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I Abstract 

Understanding transcriptional regulation through 
computational analysis of single-cell transcriptomics 

 
Chee Yee Lim 

 

Gene expression is tightly regulated by complex transcriptional regulatory mechanisms to 

achieve specific expression patterns, which are essential to facilitate important biological 

processes such as embryonic development. Dysregulation of gene expression can lead to 

diseases such as cancers. A better understanding of the transcriptional regulation will therefore 

not only advance the understanding of fundamental biological processes, but also provide 

mechanistic insights into diseases.  

 

The earlier versions of high-throughput expression profiling techniques were limited to 

measuring average gene expression across large pools of cells. In contrast, recent 

technological improvements have made it possible to perform expression profiling in single 

cells. Single-cell expression profiling is able to capture heterogeneity among single cells, which 

is not possible in conventional bulk expression profiling. 

 

In my PhD, I focus on developing new algorithms, as well as benchmarking and utilising 

existing algorithms to study the transcriptomes of various biological systems using single-cell 

expression data. I have developed two different single-cell specific network inference 

algorithms, BTR and SPVAR, which are based on two different formalisms, Boolean and 

autoregression frameworks respectively. BTR was shown to be useful for improving existing 

Boolean models with single-cell expression data, while SPVAR was shown to be a 

conservative predictor of gene interactions using pseudotime-ordered single-cell expression 

data. 

 

In addition, I have obtained novel biological insights by analysing single-cell RNAseq data from 

the epiblast stem cells reprogramming and the leukaemia systems. Three different driver 

genes, namely Esrrb, Klf2 and GY118F, were shown to drive reprogramming of epiblast stem 

cells via different reprogramming routes. As for the leukaemia system, FLT3-ITD and IDH1-

R132H mutations were shown to interact with each other and potentially predispose some cells 

for developing acute myeloid leukaemia. 
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1 Introduction 

 

1.1 Transcriptomics and expression profiling 

 

The central dogma of molecular biology describes the information flow from stored genetic 

materials to functional biological units in most living organisms (Crick 1970). This flow of 

information starts with DNA, which acts as the permanent storage of genetic information. DNA 

then goes through transcription to produce RNAs, usually in the form of messenger RNAs 

(mRNAs), which act as the transient information transfer medium. Finally, the mRNAs get 

translated into proteins, which act as the functional biological units in various biological 

processes. Exceptions to the rules have been found with recent discoveries, such as the 

discovery of the non-coding RNAs. In humans, only about 3% of the genome encodes for 

proteins while up to 80% of the genome is found to be transcribed (Dunham et al. 2012). These 

transcripts include functional non-coding RNAs, such as microRNAs and long non-coding 

RNAs. In summary, studies performed over the years suggest that both RNAs and proteins 

represent important functional biological units in facilitating biological processes. 

 

From DNA to RNA to protein, transcription and translation represent two key stages where the 

rate and specificity of the flow of information can be regulated to achieve specific biological 

goals, such as to control spatial and temporal gene expression. Transcriptional regulation is 

particularly interesting and has been widely studied, as this process gives rise to both non-

coding RNAs that have biological functions as well as coding RNAs that lead to protein 

productions. Studying transcriptional regulation has allowed a better understanding of 

developmental processes, such as in embryonic (Boyer et al. 2005; Xu et al. 2010) and blood 

development (Orkin & Zon 2008; Moignard et al. 2015); as well as disease developments, such 

as leukaemia (Tenen et al. 1997; Suzuki et al. 2009). 
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Figure 1.1   Overview of major stages of transcriptional regulation.  
The diagrams show the major processes involved in each stage. Note that these processes do not occur in distinct stages, but with substantial 
crosstalks among the stages. Only mechanisms for lncRNA are used for illustrating post-transcriptional regulation due to space constraint. [Figure 
adapted from (Dulac 2010; Quia n.d.; CK-12 n.d.; BioCat n.d.; Wang & Chang 2011)] 
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1.1.1 Mechanisms of transcriptional regulations 

 

The eukaryotic transcription of a gene is regulated in multiple stages (Figure 1.1), which are 

coordinated by many families of proteins. Note that for explanation purpose, the transcriptional 

regulation processes are described in distinct stages, but substantial crosstalks occur among 

the stages in reality. The first stage of transcription involves changing the state of chromatin. 

For inactive genes that are not transcribing, the local DNA around the genes is usually tightly 

compacted to prevent transcription by hindering protein access to the DNA (Grunstein 1990). 

