that

the �0(u) can be chosen uniform for u 2 S if S is a compact subset of the interior of �,

and that as indicated in the remark following Hypothesis 2.4, the right hand side of (4.27)

converges to zero uniformly on R+ � S. }

Lemma 4.9: For all � > 0,

(i) There exists a constant 0 < � <1 such that:

sup
u2�

v�2 conv�

jL�� (s; u; v�)�L�� (s0; u; v�)j � �js� s
0j; 8s 2 R

+
;8s0 2 R

+ (4:28)
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(ii) For any closed bounded subset S � int��, there exists a positive constant # � #(S) < 1
such that:

sup
s2R+

v�2 conv�

jL�� (s; u; v�)�L�� (s; u0; v�)j � #ju� u
0j; 8u 2 S;8u0 2 S (4:29)

(iii) The function L�� (s; u; v�) is jointly continuous in s, u and v� relative to R+ � int( int��)�
conv�.

Moreover (i)-(iii) hold with L�� replaced by L� and int�� replaced by int�.

In addition:

(iv) For each (s; u; v�) 2 R
+ � �� conv�,

lim
�!0

L�� (s; u; v�) = L�(s; u; v�) (4:30)

exists and is �nite for all (s; u; v�) such that s 2 R
+ , u 2 �, v� 2 dom��s;u.

(v) For every closed bounded set S � int�, L�� converges uniformly to L� on R+�S� conv�.

Proof: By Lemma 4.5, both L�� and L� are �nite on R
+ � int�� conv�. To prove (i) we

write that for any s 2 R
+ , s0 2 R

+ , and any (u; v�) 2 �� conv�,

L�� (s; u; v�) = sup
v2Rd

f(v; v�)�L�(s0; u; v) + (L�(s0; u; v)�L�(s; u; v))g

� sup
v2Rd

�
(v; v�)�L�(s0; u; v) + sup

v2Rd
jL�(s0; u; v) �L�(s; u; v))j

�
= L�� (s0; u; v�) + sup

v2Rd
jL�(s0; u; v) �L�(s; u; v))j

(4:31)

and by (4.23) of Lemma 4.8,

L�� (s; u; v�)�L�� (s0; u; v�) � �js� s
0j (4:32)

Similarly we can show that

L�� (s; u; v�)�L�� (s0; u; v�) � ��js� s
0j (4:33)

Thus (i) is proven. Assertions (ii) is obtained in the same way on the basis of assertion (ii)

of Lemma 4.8. whereas (iii) is deduced from Lemma 4.8, (iii), together with Lemma 4.6, (v).
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To prove (iv), note that using the remark following Lemma 4.5, there exists �0 = �
0(u) > 0

such that for � < �
0(u), for any v� 2 dom��s;u

jL�� (s; u; v�)�L�(s; u; v�)j � sup
v2Rd

jL�(s; u; v) �L(s; u; v)j (4:34)

and the right hand side converges to zero by Lemma 4.8 (iv). Note that the convergence is

even uniform in v�. (v) now follows by the same arguments that were used in the proof of

(v) of Lemma 4.8. The proof is done. }

4.3. Some properties of semi-continuous regularisations.

The results established in the previous sub-section will be mainly used for the lower bounds.

For these the use of the functions L�, L�� , de�ned in terms of the functions f
(0)
� will be

convenient. The upper bounds will rely on the use of (upper-, resp. lower) semi-continuous

regularisations of the functions L�, resp. L
�
� . Let us �rst note that all results of in 4.2 that

did not rely to the Lipshitz continuity of f
(0)
� are also valid for L� and L

�
� .

For r > 0 we de�ne:

L(r)
� (s; u; v) � sup

s0:js�s0j�r
sup

u0:ju�u0j�r
L�(s

0
; u
0
; v) (4:35)

Set �(r) � fu 2 R
d j dist(u;�) � rg. The following lemma establishes some simple properties

of L(r)
� we will need later.

Lemma 4.10:

(i) On R
+ � (Rdn�(r))� R

d , L(r)
� = �1.

(ii) For all (s; v) 2 R
+ � R

d , and all e > 0; r > 0 the function u ! L(r)
� (s; u; v) is upper

semi-continuous (u.s.c.) at each u 2 �(r).

(iii) For all (s; u) 2 R
+ � �(r), the function �

(r)
�;s;u is convex and dom�

(r)
�;s;u = R

d .

Proof: The proof is trivial and is left to the reader.}

The next Lemma relates the function L(r)
� to the function L(r)

� de�ned in (2.26).

Lemma 4.11: For any (s; u; v�) 2 R
+ � R

d � R
d ,�

L(r)
�

��
(s; u; v�) = L(r)�

� (s; u; v�) (4:36)
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Proof: We �rst prove that
�
L(r)
�

��
(s; u; v�) � L(r)�

� (s; u; v�). For any ev 2 R
d ,

�
L(r)
�

��
(s; u; v�) � (ev; v�)�L(r)

� (s; u; ev)
= inf
s0:js�s0j�r

inf
u0:ju�u0j�r

f(ev; v�)� L�(s
0
; u
0
; ev)g (4:37)

Now we choose for ev the value s.t.

sup
v2Rd

f(v; v�)� L�(s
0
; u
0
; v)g = (ev; v�)� L�(s

0
; u
0
; ev) (4:38)

With this choice (4.37) becomes indeed�
L(r)
�

��
(s; u; v�) � inf

s0:js�s0j�r
inf

u0:ju�u0j�r
L
�
� (s

0
; u
0
; v
�) = L(r)�

� (s; u; v�) (4:39)

Next we show the converse inequality. Note that for any es; eu s.t. js� esj � r; ju� euj � r, and

any v 2 R
d ,

sup
s0:js�s0j�r

sup
u0:ju�u0j�r

L�(s
0
; u
0
; v) � L�(es; eu; v) (4:40)

Hence

�
L(r)
�

��
(s; u; v�) = sup

v2Rd

(
(v; v�)� sup

s0:js�s0j�r
sup

u0:ju�u0j�r
L�(s

0
; u
0
; v)

)
� sup
v2Rd

f(v; v�)� L�(es; eu; v)g = L
�
� (es; eu; v�) (4:41)

Since (4.41) holds for all es; eu in the given sets, it follows that�
L(r)
�

��
(s; u; v�) � infes:jes�sj�r infeu:jeu�uj�rL�� (es; eu; v�) = L(r)�

� (s; u; v�) (4:42)

we obtain the desired inequality. The two inequalities imply (4.36). }

The previous Lemma allows to deduce the following analog of Lemma 4.10:

Lemma 4.12:

(i) On R
+ � (Rdn�(r))� R

d , L(r)�
� = +1.

(ii) For all (s; v�) 2 R
+ � R

d , and all e > 0; r > 0 the function u ! L(r)�
� (s; u; v�) is lower

semi-continuous (l.s.c.) at each u 2 �(r).
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(iii) For all (s; u) 2 R
+ � �(r), the function �

(r)�
�;s;u is convex and for (s; u) 2 R

+ � int��(r),

dom�
(r)�
�;s;u = conv�.

Finally we come to the central result of this sub-section.

Lemma 4.13: For any r > 0 and for any closed bounded S � int�(r) the following holds:

(i) L(r)
� converges uniformly to L(r) on R

+ � S � R
d .

(ii) L(r)�
� converges uniformly to L(r)� on R

+ � S � conv�.

Proof: Since (ii) follows from (i) in the same way as Lemma 4.9 follows from Lemma 4.8,

we concentrate on the proof of (i). Fix r > 0. De�ne the sets

A� �
�
(s�; u�; v) 2 R

+ � �(r)� R
d
�� 9(s; u) : js� s

�j � r; ju� u
�j � r :

L�(s�; u�; v) = sup
s0:js�s0j�r

sup
u0:ju�u0j�r

L�(s
0
; u
0
; v)
	 (4:43)

and put

A
� � [0��0��A�0 (4:44)

De�ne

L(r)
�;�0

(s; u; v) � lim
�#0

sup
s0:js�s0j�r;u0:ju�u0j�r

(s0;u0;v)2A

L�(s
0
; u
0
; v) (4:45)

Write ���L(r)
� (s; u; v) �L(r)(s; u; v)

���
�
���L(r)
� (s; u; v) �L(r)

�;�0
(s; u; v)

��� + ���L(r)
�;�0

(s; u; v)L(r)(s; u; v)
��� (4:46)

By de�nition of the set A�, for �0 � �,���L(r)
� (s; u; v) �L(r)

�;�0
(s; u; v)

��� = 0 (4:47)

On the other hand, for (s�; u�; v) 2 A
�0 , 9�0 � �0 and (s; u) with js � s

�j � r; ju � u
�j � r,

such that for all (s0; u0) with js� s
0j � r; ju� u

0j � r,

L�0(s
�
; u
�
; v) � L�0(s

0
; u
0
; v) (4:48)

Recalling the de�nition of L�0 , (4.48) implies that for any 
 > 0,X
�2�

g
�0 (s

�;u�;�)�


e
(�;v)

g�0(s
�
; u
�
; �) +

X
�2�

g
�0 (s

�;u�;�)<


e
(�;v)

g�0(s
�
; u
�
; �)

�
X
�2�

g
�0 (s

�;u�;�)�


e
(�;v)

g�0(s
0
; u
0
; �) +

X
�2�

g
�0 (s

�;u�;�)<


e
(�;v)

g�0(s
0
; u
0
; �)

