9 research outputs found

    ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks

    Get PDF
    published_or_final_versio

    Bacterial regulon modeling and prediction based on systematic \u3ci\u3ecis\u3c/i\u3e regulatory motif analyses

    Get PDF
    Regulons are the basic units of the response system in a bacterial cell, and each consists of a set of transcriptionally co-regulated operons. Regulon elucidation is the basis for studying the bacterial global transcriptional regulation network. In this study, we designed a novel co-regulation score between a pair of operons based on accurate operon identification and cis regulatory motif analyses, which can capture their co-regulation relationship much better than other scores. Taking full advantage of this discovery, we developed a new computational framework and built a novel graph model for regulon prediction. This model integrates the motif comparison and clustering and makes the regulon prediction problem substantially more solvable and accurate. To evaluate our prediction, a regulon coverage score was designed based on the documented regulons and their overlap with our prediction; and a modified Fisher Exact test was implemented to measure how well our predictions match the co-expressed modules derived from E. coli microarray gene-expression datasets collected under 466 conditions. The results indicate that our program consistently performed better than others in terms of the prediction accuracy. This suggests that our algorithms substantially improve the state-of-the-art, leading to a computational capability to reliably predict regulons for any bacteria

    An integrative method to decode regulatory logics in gene transcription

    Get PDF
    abstract: Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF–TF interactions that form TF logics in regulating target genes. By combining cis-regulatory logics and transcriptional kinetics into one single model framework, LogicTRN can naturally integrate dynamic gene expression data and TF-DNA-binding signals in order to identify the TF logics and to reconstruct the underlying TRNs. We evaluated the newly developed methodology using simulation, comparison and application studies, and the results not only show their consistence with existing knowledge, but also demonstrate its ability to accurately reconstruct TRNs in biological complex systems.The final version of this article, as published in Nature Communications, can be viewed online at: http://www.nature.com/articles/s41467-017-01193-

    Decoding the mechanisms underlying cell-fate decision-making during stem cell differentiation by random circuit perturbation.

    Get PDF
    Stem cells can precisely and robustly undergo cellular differentiation and lineage commitment, referred to as stemness. However, how the gene network underlying stemness regulation reliably specifies cell fates is not well understood. To address this question, we applied a recently developed computational method, random circuit perturbation (RACIPE), to a nine-component gene regulatory network (GRN) governing stemness, from which we identified robust gene states. Among them, four out of the five most probable gene states exhibit gene expression patterns observed in single mouse embryonic cells at 32-cell and 64-cell stages. These gene states can be robustly predicted by the stemness GRN but not by randomized versions of the stemness GRN. Strikingly, we found a hierarchical structure of the GRN with the Oct4/Cdx2 motif functioning as the first decision-making module followed by Gata6/Nanog. We propose that stem cell populations, instead of being viewed as all having a specific cellular state, can be regarded as a heterogeneous mixture including cells in various states. Upon perturbations by external signals, stem cells lose the capacity to access certain cellular states, thereby becoming differentiated. The new gene states and key parameters regulating transitions among gene states proposed by RACIPE can be used to guide experimental strategies to better understand differentiation and design reprogramming. The findings demonstrate that the functions of the stemness GRN is mainly determined by its well-evolved network topology rather than by detailed kinetic parameters

    An integrative method to decode regulatory logics in gene transcription

    Get PDF
    Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF-TF interactions that form TF logics in regulating target genes. By combining cis-regulatory logics and transcriptional kinetics into one single model framework, LogicTRN can naturally integrate dynamic gene expression data and TF-DNA binding signals in order to identify the TF logics and to reconstruct the underlying TRNs. We evaluated the newly developed methodology using simulation, comparison and application studies, and the results not only show their consistence with existing knowledge, but also demonstrate its ability to accurately reconstruct TRNs in biological complex systems.published_or_final_versio

    From Pioneer to Repressor: Bimodal foxd3 Activity Dynamically Remodels Neural Crest Regulatory Landscape In Vivo

    Get PDF
    The neural crest (NC) is a transient embryonic stem cell-like population characterized by its multipotency and broad developmental potential. Here, we perform NC-specific transcriptional and epigenomic profiling of foxd3-mutant cells in vivo to define the gene regulatory circuits controlling NC specification. Together with global binding analysis obtained by foxd3 biotin-ChIP and single cell profiles of foxd3-expressing premigratory NC, our analysis shows that, during early steps of NC formation, foxd3 acts globally as a pioneer factor to prime the onset of genes regulating NC specification and migration by re-arranging the chromatin landscape, opening cis-regulatory elements and reshuffling nucleosomes. Strikingly, foxd3 then gradually switches from an activator to its well-described role as a transcriptional repressor and potentially uses differential partners for each role. Taken together, these results demonstrate that foxd3 acts bimodally in the neural crest as a switch from "permissive" to "repressive" nucleosome and chromatin organization to maintain multipotency and define cell fates
    corecore