This compaction of DNA is achieved with the help of histone proteins, which allow the DNA 

molecule to bind around the histone proteins. This protein-DNA complex forms a nucleosome 

subunit which in turn constitutes the chromatin. As the DNA enclosed in a nucleosome is 

generally transcriptionally repressed, large chromatin remodelling complexes, such as 

SWI/SNF family remodelers, are required to reposition and remove nucleosomes (Clapier & 

Cairns 2009). In addition, some chromatin remodelling complexes also catalyse the swapping 

of typical histone proteins with specific histone protein variants, such as the replacement of 

H2A histone protein by H2A.Z histone protein (Wu et al. 2005). H2A.Z is found to act as a 

buffer against gene silencing caused by the spread of heterochromatin proteins (Meneghini et 

al. 2003). Lastly, both the DNA and the histone proteins in the chromatin are usually modified 

to contain transcriptional signals such as methylation, phosphorylation and acetylation. The 

most well studied signal is the acetylation of histone by histone acetyltransferases (HATs) 

(Sterner & Berger 2000). HATs introduce acetyl groups to lysine residues in the histone, which 

neutralises the positive charge on histone tails. This process leads to the destabilisation of the 

chromatin structure which promotes transcription. 

 

The second stage involves the binding of transcription factors, which can be activators or 

repressors, to the enhancer and promoter regions of the genes. Enhancer regions are defined 

as cis-acting transcriptional regulating DNA sequences that is independent of their orientation 

and distance relative to the transcriptional start site in a gene (Blackwood & Kadonaga 1998). 

In contrast, promoter regions, which are also cis-acting transcriptional regulating DNA 

sequences, are located immediately upstream of a gene. Each gene can possess multiple 

enhancer regions that contributes cumulatively to the spatial and temporal regulation of the 

gene, which also enables cell type-specific and development stage-specific expression of the 

gene. Transcription factors are classified into different families, such as SOX proteins and POU 

factors, that contain different binding domains that give rise to DNA sequence and protein 

binding specificity (Reményi et al. 2004). These transcription factors regulate transcription in a 
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combinatorial fashion where multiple proteins act together in the form of a complex. The 

activation of transcription is achieved by promoting the recruitment and the establishment of 

the transcription complex, which contains a RNA polymerase at its core. In contrast, the 

inhibition of transcription can be achieved either by competitive binding between a repressor 

and an activator, or by the repressor binding directly to the activator protein to inhibit its activity 

(Latchman 1996).  

 

Transcription occurs during the third stage, where a copy of RNA molecule which is 

complementary to the DNA molecule is created (Paule & White 2000). The transcription 

complex responsible for the process is made up of multiple proteins, which includes DNA 

helicases that unwind the two DNA strands, DNA-binding proteins that hold onto the DNA, and 

a RNA polymerase that synthesises the RNA. There are three stages in the transcription 

process, namely the initiation, elongation and termination stage. Each of these stages is further 

regulated by multiple proteins. For example, the mediator proteins promote transcription 

initiation by interacting with transcription initiation factors, such as TFIIE and TFIIH (Esnault et 

al. 2008). These transcription initiation factors are essential for maintaining the stability of the 

transcription complex to prevent abortive initiation (Saunders et al. 2006). In addition, histone 

acetylation is shown to increase the rate of transition from initiation to elongation by promoting 

RNA polymerase II escape from promoter (Stasevich et al. 2014). Transcription has also been 

observed to be paused during the elongation stage, possibly due to hindrance from 

nucleosomes (Core et al. 2008). The transcription process then continues until being 

terminated when the transcription complex arrives at a series of transcriptional termination 

signals, such as the transcription termination factor (TTF)-I that binds to the 3’ end of a gene 

(Sander & Grummt 1997). The transcribed mRNAs then undergo several pre-processing steps 

that are regulated, such as splicing and polyadenylation, to yield the final mature mRNAs 

(Moore & Proudfoot 2009). 

 

The fourth stage is the post-transcriptional regulation, which usually includes non-protein 

coding RNAs such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miRNAs 

consist of multiple families of 21-bp long RNAs that regulate gene expression by partnering 

with proteins, such as AGO proteins, to form ribonucleoprotein complexes (Peters & Meister 

2007). miRNAs regulate gene expression via multiple ways, such as degrading the mRNAs by 

inducing deadenylation (Wu et al. 2006), inhibiting mRNA translation by interacting with the 5’ 

cap and the ribosomes (Pillai et al. 2005; Chendrimada et al. 2007), or by inducing proteolysis 

in proteins that are being translated (Nottrott et al. 2006). In contrast, lncRNAs, which have 
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only been studied in details recently, are RNAs that are longer than 200 bp and do not code 

for proteins [See review (Rinn & Chang 2012)]. Together with protein partners, lncRNAs 

regulate gene expression through three major ways: by acting as a decoy to competitively 

occupy transcription factors (Kino et al. 2010), by acting as a scaffold to recruit multiple proteins 

into forming complexes (Spitale et al. 2011), and by targeting other gene regulating proteins 

to specific genomic regions (Jeon & Lee 2011). 