(4:49)
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The important point is now that since S � int�(r), no matter what u� 2 S, there exists a
q = dist(S;�(r)c) > 0, such that for some u0 with ju0 � uj � r. By Hypothesis 2.2, and the

continuity assumptions of Hypothesis 2.3, one has that there exists a constant cq > 0 such

that for all these points, and for all � 2 �, g�0(s
0
; u
0
; �) > cq. Choosing such u

0 and s0 = s
�,

(4.49) implies that

(cq � 
)
X
�2�

g
�0 (s

�;u�;�)<


e
(�;v) �

X
�2�

g
�0 (s

�;u�;�)�


e
(�;v)

g�0(s
�
; u
�
; �) (4:50)

By Hypothesis 2.4, g� converges uniformly. Therefore, for any � > 0, there exists �0 > 0,

such that for all �; �0 � �0, and all (s�; u�; �) 2 R
+ � (S \ �)� R

d ,

jg�0(s�; u�; �) � g�0(s
�
; u
�
; �)j � � (4:51)

Given �, let now �0 be such that (4.51) holds. Then (4.50) implies that for all � � �0,

(cq � 
)
X
�2�

g�(s�;u�;�)<
��

e
(�;v) �

X
�2�

g�(s�;u�;�)�
��

e
(�;v)(g�(s

�
; u
�
; �) + �)

� (1 +
�



)

X
�2�

g�(s�;u�;�)�
+�

e
(�;v)

g�(s
�
; u
�
; �)

(4:52)

Therefore, for all � � �0, and (s�; u�; v) 2 A�0 ,

L�(s�; u�; v)

= ln

0B@ X
�2�

g�(s�;u�;�)�


e
(�;v)

g�(s
�
; u
�
; �)

0@1 +

P
�2�

g�(s�;u�;�)<

e
(�;v)

g�(s
�
; u
�
; �)P

�2�
g�(s�;u�;�)�


e(�;v)g�(s�; u�; �)

1A
1CA

= ln
X
�2�

g�(s�;u�;�)�


e
(�;v)

g�(s
�
; u
�
; �)

+ ln

0@1 + P �2�
g�(s�;u�;�)<


e
(�;v)

g�(s
�
; u
�
; �)P

�2�
g�(s�;u�;�)�


e(�;v)g�(s�; u�; �)

1A
(4:53)

The last term in (4.53) is bounded by

ln

�
1 +




cq � 
 � �

�
� 


cq � 
 � �
(4:54)

which will be made small by choosing 
 small enough. On the other hand,�������ln
X
�2�

g�(s�;u�;�)�


e
(�;v)

g�(s
�
; u
�
; �) � ln

X
�2�

g(s
�;u�;�)�


e
(�;v)

g(s�; u�; �)

������� �
�



(4:55)
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Therefore, choosing 
 =
p
cq�, we see that for all � � �0,���L(r)

�;�0
(s; u; v) �L(r)(s; u; v)

��� � 3

q
�=cq (4:56)

Combining both observations, we see that with � = �0, we get in fact that���L(r)
�0
(s; u; v)�L(r)(s; u; v)

��� � 3
p
�cq (4:57)

which implies the desired uniform convergence and proves (i). (ii) follows easily in the same

way as the convergence result in Lemma 4.9 (v) follows from Lemma 4.8 (v).}

Proof of Lemma 3.3: By de�nition, for any (s; u; v�) 2 R
+ � �� conv�,

L�(s; u; v�) = lim inf
s0!s
u0!u

L�(s0; u0; v�) (4:58)

But by Lemma 4.11, the function L�(s; u; v�) is jointly continuous in the variables s; u at any

(s; u; v�) 2 R
+ � int� � conv� so that on this set the right hand side of (4.58) coincides

with L�(s; u; v�). This proves Lemma 3.3.}

4.4. A continuity derived result.

We shall here be interested in the case u 2 int� only. As seen in Lemma 4.7 the conjugacy

correspondence between � and �� is closely connected to their di�erentiability properties.

To this we may add:

Lemma 4.14: Let (s; u) 2 R
+ � int�. Then r��(v�) is bounded if and only if v� 2

ri(dom�).

Proof: We know from Lemma 4.5 and Lemma 4.6 that for each (s; u) 2 R
+ � int�, �� is

a proper, closed, and strictly convex function having e�ective domain conv�. Moreover, we

saw in the proof of lemma 4.5 that the subgradient of �� reduces to the gradient mapping.

Finally, invoking Theorem 23.4 of [Ro], the subgradient of �� at v� is a non empty and

bounded set if and only if v� 2 ri(dom�). The lemma is proven. }

Now boundedness of r�� turns out to be an essential ingredient of the proof of the large

deviations estimates of Chapter 5. The particular place where it is needed appears in the

context of the minimisation problem of Lemma 4.15 below. There, we shall see that the

continuity property of ��, which in contrast with it's di�erentiability properties hold up to

rbd(dom�), enables us to restrict ourselves to situations where r�� is bounded.
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Lemma 4.15: Let F � D�([0; T ]) be a convex subset of D�([0; T ]) and set

G �
n
 2 F

��� _ (t) 2 ri( conv�); 0 � t � T

o
(4:59)

Then,

inf
 2F

Z T

0

dtL�(t;  (t); _ (t)) = inf
 2G

Z T

0

dtL�(t;  (t); _ (t)) (4:60)

Proof: With D�([0; T ]) de�ned in (2.34) recall that ��t;  (t)(�) = L�(t;  (t); �). As seen in

the proof of Lemma 4.14, for  2 D�([0; T ]), ��
t; (t)

is a proper, closed, strictly convex, and

positive function having e�ective domain conv�. This in particular ensures that both sides

of (4.60) are �nite. Since F � G,

inf
 2F

Z T

0

dtL�(t;  (t); _ (t)) � inf
 2G

Z T

0

dtL�(t;  (t); _ (t)) (4:61)

and we only have to prove the reverse inequality. To do so we will use that for any  1 2 G
and any  2 2 F the path � 1 + (1 � �) 2 belongs to G for each 0 < � � 1: obviously, by

the convexity assumption on F , � 1 + (1 � �) 2 2 F ; but since for each t � 0 � 1 _ 1(t)

is a point in ri( conv�) and _ 2(t) a point in conv�, the point � _ 1(t) + (1� �) _ 2(t) lies in

ri( conv�) for each 0 < � � 1 (see [Ro], Theorem 6.1) so that � 1 + (1 � �) 2 lies in G.
Thus, given  1 2 G and  2 2 F we have, for each 0 < � � 1,

inf
 2G

Z T

0

dtL�(t;  (t); _ (t))

�
Z T

0

dtL�(t;  2(t) + �[ 1(t)�  2(t)]; _ 2(t) + �[ _ 1(t)� _ 2(t)])

(4:62)

where the integrand in the last line is positive and bounded for each 0 < � � 1. Thus, taking

the limit � # 0, we may write, using Lebesgue's dominated convergence Theorem,

inf
 2G

Z T

0

dtL�(t;  (t); _ (t))

� lim
�#0

Z T

0

dtL�(t;  2(t) + �[ 1(t)�  2(t)]; _ 2(t) + �[ _ 1(t)� _ 2(t)])

=

Z T

0

dt lim
�#0

L�(t;  2(t) + �[ 1(t)�  2(t)]; _ 2(t) + �[ _ 1(t)� _ 2(t)])

=

Z T

0

dtL�(t;  2(t); _ 2(t))

(4:63)
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where in the last line we used that L�(s; u; v�) is jointly continuous in the variables s; u, and

v
� relative to D�([0; T ]) (see Lemma 4.9, last line and assertion (iii)). Finally, since (4.63) is

true for any  2 2 F ,

inf
 2G

Z T

0

dtL�(t;  (t); _ (t)) � inf
 2F

Z T

0

dtL�(t;  (t); _ (t)) (4:64)

which concludes the proof of the lemma.}

4.5. Proof of Proposition 2.7.

The proof of Proposition 2.7 goes along the same lines as that of Lemma 4.14.

Let  1 be any path in A \ D�([0; T ]) and let  2 be any path in A \ D([0; T ]). It follows
from the convexity of A together with the de�nitions of D�([0; T ]) and D([0; T ]) that the

path � _ 1(t) + (1��) _ 2(t) lies in A\D�([0; T ]) for each 0 < � � 1. Hence, for each such �,

inf
 �A\D�([0;T ])

Z T

0

L�(t;  (t); _ (t))dt

�
Z T

0

L�(t; � 1(t) + (1� �) 2(t); � _ 1(t) + (1� �) _ 2(t))dt

�
Z T

0

L�(t; � 1(t) + (1� �) 2(t); _ 2(t))dt

+ �

nZ T

0

L�(t; � 1(t) + (1� �) 2(t); _ 1(t))dt

�
Z T

0

L�(t; � 1(t) + (1� �) 2(t); _ 2(t))dt
o

(4:65)

Now condition (i) implies that

lim
�#0

Z T

0

L�(t; � 1(t) + (1� �) 2(t); _ 2(t))dt �
Z T

0

L�(t;  2(t); _ 2(t))dt (4:66)

while condition (ii) guarantees that

lim
�#0

nZ T

0

L�(t; � 1(t) + (1� �) 2(t); _ 1(t))dt

�
Z T

0

L�(t; � 1(t) + (1� �) 2(t); _ 2(t))dt
o
= 0

(4:67)

Since this is true for all  2 2 A\D([0; T ]), we have

inf
 �A\D�([0;T ])

Z T

0

L�(t;  (t); _ (t))dt � inf
 �A\D([0;T ])

Z T

0

L�(t;  (t); _ (t))dt (4:68)

As the reverse inequality trivially holds, the proposition is proven. }



32 Section 5

5. Proof of Proposition 3.2

We are now ready to prove the main estimates of the paper. Basically, the idea of the

proof is simple and consist of exploiting the \almost-independence" of consecutive jumps over

length scales large compared to 1 but small compared to 1=�, as in Wentzell's work. The

source of this almost independence are of course the regularity properties of the transition

probabilities. On the basis of this independence, we bring to bear classical Cram�er type-

techniques. The main di�culties arise from the non-uniformity of our regularity assumptions

near the boundaries.

The chapter is divided in three subchapters. We will �rst get equipped with some prepara-

tory tools. Armed with these, the basic upper and lower bounds are next derived. Lastly,

using results from Chapter 4, the proof is brought to a close. From now on the letter t will

be used exclusively for time parameters taking value in [0; T ] (that is, on `macroscopic scale'

1) while k will be reserved for discrete time parameters (on `microscopic scale' ��1).

5.1: Preparatory steps.

Lemma 5.1 below provides a covering of the ball B�(�) into basic `tubes'.

�c denotes the complement of � in Rd . For x 2 R
d and A � R

d , dist(x;A) � infy2A jx�yj.
Recall that given � > 0 and � 2 E([0; T ]), B�(�) =

n
 2 E([0; T ])

��� max0�t�T j (t)� �(t)j < �

o
.

Lemma 5.1: Let 0 = t0 < t1 < � � � < tn = T be any partition of [0; T ] into n intervals and

set

� � max
0�i�n

�
�1jti+1 � tij (5:1)

For � > 0 and  2 E([0; T ]) de�ne,

A�( ) =
�
 
0 2 E([0; T ])

��� max
0�i�n

j 0(ti)�  (ti)j � 2�

�
(5:2)

and for 
 � 0 de�ne,

B�;
(�) =
�
 
0 2 B�(�)

��� inf
0�t�T

dist( 0(t);�c) � 


�
�B�;
(�) =

�
 
0 2 �B�(�)

��� inf
0�t�T

dist( 0(t);�c) � 


� (5:3)

the restrictions of B�(x) and its closure to the 
-interior of �.
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(i) For any 
 � 0 and � > 0 such that � > 2�, there exists a subset R�;�;
(�) of E([0; T ]) such
that:

R�;�;
(�) � �B�;
(�) �
[

 2R�;�;
(�)

A�( ) (5:4)

jR�;�;
(�)j � e
dn(log( �� )+2)

; 8
 � 0 (5:5)

(ii) For any 
 � 0 and � > 0 such that � > 2(� + �� diam�),[
 2B��2(�+�� diam�);
(�)

A�( ) � B�(�) (5:6)

Proof: The proof of (5.4) relies on the following construction. Given � > 0 let W� be the

Cartesian lattice in Rd with spacing �p
d
. For y 2 R

d setW�;�(y) =W�\fy0 2 R
d j jy0�yj � �g

and for � 2 E([0; T ]), V�;�(�) = �ni=0W�;�(�(ti)). Next, for x = (x0; : : : ; xn) 2 V�;�(�), de�ne

A�;�;
(x) =

�
 
0 2 �B�;
(�)

��� max
0�i�n

j 0(ti)� xij � �;

�
(5:7)

Thus A�;�;
(x) is the set of paths in �B�;
(�) which at time ti are within a distance � of the

lattice point xi. Obviously, the collection of all (not necessarily disjoint and possibly empty

sets) A�;�;
(x) form a covering of �B�;
(�):

�B�;
(�) =
[

x2V�;�(�)

A�;�;
(x) (5:8)

In each of those sets A�;�;
(x) that are non empty pick one element arbitrarily and label

it  x. Clearly  x 2 �B�;
(�). Moreover for all  0 2 A�;�;
(x), j 0(ti) �  x(ti)j � 2� for

all i = 0; : : : ; n, and hence A�;�;
(x) � A�( x). Putting these information together with

(5.8) and taking R�;�;
(�) = f x j x 2 V�;�(�)g yields (5.4). Finally (5.5) follows from the

bound jR�;�;
(�)j � jV�;�(�)j � (maxi jW�;�(�(ti))j)n together with the estimate jW�;�(y)j �
exp

n
d

�
log
�
�
�

�
+ 2
�o

, y 2 R
d , whose (simple) proof can be found e.g. in [BG5].

We now prove (5.6). Set �� � � � 2(� + �� diam�). Let  0 2 S 2B��;
(�)
A�( ). Then

 
0 2 A�( ) for some  2 B��;
(�). Hence,

max
0�t�T

j (t)� �(t)j � max
0�t�T

(j 0(t)�  (t)j+ j (t) � �(t)j)

< max
0�t�T

j 0(t)�  (t)j+ ��

< max
0�i�n

max
ti�t�ti+1

(j 0(t)�  
0(ti)j+ j 0(ti)�  (ti)j+ j (t)�  (ti)j) + ��

< max
0�i�n

max
ti�t�ti+1

(j 0(t)�  
0(ti)j+ j (t)�  (ti)j) + 2� + ��

(5:9)
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Thus, using that for  00 2 E([0; T ]),

max
0�i�n

max
ti�t�ti+1

j 00(t)�  
00(ti)j � max

0�i�n
jti+1 � tij diam� � �� diam� (5:10)

(5.9) entails  0 2 B��+2(�+�� diam�)(�), proving (5.6). Lemma 5.1 is proven.}

Remark: Note that in general B�;0(x) 6= B�(x). However, due to Lemma 3.1, it is true that

eP�;�0 (B�(�)) = eP�;�0 (B�;
(�)) (5:11)

and the same holds true for the closed balls. Thus it will su�ce to get upper and lower

bounds for the set B�;
 , for all 
 � 0. Therefore the following Lemma will be a su�cient

starting point.

Lemma 5.1 allows us to control the probabilities in path space by the probabilities of some

discrete time observations of the chain. This is the content of the next lemma.

Lemma 5.2: With the notation of Lemma 5.1, the following holds for any 0 = t0 < t1 <

� � � < tn = T , ti 2 R, n 2 N.

(i) For any 
 � 0 and � > 0 such that � > 2�,

log eP�;�0( �B�;
(�)) � sup
 2 �B�;
(�)

logP�;�0
�
max
0�i�n

��X(
�
ti
�

�
)�  (�

�
ti
�

�
)
�� � 2� + 2� diam�

�
+ dn

�
log

�
�

�

�
+ 2

�
(5:12)

(ii) For any 
 � 0, any � such that � > �diam� and � > 2(� + �� diam�), and any  2
B��2(�+�� diam�);
(�),

log eP�;�0(B�(�)) � logP�;�0
�
max
0�i�n

��X(
�
ti
�

�
)�  (�

�
ti
�

�
)
�� < 2� � 2� diam�

�
(5:13)

Proof: We �rst prove assertion (i). Assume that �; � and 
 satisfy the conditions of Lemma

5.1, (i). Then, by (5.4),

eP�;�0( �B�;
(�)) � jR�;�;
(�)j exp
(

sup
 2R�;�;
(�)

log eP�;�0(A�( ))
)

� jR�;�;
(�)j exp
(

sup
 2 �B�;
(�)

log eP�;�0(A�( ))
) (5:14)
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Now eP�;�0(A�( )) = eP�;�0 � max
0�i�n

jZ(ti)�  (ti)j � 2�

�
�P�;�0

�
max
0�i�n

��X(
�
ti
�

�
)�  (�

�
ti
�

�
)
�� � 2� + � diam�

� (5:15)

where we used that, (for Z 2 E([0; T ])),

jZ(t)�  (t)j �
��Z(� � t

�

�
)�  (�

�
t
�

�
)
��� ��Z(t)� Z(�

�
t
�

�
)
��� �� (t)�  (�

�
t
�

�
)
��

�
��X(

�
t
�

�
)�  (t)

��� 2
��t� �

�
t
�

��� diam�
�
��X(

�
t
�

�
)�  (t)

��� 2� diam�

(5:16)

Inserting (5.5) and (5.15) in (5.14) gives (5.12). Similarly we derive assertion (ii) of Lemma 5.2

from assertion (ii) of Lemma 5.1, writing �rst that by (5.6), for any  2 B��2(�+�� diam�);
(�),

log eP�;�0(B�(�)) � log eP�;�0(A�( )) (5:17)

and using next that, since Z 2 E([0; T ]), analogous to (5.16),

jZ(t)�  (t)j � 2� diam�+
��X(

�
t
�

�
)�  (�

�
t
�

�
)
�� (5:18)

so that eP�;�0(A�( )) � P�; 0
�
max
0�i�n

��X(
�
ti
�

�
)�  (�

�
ti
�

�
)
�� � 2� � �diam�

�
(5:19)

This concludes the proof of Lemma 5.2. }

Remark: We could arrange to use Lemma 5.2 with ti that are multiples of � only, except

that tn = T has to be allowed to be what it wants to be. Thus we prefer to write the more

homogeneous form above.

In view of Lemma 5.2 the problem is reduced to estimating the probability that the chain

X(t) be pinned in a small neighbourhood of a prescribed point  (ti) at each time ti. As

explained earlier we will do this by comparing the chain in each time interval [ti�1; ti) with

a random walk whose steps, on microscopic time scale, take value in � and are distributed

according to p�([ti�1=�] ;  (ti�1); �). Let P�;k = (p�(k; x; y))y2�� ;x2�� denote the transition

matrix of the chain at time k and, for ` � 1, let P
(k;k+`)
�;k =

�
P
(k;k+`)
�;k (x; y)

�
y2��;x2��

denote

the matrix product

P
(k;k+`)
�;k =

kY
l=1

P�;k+l�1 (5:20)
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Set ki �
�
ti
�

�
. By the Markov property, for � > 0,

P�;�0
�
max
0�i�n

��X(
�
ti
�

�
)�  (ti)

�� � �

�
=

X
x(k0)2��

��;�0(x(k0))1Ifjx(k0)� (t0)j��g
X

x(k1)2��

1Ifjx(k1)� (t1)j��gP
(k0;k1)
�;k0

(x(k0); x(k1)) : : :

� � �
X

x(kn)2��

1Ifjx(kn)� (tn)j��gP
(kn�1;kn)
�;kn�1

(x(kn�1); x(kn))

(5:21)

The following lemma provides estimates for terms of the form P
(ki�1;ki)
�;ki�1

(x(ki�1); x(ki)).

Lemma 5.3: Let S be any closed bounded subset of int�. Let S 0 be an open subset of S
and, for ` an integer, assume that the following condition is satis�ed: for each ` � 1 and

� > 0 small enough,

inf
x2S0

dist(x;Sc) > �`diam� (5:22)

For r � 0 set

q(`; r) = �
`2

2
(� + #(S) diam�) + `(r + 2�K(S)) (5:23)

with �, #(S) and K(S) as in Hypothesis 2.3. Then, for any x 2 S 0 and any z 2 S 0,

P
(k;k+`)
�;k (x; y)

<
> e

�q(`;jx�zj)
X

�(1)2�

� � �
X

�(`�1)2�

Ỳ
l=1

e
f(0)� (�k;z;�(l))1I

f��1(y�x)�
P

`�1
m=1

�(m)2�g

(5:24)

Proof: First note that if y is such that P
(k;k+`)
�;k (x; y) = 0 then 1If��1(y�x)�

P`�1
m=1

�(m)2�g = 0

for all sequences (�(1); : : : ; �(`� 1)) 2 �`�1l=1�, and hence (5.24) holds true. Assume that y is

such that P
(k;k+`)
�;k (x; y) 6= 0 and set x(k) � x, x(k + `) � y, and

�(0) � 0

�(`) � �
�1(x(k + `)� x(k)) �

`�1X
m=1

�(m)
(5:25)

(We slightly abuse the notation in that �(0) and �(`) do not necessarily belong to �). By
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(5.20),

P
(k;k+`)
�;k (x(k); x(k + `))

=
X

x(k+1)2��

� � �
X

x(k+`�1)2��

Ỳ
l=1

p�(k + l � 1; x(k + l � 1); x(k + l))

=
X

�(1)2�

� � �
X

�(`�1)2�

Ỳ
l=1

p�

 
k + l � 1; x(k) + �

l�1X
m=0

�(m); x(k) + �

lX
m=1

�(m)

!
1If�(`)2�g

(5:26)

Note that since

� sup j
X̀
m=1

�(m)j � �`diam� (5:27)

it follows from (5.22) that

inf
x2S0

dist(x;Sc) > � sup j
X̀
m=1

�(m)j (5:28)

so that the chain starting at x(k) 2 S 0 at time k cannot reach the boundary of S by time k+`.

This in particular implies that for each x(k) 2 S 0, each sequence (�(1); : : : ; �(`�1)) 2 �`�1l=1�,

and each l = 1; : : : ; `� 1,

x(k) + �

lX
m=1

�(m) 2 int�S � int�� (5:29)

Thus by (2.1) and Hypothesis 2.2 (see e.g. (2.12)), each of the probabilities in the last line

of (5.26) is strictly positive. In addition, under our assumption on z, by (H0) of Hypothesis

2.3, ef
(0)
� (�k;z;�(l))

> 0. We may thus write

P
(k;k+`)
�;k (x(k); x(k + `)) =

X
�(1)2�

� � �
X

�(`�1)2�

Ỳ
l0=1

Rl0
Ỳ
l=1

e
f(0)� (�k;z;�(l))1If�(`)2�g (5:30)

where

Rl � p�

 
k + l � 1; x(k) + �

l�1X
m=0

�(m); x(k) + �

lX
m=1

�(m)

!
e
�f(0)� (�k;z;�(l))

; 8l = 1; : : : ; `

(5:31)

Setting k0 = k + l � 1 and x0 = x(k) + �
Pl�1
m=0 �(m) and using (2.1) and (2.15), we have

jlogRlj =
���f�(�k0; x0; �(l)) � f

(0)
� (�k; z; �(l))

���
� �

���f (1)� (�k0; x0; �)
��� + ���f (0)� (�k0; x0; �) � f

(1)
� (�k; z; �(l))

��� (5:32)
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where by (H1) of Hypothesis 2.3,
���f (1)� (�k0; x0; �(l))

��� � K(S) and by (H2) and (H3) of

Hypothesis 2.3,���f (0)� (�k0; x0; �(l)) � f
(0)
� (�k; z; �(l))

���
�
���f (0)� (�k0; x0; �(l)) � f

(0)
� (�k; x0; �(l))

��� + ���f (0)� (�k; x0; �(l)) � f
(0)
� (�k; z; �(l))

���
���jk � k

0j+ #(S)jz � x
0j

(5:33)

Thus

jlogRlj � ��l+ #(S)
���(x(k)� z) + �

Pl�1
m=1�(m)

��� + �K(S) (5:34)

and for �(`) 2 �, we have�����log
 Ỳ
l=1

Rl

!����� � X̀
l=1

�
��l+ #(S)

���(x(k)� z) + �
Pl�1
m=1�(m)

��� + �K(S)
�

� ��
`(`�1)

2
+ �#(S) diam� `(`�1)

2
+ #(S)`jx(k)� zj+ �`K(S)

(5:35)

Inserting the bound (5.35) in (5.30) yields (5.24). This concludes the proof of the lemma. }

5.2: Basic upper and lower large deviation estimates.

We de�ne the following sets:

���;
(�) =
�
x 2 � j 9 2 �B�;
(�); 9t 2 [0; T ] s:t:  (t) = x

	
(5:36)

�S�;r(�) = cl
��
x 2 � j dist

�
x; ���;
(�)

�
� r
	�
; r � 0 (5:37)

Observe that for r < 
, �S�;r(�) is a closed bounded subset of int�.

T (�0) = �0 +
h
�(T + �

p
d) diam�; (T + �

p
d) diam�

id
(5:38)

(this de�nition has to do with the fact that the initial condition ��;�0 of the chain has support

in fx 2 �� j jx� �0j � �
p
dg). Finally,

S
=2(�0) = cl (fx 2 � j dist (x; (T (�0) \ �)c) � 
=2g) (5:39)

The upper bound we will prove is analogous to that of [DEW].

Lemma 5.4: Let 0 = t0 < t1 < � � � < tn = �
�
T
�

�
be such that for all 0 � i � n � 1,

ti = �
�
ti
�

�
� �ki; ki 2 N. Assume that the conditions of Lemma 5.2, (i), are veri�ed and set

�� = 2� + 2� diam�. For any �xed r > 0 assume that �, � and � are such that

r > 2�� + �� diam� (5:40)
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Then the following conclusions hold for any  in �B�;0(�).

(i) If j (t0)� �0j � �� + �

p
d then,

� logP�;�0
�
max
0�i�n

��X( ti
�
)�  (ti)

�� � ��

�
� sup

 0:8n
i=0

j 0(ti)� (ti)j���

 
�

nX
i=1

(ti � ti�1)L(r)�
�

�
ti�1;  

0(ti);
 0(ti)� 0(ti�1)

ti�ti�1

�! (5:41)

(ii) If j (t0)� �0j > �� + �
p
d then,

� logP�;�0
�
max
0�i�n

��X( ti
�
)�  (ti)

�� � ��

�
= �1 (5:42)

Proof: The proof starts from equation (5.21), replacing � by ��. We follow the procedure

used by Varadhan [Va] for the multidimensional Cram�er theorem6 and write

nY
i=0

1Ifjx(ki)� (ti)j���g � inf
��1;:::;��n2Rd

sup
 0(t1);:::; 0(tn)

8ij 0(ti)� (ti)j���

e

P
n

i=1
(��i;x(ki)� 0(ti))

�
nY
i=0

1Ifjx(ki)� (ti)j���g

= inf
��1;:::;��n2Rd

sup
 0(t1);:::; 0(tn)

8ij 0(ti)� (ti)j���

nY
i=0

1Ifjx(ki)� (ti)j���g

� e

Pn

i=1

��Pn

j=i
��j

�
;
�
x(ki)�x(ki�1)� 0(ti)+ 0(ti�1)

��
� e

��P
n

j=1
��j

�
;x(k0)� (t0)

�
� inf
�1;:::;�n2Rd

sup
 0(t1);:::; 0(tn)

8ij 0(ti)� (ti)j���

nY
i=0

1Ifjx(ki)� (ti)j���g

� e

P
n

i=2
(�i;x(ki)�x(ki�1))�(�i; 0(ti)� 0(ti�1))

� e
(�1;x(k1)�x(k0))�(�1; 0(t1)� (t0)+x0� (t0))

(5:43)

We now insert (5.43) into (5.21). Relaxing all constraints on the endpoints of summations

6This allows us to avoid Wentzell's assumptions of boundedness of the derivatives of the Lagrangian

function L� with respect to the velocities.
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(this is reasonable since we already assume that  (t) remains in �) we obtain, using (5.26),

P�;�0
�
max
0�i�n

��X(
�
ti
�

�
)�  (ti)

�� � ��

�
�

X
x(k0)2��

��;�0(x(k0))1Ifjx(k0)� (t0)j���g

� inf
�1;:::;�n2Rd

sup
 0(t1);:::; 0(tn)

8ij 0(ti)� (ti)j���

nY
i=2

 
e
�(�i; 0(ti)� 0(ti�1))

� sup
x(ki)2��:jx(ki�1)� (ti�1)j���

X
�(1);:::;�(`i)

`iY
l=1

e
f�

�
ti�1+l�1;x(ki�1)+�

P
l�1
k=1

�(k);�(l)
�
e
(��i;�(l))

!

�

0@e�(�1; 0(t1)�x(k0)) X
�(1);:::;�(`1)

`1Y
l=1

e
f�
�
t0+l�1;x(k0)+�

P
l�1
k=1

�(k);�(l)
�
e
(��1;�(l))

1A
(5:44)

where `i � ki+1� ki. Taking into account the constraints on the suprema over the x(ki) and

the  (ti), we see that all terms x(ki) + �
Pl�1
k=1 �(k) appearing satisfy jx(ki) + �

Pl�1
k=1 �(k)�

 (ti)j � 2� + �� diam�. Therefore, for r > 2�� + �� diam�,

sup
x(ki)2��:jx(ki�1)� (ti�1)j���

X
�(l)

e
f�(ti�1+�(l�1);x(ki�1)+�

Pl�1
k=1

�(k);�(l))
e
(��i;�(l))

� sup
t0:jt0�ti�1j�r

sup
u:ju� (ti�1)j�r

X
�(l)

e
f�(t

0;u;�(l))
e
(��i;�(l))

(5:45)

to bound all the summations over the �(l) successively. This leads with the above notation

to the bound

P�;�0
�
max
0�i�n

��X( ti
�
)�  (ti)

�� � ��

�
�

X
x(k0)2��

��;�0(x(k0))1Ifjx(k0)� (t0)j���g

� inf
�1;:::;�n2Rd

sup
 0(t1);:::; 0(tn)

8ij 0(ti)� (ti)j���

nY
i=2

e
�(�i; 0(ti)� 0(ti�1))+`iL(r)� (ti�1; (ti�1);��i)

� e
�(�1; 0(t1)�x(k0))+`1L(r)� (t0; (t0);��1)

(5:46)

Using that for j �  
0j � ��, supu:ju� j�r L�(t; u; v) � supu:ju� 0j�r+�� L�(t; u; v), we can

replace  (ti�1) by  
0(ti�1) in the second argument of L(r)

� at the expense of increasing r by ��

(which will lead to the condition r > 2�� + �� diam�). The argument in the inf sup is convex

in the variables �i and concave (since linear) in the  0(ti) and veri�es the assumptions of the
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minimax theorem (see [Ro], Section 37 Corollary 37.3.1.) so that we may interchange the

order in which they are taken. Thus we obtain

P�;�0
�
max
0�i�n

��X( ti
�
)�  (ti)

�� � ��

�
�

X
x(k0)2��

��;�0(x(k0))1Ifjx(k0)� (t0)j���g

� sup
 0(t0);:::; 0(tn)

8ij 0(ti)� (ti)j���

exp

 
���1

nX
i=1

(ti � ti�1)L(r)
�

�
�
ti�1;  

0(ti�1);
 0(ti)� 0(ti�1)

ti�ti�1

�! (5:47)

The �rst factor in the last line is always less than one which implies (i) and is zero if j (t0)�
�(0)j > �� + �

p
d. This implies (ii).}

We now turn to the lower bound. Recall from (4.7) that ��;ti�1; (ti�1)( � ) = L�(ti�1;  (ti�1); � ).

Lemma 5.5: The notation is the same as in Lemma 5.4. Assume that the conditions of

Lemma 5.2, (ii), are veri�ed and set � � 2� � 2�diam�. De�ne the set

E�([0; T ]) =
n
 2 E([0; T ])

���  (t)� (t0)t�t0 2 ri( conv�) 8t 2 [0; T ];8t0 2 [0; T ]; t 6= t
0
o

(5:48)

Then, for any  in

B��2(�+�� diam�);
(�) \ E�([0; T ]) (5:49)

there exist positive constants c0 � c0( ) <1 such that, if �, �, and � are such that



2
� � + �� diam� and

p
2�T diam�+ �

p
d < �; (5:50)

the following holds:

� logP�;�0
�
max
0�i�n

��X( ti
�
)�  (ti)

�� � �

�

�

8>><>>:
�

nX
i=1

(ti � ti�1)L��
�
ti�1;  (ti�1);

 (ti)� (ti�1)
ti�ti�1

�
�Q

�
�S�;
=2(�); �; c0

�
if j (t0)� �0j � �

p
d

�1 otherwise
(5:51)

where

Q(S; �; c0) � 3n(��)2(� + #(S) diam�) + 3T (� + 2�K(S)) + 4n�c0 + � log(8d2 + 4) (5:52)

Proof: Obviously, for any % � �,

P�;�0
�
max
0�i�n

��X( ti
�
)�  (ti)

�� � �

�
� P�;�0

�
max
0�i�n

��X( ti
�
)�  (ti)

�� � %

�
(5:53)
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As will turn out, the generic term for which we shall want a lower bound is of the form:

T 0i � 1Ifjx(ki�1)� (ti�1)j�%g
X

x(ki)2��

nY
j=i

1Ifj(x(ki)� (ti))+ai;j j�%gP
(ki�1;ki)
�;ki�1

(x(ki�1); x(ki))

(5:54)

where, for each j = i; : : : ; n, ai;j 2 R
d is independent of fx(kj)gi�j�n. We shall however only

treat the term

Ti � 1Ifjx(ki�1)� (ti�1)j�%g
X

x(ki)2��

1Ifj(x(ki)� (ti))+aj�%gP
(ki�1;ki)
�;ki�1

(x(ki�1); x(ki)) (5:55)

for a 2 R
d an arbitrary constant, the extension of the resulting bound to T 0i being straightfor-

ward. Naturally our bound on Ti will be derived by means of Lemma 5.3. Let G denote the set

(5.49). Since  belongs to G it belongs in particular to B��2(�+�� diam�);
 and hence to �B�;
 .
Thus, under the assumptions (5.50), we may apply Lemma 5.3 with ` � � , S � �S�;
=2(�),
S 0 � �S�;�(�), and, in each time interval (ki�1; ki), choose z �  (ti�1) in (5.24).

Following the classical pattern of Cramer's type techniques, the lower bound will come

from `centering the variables' (i.e. introducing a Radon-Nikodym factor). For a given  2 G
let ��i � �

�
i

�
 (ti)� (ti�1)

ti�ti�1

�
, 1 � i � n, be de�ned through:�

��
�
i ;
 (ti)� (ti�1)

ti�ti�1

�
�L�(ti�1;  (ti�1); ���i ) = L��

�
ti�1;  (ti�1);

 (ti)� (ti�1)
ti�ti�1

�
(5:56)

Obviously the conditions in (5.50) imply that  (ti) 2 int( int��) for all 1 � i � n. The

point is that from this, Corollary 4.10, and the equivalence (ii), (iv) of Lemma 4.7 we can

conclude that there exists a positive constant c0 � c0( ) <1 such that:

max
1�i�n

j��i j < c0 (5:57)

We then rewrite Ti as
Ti = Ti;1Ti;2 (5:58)

where

Ti;1 � 1Ifjx(ki�1)� (ti�1)j�%g
X

x(ki)2��

e
(��i ;x(ki)� (ti))P

(ki�1;ki)
�;ki�1

(x(ki�1); x(ki)) (5:59)

Ti;2 � 1Ifjx(ki�1)� (ti�1)j�%g

�
X

x(ki)2��

e
(��i ;x(ki)� (ti))P

(ki�1;ki)
�;ki�1

(x(ki�1); x(ki))1Ifj(x(ki)� (ti))+aj�%gP
x(ki)2�� e

(��
i
;x(ki)� (ti))P

(ki�1;ki)
�;ki�1

(x(ki�1); x(ki))
e
�(��i ;x(ki)� (ti))

(5:60)
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We �rst prove a lower bound for the term

Ti;3 �1Ifjx(ki�1)� (ti�1)j�%g
�

X
x(ki)2��

1Ifj(x(ki)� (ti))+aj�%ge
(��i ;x(ki)� (ti))P

(ki�1;ki)
�;ki�1

(x(ki�1); x(ki))
(5:61)

Setting `i � ki � ki�1 and using (5.24),

Ti;3 �e�q(`i;jx(ki�1)� (ti�1)j)1Ifjx(ki�1)� (ti�1)j�%g
�

X
x(ki)2��

1Ifj(x(ki)� (ti))+aj�%ge
(��i ;x(ki)� (ti))

�
X

�(1)2�

� � �
X

�(`i�1)2�

`iY
l=1

e
f(0)� (ti�1; (ti�1);�(l))1If�(`i)2�g1I

�
x(ki)�x(ki�1)=�

P
`i

m=1
�(m)

	
(5:62)

We have,

1Ifjx(ki�1)� (ti�1)j�%g1I
�
x(ki)�x(ki�1)=�

P
`i

m=1
�(m)

	e(��i ;x(ki)� (ti))
�1Ifjx(ki�1)� (ti�1)j�%g1I�x(ki)�x(ki�1)=�P`i

m=1
�(m)

	e�%j��i j+(���i ;
P`i

m=1
�(m))�(��i ; (ti)� (ti�1))

(5:63)

Consequently,

Ti;3 �e�q(`i ;%)�%j�
�
i j1Ifjx(ki�1)� (ti�1)j�%g

�
X

�(1)2�

� � �
X

�(`i)2�

`iY
l=1

e
(���i ;�(l))e

f(0)� (ti�1; (ti�1);�(l))

� 1I����P`i

m=1
�(m)�( (ti)� (ti�1))+(x(ki�1)� (ti�1))+a

���%	
(5:64)

The same arguments applied to Ti;1 give

Ti;1 �e�q(`i ;%)�%j�
�
i j1Ifjx(ki�1)� (ti�1)j�%g

� e
�(��i ; (ti)� (ti�1))

`iY
l=1

X
�(l)2�

e
(���i ;�(l))e

f(0)� (ti�1; (ti�1);�(l))

=e�q(`i ;%)�%j�
�
i j1Ifjx(ki�1)� (ti�1)j�%ge

�`i

n�
���i ;

 (ti)� (ti�1)
ti�ti�1

�
� L�(ti�1;  (ti�1); ���i )

o
(5:65)

and, by de�nition of ��i ,

Ti;1 � e
�q(`i;%)�%j��i j1Ifjx(ki�1)� (ti�1)j�%ge

���1(ti�ti�1)L��
�
ti�1;  (ti�1);

 (ti)� (ti�1)
ti�ti�1

�
(5:66)
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which is precisely the form of the bound we need.

We now turn to the term Ti;2 and �rst write

Ti;2 �1Ifjx(ki�1)� (ti�1)j�%ge�%j�
�
i j

�
P
x(ki)2�� e

(��i ;x(ki)� (ti))P
(ki�1;ki)
�;ki�1

(x(ki�1); x(ki))1Ifj(x(ki)� (ti))+aj�%gP
x(ki)2�� e

(��
i
;x(ki)� (ti))P

(ki�1;ki)
�;ki�1

(x(ki�1); x(ki))

(5:67)

(5.64) allows to bound the numerator in (5.67) from above. Virtually the same arguments

allow to bound the denominator from above:X
x(ki)2��

e
(��i ;x(ki)� (ti))P

(ki�1;ki)
�;ki�1

(x(ki�1); x(ki))

� e
fq(`i ;%)+%j��i jg

`iY
l=1

X
�(l)2�

e
(���i ;�(l))+f

(0)
� (ti�1; (ti�1);�(l))

(5:68)

Combining these yields

Ti;2 �e�f2q(`i ;%)+3%j��i jg1Ifjx(ki�1)� (ti�1)j�%g

�
X

�(1)2�

� � �
X

�(`i)2�

`iY
l=1

e
(���i ;�(l))+f

(0)
� (ti�1; (ti�1);�(l))P

�(l)2� e
(���

i
;�(l))+f

(0)
� (ti�1; (ti�1);�(l))

� 1I����P`i

m=1
�(m)�( (ti)� (ti�1))+(x(ki�1)� (ti�1))+a

���%	
(5:69)

At this point (5.69) may be recast in the following form: let f�m;ig1�m�`i be a family of

i.i.d. r.v.'s taking values in � with law, �i, de�ned through (see (4.3))

�i(�) � �
��i
�;ti�1; (ti�1)

(�) =
e
(���i ;�)+f

(0)
� (ti�1; (ti�1);�)P

�2� e
(���

i
;�)+f

(0)
� (ti�1; (ti�1);�)

; 8� 2 � (5:70)

Set

�m;i = �m;i �  (ti)� (ti�1)
ti�ti�1

(5:71)

Si =

`iX
m=1

�m;i (5:72)

and let Ef�ig denote the expectation w.r.t. f�m;ig. Then (5.69) reads,

Ti;2 �e�f2q(`i ;%)+3%j��i jg1Ifjx(ki�1)� (ti�1)j�%gEf�ig1Ifj�Si+(x(ki�1)� (ti�1))+aj�%g (5:73)

Collecting (5.58), (5.66) and (5.73) we thus obtain

Ti � e
�&i���1(ti�ti�1)L��

�
ti�1;  (ti�1);

 (ti)� (ti�1)
ti�ti�1

�
� 1Ifjx(ki�1)� (ti�1)j�%gEf�ig1Ifj�Si+(x(ki�1)� (ti�1))+aj�%g

(5:74)
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where

&i � 3q(`i; %) + 4%j��i j (5:75)

We are now in a position to deal with the r.h.s. of (5.21). Applying (5.74) to Tn gives rise to

a term of the form T 0n�1 (see de�nition (5.54)) with an�1;n�1 = 0 and an�1;n = �Sn. The

second iteration step thus yields

1Ifjx(kn�2)� (tn�2)j�%g
X

x(kn�1)2��

1Ifjx(kn�1)� (tn�1)j�%gP
(kn�2;kn�1)
�;kn�2

(x(kn�2); x(kn�1))

�
X

x(kn)2��

1Ifjx(kn)� (tn)j�%gP
(kn�1;kn)
�;kn�1

(x(kn�1); x(kn))

�e
�(&n+&n�1)���1

Pn

i=n�1
(ti�ti�1)L��

�
ti�1;  (ti�1);

 (ti)� (ti�1)
ti�ti�1

�
1Ifjx(kn�2)� (tn�2)j�%g

� Ef�n�1g1Ifj�Sn�1+(x(kn�2)� (tn�2))j�%gEf�ng1Ifj�(Sn�1+Sn)+(x(kn�2)� (tn�2))j�%g
(5:76)

and gradually, setting

ai;j =

�
0 if j = i

�(Sj+1 + � � � + Sn) if i+ 1 � j � n
(5:77)

in (5.54) at step i, we obtain,

P�;�0
�
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0�i�n

��X( ti
�
)�  (ti)

�� � %

�

� e
� 1
�
eQ� 1

�

Pn

i=1
(ti�ti�1)L��

�
ti�1;  (ti�1);

 (ti)� (ti�1)
ti�ti�1

�
�

X
x(t0)2��

��;�0(x(k0))1Ifjx(k0)� (t0)j�%g

� Ef�1g1Ifj�S1+(x(k0)� (t0))j�%g : : : Ef�ng1Ifj�(S1+���+Sn)+(x(k0)� (t0))j�%g

= Re
� 1
�
eQ� 1

�

P
n

i=1
(ti�ti�1)L��

�
ti�1;  (ti�1);

 (ti)� (ti�1)
ti�ti�1

�
(5:78)

where eQ � �

nX
i=1

&i (5:79)

R �
X

x(t0)2��

��;�0(x(k0))1Ifjx(k0)� (t0)j�%gEf�g1Ifj�(S1+���+Sn)+(x(k0)� (t0))j�%g (5:80)

and Ef�g denotes the expectation w.r.t. the joint law of fSig1�i�n. We are left to estimate
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R. Assume that % � �

p
d. Then

R �
X

x(t0)2��

��;�0(x(k0))1Ifjx(k0)� (t0)j��
p
dgEf�g1IfjS1+���+Snj���1(%��pd)g

= 1

jfx2��jjx��0j��
p
dgj

X
x(t0):jx(k0)��0j��

p
d

1Ifjx(k0)� (t0)j��
p
dgEf�g1IfjS1+���+Snj���1(%��pd)g

� 1
4d2+1

1Ifjx(k0)� (t0)j��
p
dgEf�g1IfjS1+���+Snj���1(%��pd)g

(5:81)

for any x(k0) 2 fx 2 �� j jx� �0j � �
p
dg. Since[

x(k0)2fx2��jjx��0j��
p
dg

fy 2 R
d j jy � x(k0)j � �

p
dg � fy 2 R

d j jy � �0j � �

p
dg (5:82)

then

R �

8><>:
1

4d2+1
Ef�g1IfjS1+���+Snj���1(%��pd)g if j (t0)� �0j � �

p
d

0 otherwise

(5:83)

and it remains to estimate the expectation. But this is immediate once observed that, re-

calling (5.56) and combining Lemma 4.4, (iii), together with the equivalence (i) , (iii) of

Lemma 4.7 we have, for all 1 � m � `i,

E �i�m;i = r��;ti�1; (ti�1)(v)jv=���i =
 (ti)� (ti�1)

ti�ti�1
(5:84)

and
E �i�m;i = 0

E �i

���m;i��2 = ���;ti�1; (ti�1)(v)jv=���i
(5:85)

De�ning

�
2 � �

2(f (ti)g; f��i g) = T max
1�i�n

���;ti�1; (ti�1)(v)jv=���i (5:86)

Moreover,

�
2 � T ( diam�)2 (5:87)

Hence, by independence and Chebyshev's inequality

Ef�g1IfjS1+���+Snj���1(%��pd)g = 1� Ef�g1IfjS1+���+Snj>��1(%��pd)g

� 1�
�
�(%� �

p
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�2
Ef�g (S1 + � � �+ Sn)
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� 1�
�
�(%� �

p
d)�1

�2 nX
i=1

`i���;ti�1; (ti�1)(v)jv=���i

� 1� �

�
%� �

p
d

��2
�
2(f (ti)g; f��i g)

� 1� �T ( diam�)2
�
%� �

p
d

��2
� 1

2

(5:88)
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whenever % �
p
2�T diam� + �

p
d. For such a %, inserting (5.88) in (5.83) and combining

with (5.78) proves Lemma 5.5 since eQ � Q
�
�S�;
=2(�); �;max1�i�n j���i j

�
and since by (5.57),

sup
 2G

Q

�
�S�;
=2(�); �; max

1�i�n
j���i j

�
� Q( �S�;
=2(�); �; c0) (5:89)

(see de�nitions (5.1), (5.23), and (5.57) as well as (5.75) and (5.79) for the �rst of the last

two inequalities). }

5.3: Proof of Proposition 3.2 (concluded).

To conclude the proofs of the upper and lower bounds, we need the following two lemmata

that will permit to replace the sums over ti by integrals.

Lemma 5.6: Recall that D = conv� and de�ne the sets

K([0; T ]) =
n
 2W ([0; T ])

��� _�(t) 2 D; for Lebesgue a.e. t 2 [0; T ]
o

K�([0; T ]) =
n
 2W ([0; T ])

��� _�(t) 2 riD; for Lebesgue a.e. t 2 [0; T ]
o (5:90)

With E([0; T ]) and E�([0; T ]) de�ned respectively in (3.1) and (5.48) we have:

K([0; T ]) = E([0; T ])

K�([0; T ]) � E�([0; T ])
(5:91)

Proof: The proof is elementary. Recall that by assumption D is a bounded closed and

convex subset of Rd . For any bounded convex subset A in Rd and any  2 C([0; T ]) consider
the following three conditions:

(i)  2 L1([0; T ]) and _ (t) 2 A for Lebesgue a.e. t 2 [0; T ].

(ii)  2 L1([0; T ]) and 1
t�t0

R t
t0 ds

_ (s) 2 A 8t 2 [0; T ], 8t0 2 [0; T ], t 6= t
0.

(iii)
 (t)� (t0)

t�t0 2 A 8t 2 [0; T ], 8t0 2 [0; T ], t 6= t
0.

Then the following conclusions hold:

(iv) If A = D or if A = riD then (ii), (iii)

(v) If A = D or if A = riD then (i)) (ii)

(vi) If A = D then (ii), (i)
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We �rst prove (iv): that (ii)) (iii) is immediate whereas since A is bounded  is Lipshitz

and, in particular, absolutely continuous, yielding (iii) ) (ii). Whenever A is a closed or

opened set, the implication (i) ) (ii) results from it's convexity and the integrability of _ :

this proves (v). If in addition A is closed then, by a standard result of real analysis, (ii)) (i)

(see e.g. [Ru], Theorem 1.40); this together with (v) yields (vi). Now (iv) together with (vi)

implies the �rst relation in (5.91) while (iv) together with (v) implies the second. The proof

is done.}

Lemma 5.7: Let S be any closed bounded subset of int( int��), and let ti, i = 1; : : : ; n be

as in Lemma 5.4.

(i) If  is in n
 2 E([0; T ])

���  (t) 2 S; 8t 2 [0; T ]
o

(5:92)

then, for each "0 > 0 there corresponds "1 > 0 such that if �� < "1,�����
nX
i=1

(ti � ti�1)L��
�
ti�1;  (ti�1);

 (ti)� (ti�1)
ti�ti�1

�
�
Z T

0

dtL�� (t;  (t); _ (t))
�����

�"0T + (� + #(S) diam�)n
(��)2

2

(5:93)

(ii) Let ti, i = 0; : : : ; n, n, �� and r be given as in Lemma 5.4. Assume that  0(ti) 2 R
d are

such that

j 0(ti)�  
0(ti�1)j � jti � ti�1jC; 8i = 1; : : : ; n (5:94)

for some constant 0 < C <1 and

dist ( 0(ti);�) � �� (5:95)

Let e (t), t 2 [0; T ] be the linear interpolation of the points  0(ti). Then, for each "0 > 0

there exists "1 > 0 (depending on r and C) such that, if �� < "1,

nX
i=1

(ti � ti�1)L(r)�
�

�
ti�1;  

0(ti�1);
 0(ti)� 0(ti�1)

ti�ti�1

�
�
Z T

0

dtL(r)�
� (t;  0(t); _ 0(t)) � �3"0T

(5:96)

Proof: We �rst prove (i). Recall that ���;ti�1; (ti�1)(�) = L�� (ti�1;  (ti�1); �) and � �
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max0�i�n �
�1jti+1 � tij as de�ned in (4.7) and (5.1). Let us write:

(ti � ti�1)L��
�
ti�1;  (ti�1);

 (ti)� (ti�1)
ti�ti�1

�
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dsL�� (s;  (s); _ (s))
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�
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�
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ti�ti�1

R ti
ti�1

ds
0 _ (s0)

�
� ���;ti�1; (ti�1)

�
_ (s)

��#

+

(Z ti

ti�1

ds

�
L��
�
ti�1;  (ti�1); _ (s)

�
�L��

�
s;  (s); _ (s)

��)

=

Z ti

ti�1

dsL�� (s;  (s); _ (s)) + [Ii] + fJig

(5:97)

where the last line de�nes the terms Ii and Ji. In order to bound Ji we use the decomposition

L��
�
ti�1;  (ti�1); _ (s)

�
�L��

�
s;  (s); _ (s)

�
=
h
L��
�
ti�1;  (ti�1); _ (s)

�
�L��

�
s;  (ti�1); _ (s)

�i
+
h
L��
�
s;  (ti�1); _ (s)

�
�L��

�
s;  (s); _ (s)

�i (5:98)

and, applying Lemma 4.9, obtain���L�� �ti�1;  (ti�1); _ (s)��L�� �s;  (s); _ (s)���� ��js� ti�1j+ #j (s)�  (ti�1)j

�(� + #diam�)js� ti�1j
(5:99)

where # � #(S). Thus,

jJij � (�+#diam�)

Z ti

ti�1

dsjs�ti�1j = (�+#diam�)
(ti�ti�1)2

2
� (�+#diam�)

(��)2

2
(5:100)

We now bound Ii. By Lemma 4.6, (i), ��
�;ti�1; (ti�1)

is convex and lower semi-continuous.

Convexity implies Ii � 0. For an upper bound note �rst that by Lebesgue's Theorem: to

each "2 > 0 there corresponds "1 > 0 such that, for Lebesgue almost every s 2 [t0; t],����Z t

t0
ds
0 _ (s0)� _ (s)

���� < "2jt0 � tj (5:101)

for all [t0; t] � [0; T ] verifying s 2 [t0; t] and jt � t
0j < "1

7. Next, by de�nition of lower semi-

continuity, for any x 2 R
d we have: to each "0 > 0 there corresponds "2 > 0 such that if

7the set of s's for which (5.99) holds is usually called the Lebesgue set of  .
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jx � yj < "2, then ���;ti�1; (ti�1)(x) � ���;ti�1; (ti�1)(y) � "0. Thus, for each "0 > 0, if � is

su�ciently small so that �� < "1 we have, on the Lebesgue set of  :

���;ti�1; (ti�1)

�
1

ti�ti�1

R ti
ti�1

ds
0 _ (s0)

�
� ���;ti�1; (ti�1)

�
_ (s)

�
� "0 (5:102)

and

Ii � �(ti � ti�1)"0 (5:103)

Inserting our bounds on Ii and Ji in (5.97) and adding up yields�����
nX
i=1

(ti � ti�1)L��
�
ti�1;  (ti�1);

 (ti)� (ti�1)
ti�ti�1

�
�
Z �[T� ]

0

dtL�� (t;  (t); _ (t))
�����

�"0T + (� + #(S) diam�)n
(��)2

2

(5:104)

But
���R T�[T� ] dtL�� (t;  (t); _ (t))��� � �const(S) so that (5.93) obtains upon minor modi�cation of

"0.

To prove (ii) we note that since e is linear between the points ti, in the analogue of (5.97)

the term corresponding to [Ii] is absent, i.e. we have

(ti � ti�1)L(r)�
�

�
ti�1;  

0(ti�1);
 0(ti)� 0(ti�1)

ti�ti�1

�
=

Z ti

ti�1

dsL(r)�
� (s; e (s); _e (s))

+

Z ti

ti�1

ds

�
L(r)�
�

�
ti�1; e (ti�1); _e (s)��L�� �s; e (s); _e (s)��

(5:105)

To bound the second term in (5.105) we use the same decomposition as in (5.98). However,

instead of the Lipshitz bounds (5.99) we use the lower semi-continuity property of L(r)�
�

(see Lemma 4.12) together with the fact that e is Lipshitz by (5.94), it follows from the

decomposition (5.98) that: for each "0 there corresponds "
0
1 > 0 such that if �� < "

0
1,

L(r)�
�

�
ti�1;  (ti�1); _ (s)

�
�L(r)�

�

�
s;  (s); _ (s)

�
� �2"0 (5:106)

The lemma is proven. }

Proof of the lower bound (3.5): : Given any 
 > 0 we may choose � and � depending on

� in such a way that �rstly, both � # 0 and �� # 0 as � # 0 (hence � # 0 as � # 0), and secondly,

that the conditions (5.50) of Lemma 5.5 as well as those of Lemma 5.2, (ii), are satis�ed. It

then easily follows from the �rst relation of Lemma 5.6 that[

>0

[
�>0

B��2(�+�� diam�);
(�) = B�(�) \ D�([0; T ]) (5:107)
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Setting eG � B�(�) \D�([0; T ]) \ E�([0; T ])

G � B�(�) \D�([0; T ]) \ K�([0; T ])
(5:108)

and using now the second relation of Lemma 5.6, we moreover have G � eG. Let  be

any path in eG. Then obviously, 9
0 > 0 s.t. 80 < 
 < 
0 90 < �0 s.t. 8� < �0,  2
B��2(�+�� diam�);
(�)\E�([0; T ]). Thus, given 
 < 
0 and � < �0 we may combine the bound

(5.51) of Lemma 5.5 and Lemma 5.7, (i), to write, under the assumptions of Lemma 5.7, (i),

and choosing S � �S�;
=2(�) therein,

� logP�;�0
�
max
0�i�n

��X( ti
�
)�  (ti)

�� � �

�
� �

Z T

0

dtL�� (t;  (t); _ (t))� eQ �"0; �S�;
=2(�); �; c0�
(5:109)

where

eQ �"0; �S�;
=2(�); �; c0� � Q
�
�S�;
=2(�); �; c0

�
+ "0T +(�+#( �S�;
=2(�)) diam�)n

(��)2

2
(5:110)

Making use of Lemma 5.2, (ii), (5.109) entails

� log eP�;�0(B�(�)) � �
Z T

0

dtL�� (t;  (t); _ (t))� eQ �"0; �S�;
=2(�); �; c0� (5:111)

The next step consists in taking the limit as � # 0. This will be done with the help of the

following two observations. On the one hand, by Lemma 4.5, L�� is positive and bounded on

R
+ � int��� ( conv�). Since, for all � su�ciently small,  (t) is contained for all 0 � t � T in

a compact subset of int( int��), we have, by Lemma 4.9 (v) that L�� (t;  (t); _ (t)) converges
uniformly in t 2 [0; T ]. Hence, (for each 0 < 
 < 
0) ,

lim
�!0

Z T

0

dtL�� (t;  (t); _ (t)) =
Z T

0

dt lim
�!0

L�� (t;  (t); _ (t)) =
Z T

0

dtL�(t;  (t); _ (t)) (5:112)

On the other hand, for any  2 eG and any 
 < 
0, c1 � c1( ) < 1 and #( �S�;
=2(�)) < 1.

Thus, given our choice of the parameters � and � , eQ �"0; �S�;
=2(�); �; c0� converges to zero

when taking the limit � # 0 �rst and the limit "0 # 0 next.

Combining the previous two observations and passing to the limit � # 0 in (5.111) we

obtain that

lim inf
�!0

� log eP�;�0(B�(�)) �
8>><>>:
�
Z T

0

dtL�(t;  (t); _ (t)) if  (t0) = �0

�1 otherwise

(5:113)
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and since this is true for any  2 eG,
lim inf
�!0

� log eP�;�0(B�(�)) �� inf
 2eG:

 (t0)=�0

Z T

0

dtL�(t;  (t); _ (t))

�� inf
 2G:

 (t0)=�0

Z T

0

dtL�(t;  (t); _ (t))
(5:114)

where we used that G � eG in the last line and where the in�mum is +1 vacuously. But by

Lemma 4.15, taking F = B�(�) \ D�([0; T ]) therein,

inf
 2G:

 (t0)=�0

Z T

0

dtL�(t;  (t); _ (t)) = inf
 2F:

 (t0)=�0

Z T

0

dtL�(t;  (t); _ (t)) (5:115)

and so

lim inf
�!0

� log eP�;�0(B�(�)) � � inf
 2B�(�)\D�([0;T ]):

 (t0)=�0

Z T

0

dtL�(t;  (t); _ (t)) (5:116)

The lower bound is proven. }

Proof of the upper bound (3.4): To prove the upper bound we �rst combine Lemmata

5.2 and 5.4. to get (with the notation of Lemma 5.4)

� log eP�;�0 � �B�(�)�
�� inf

 2 �B�;0(�):
j (t0)��0j���+�

p
d

inf
 0(t):8n

i=0
j 0(ti)� (ti)j���

nX
i=1

(ti � ti�1)L(r)�
�

�
ti�1;  

0(ti�1);
 0(ti)� 0(ti�1)

ti�ti�1

�
(5:117)

Next we want to use Lemma 5.7 (ii) to replace sum in the right hand side by an integral.

Before doing this, we observe, however, that the second in�mum in (5.117) will always be

realized for  0(ti)'s for which
 0(ti)� 0(ti�1)

ti�ti�1
2 D (otherwise the in�mum takes the value

+1). Thus not only can we use Lemma 5.7 (ii) with C = diam�, but we actually have thate 2 E([0; T ]). Therefore we may �rst use (5.96) and then replace the in�mum over the values

 (ti) by an in�mum over functions e (t) 2 E([0; T ]) that are piecewise linear (p.l.) between

the times ti , i.e. if �� < "1,

� log eP�;�0 � �B�(�)�
�� inf

 2 �B�;0(�):
j (t0)��0j���+�

p
d

infe (t)2E([0;T ]);p:l:
8n
i=0

je (ti)� (ti)j���

Z T

0

dtL(r)�
�

�
t; e (t); _e (t)�� 3"0T (5:118)
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Finally (using convexity arguments), the two in�ma can be combined to a single in�mum

over a slightly enlarged set:

� log eP�;�0 � �B�(�)� � � inf
 2 �B

�+��
(�):

j (t0)��0j���+�
p
d

8t2[0;T ]; dist( (t);�)���

Z T

0

dtL(r)�
�

�
t;  (t); _ (t)

�
� 3"0T

(5:119)

To conclude the proof of the upper bound what is left to do is to pass to the limits � # 0,
"0 # 0, and r # 0 in (5.119). Note that by Lemma 4.12, for all r > 0, the function L(r)�

� (t; u; v�)

is uniformly bounded for all t 2 R
+
; v
� 2 D, and u such that dist(u;�) � r=2. Moreover, on

the same set it converges uniformly to L(r)�(t; u; v�). Thus we can use that

inf
 2 �B

�+��
(�):

j (t0)��0j���+�
p
d

8t2[0;T ]; dist( (t);�)���

Z T

0

dtL(r)�
�

�
t;  (t); _ (t)

�
� inf

 2 �B
�+��

(�):

j (t0)��0j���+�
p
d

8t2[0;T ]; dist( (t);�)���

Z T

0

dtL(r)�
�
t;  (t); _ (t)

�

� sup
 2 �B�+��(�):

j (t0)��0j���+�
p
d

8t2[0;T ]; dist( (t);�)���

Z T

0

dt

h
L(r)�
�

�
t;  (t); _ (t)

�
�L(r)�

�
t;  (t); _ (t)

�i

(5:120)

But

sup
 2 �B

�+��
(�):

j (t0)��0j���+�
p
d

8t2[0;T ]; dist( (t);�)���

Z T

0

dt

h
L(r)�
�

�
t;  (t); _ (t)

�
�L(r)�

�
t;  (t); _ (t)

�i

� sup
 2 �B�+r=2(�):
j (t0)��0j�r=2

8t2[0;T ]; dist( (t);�)�r=2

Z T

0

dt

h
L(r)�
�

�
t;  (t); _ (t)

�
�L(r)�

�
t;  (t); _ (t)

�i (5:121)

By Lemma 4.13 and dominated convergence, the last integral in (5.121) converges to zero as

� # 0 uniformly for any  2 �B�+r=2(�), and so (5.121) converges to zero. Recall from the

proof of the lower bound that � and � were chosen such that both �� # 0 and � # 0 as � # 0.
Hence �� # 0 as � # 0. Taking the limit � # 0 �rst and "0 # 0 in (5.119) yields that, for any

r > 0,

lim sup
�#0

� log eP�;�0 � �B�(�)� � � inf
 2 �B�(�):
 (t0)=�0

8t2[0;T ]; (t)2�

Z T

0

dtL(r)�
�
t;  (t); _ (t)

�
(5:122)

Finally we must pass to the limit as r # 0. Here the argument is identical to the one given in

[DEW]. It basically relies on Theorem 3.3 in [WF] which states that if I is a rate function
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with compact level sets K(s) � f : I( ) � sg, than an upper bound of the form (5.122)

with rate function I is equivalent to the statement that for any c; c0 > 0, there is �0 > 0 such

that for all � � �0,

P�;�0 ( dist( ;K(s)) � e
� 1
� (s�c

0) (5:123)

Therefore, it is enough to show that with K(r)( ) �
R T
0
dtL(r)�

�
t;  (t); _ (t)

�
, and �K( ) �R T

0
dt �L�

�
t;  (t); _ (t)

�
, for any s; c; c0 > 0, there exists r > 0 such that

K
(r)(s� c) � f : dist( ;K(s)) � c

0g (5:124)

which is established in Proposition 2.10 of [DEW]. This gives the upper bound of Proposition

3.2.}
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