 

Lastly, the genes finally lead to protein productions via mRNAs after going through the 

multistage transcriptional regulation process. It should be noted that while some transcriptional 

regulators mentioned here represent core machinery that is commonly used in many cell types 

and biological processes, most transcriptional regulators are specific to certain cell types and 

biological processes. It is this transcriptional specificity that helps in driving the derivation of 

diverse cell types from the same genetic material in a multicellular organism. Therefore in order 

to dissect the biological mechanisms underlying any developmental process, it is important to 

understand what are the target genes of the transcriptional regulators and how they regulate 

a specific developmental process.  

 

1.1.2 Variability in gene expression 

 

The high variability of gene expression in single cells is widely known before the development 

of high-throughput single-cell expression profiling techniques [See review (Raj & van 

Oudenaarden 2008)]. This variability exists even when the cells have the same genetic identity 

and are cultured under the same environmental condition. The exact causes of this 

stochasticity are unknown, but studies suggest that the noise in gene expression is likely to be 

due to transcriptional regulatory mechanisms, such as the regulations exerted by the chromatin 

state and the transcription factors (Becskei et al. 2005; Murphy et al. 2007). Genes were 

observed to be transcribed in a burst-like fashion, in which the genes are randomly switching 

between active and inactive states (Figure 1.2). The transcriptional burst contributes to 

fluctuations in gene expression values due to the random time intervals between transcriptional 

bursts. Interestingly, studies found that genes which exhibit the same noise signature are 

typically found in the same pathways or biological processes (Bengtsson et al. 2005; Sigal et 

al. 2006). Therefore, it is possible to potentially locate genes involved in the same biological 

process by examining correlations in the noise signature between genes. 
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Figure 1.2   Current understanding of the noise at the transcript and protein levels.  
(A) Changes in the transcript level over time due to fluctuations between on and off state of 
gene expression. (B) Changes in the protein level over time due to translation and degradation. 
(C) Changes in the transcript level of target gene where the gene is only expressed when 
bound by the protein encoded by the gene discussed in (A) and (B). [Figure adapted from 
(Eldar & Elowitz 2010)] 

 

The stochasticity discussed above was in terms of the variability observed in each individual 

gene. Studies have also been done to study the variability of gene expressions in a network of 

genes. They have found that in general noise in the upstream gene gets amplified along a 

gene cascade, but a long gene cascade can dampen rapid fluctuations in the expression of 

the upstream gene (Rosenfeld et al. 2005; Hooshangi et al. 2005). In addition, negative 

feedback in the gene network helps reducing noise, while positive feedback acts as a genetic 

switch in which the stochastic noise can sometimes flip the gene between the bi-stable state 

of an “on” state and an “off” state (Hasty et al. 2000; Austin et al. 2006). 

 

The variability in a biological system is expected to be both beneficial and detrimental to 

biological processes. The reason for variability to be detrimental is easy to understand, as a 

noisy system will exhibit random behaviours and therefore make the system unreliable. 

However, variability can also be beneficial as it enables probabilistic differentiation of cells that 

are identical otherwise. Beneficial variability has been demonstrated in the development of 

olfactory system in mice (Vassar et al. 1993; Tsuboi et al. 1999). In order to develop the ability 

to distinguish many odours, each olfactory neuron randomly expresses a specific odorant 

A 

B 

C 
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receptor in a mutually exclusive fashion. Variability has also shown to be important for the 

blood development (Hume 2000). A study by (Chang et al. 2008) found that variability in Sca-

1 protein in each individual cell correlates strongly with the probability of the cell developing 

into either erythroid or myeloid lineage. In addition, variability has been found to be important 

for early mouse embryo development (Yamanaka et al. 2010; Morris et al. 2010). Cells in inner 

cell mass have been shown to decide their cell fates through a stochastic process with a 

lineage bias. 

 

1.1.3 Expression profiling tools 

 

Many high-throughput expression profiling techniques have been developed, which include 

multiplex quantitative polymerase chain reaction (qPCR), microarray and RNA sequencing 

(RNAseq). However, the earlier versions of high-throughput expression profiling techniques 

were limited to measuring average gene expression across large pools of cells. In contrast, 

recent technological improvements have made it possible to perform expression profiling in 

single cells [See reviews (Shapiro et al. 2013; Wang & Song 2017)]. Protocols for the single-

cell equivalent of microarray (Ramos et al. 2006), qPCR (Ståhlberg & Bengtsson 2010) and 

RNAseq (Tang et al. 2009) have been developed. In particular, single-cell RNAseq has been 

adopted widely due to the advantages of having absolute quantification and the ability to detect 

new isoforms. Multiple new sequencing library construction methods for single-cell RNAseq 

have been developed, which include Smart-seq2 (Picelli et al. 2014) and Drop-seq (Macosko 

et al. 2015) (Figure 1.3). New technology such as Drop-seq allows single-cell RNAseq to be 

scaled up to thousands of cells in a cost-effective manner. 

 

One of the key advantages of single-cell expression profiling is that it enables the analysis of 

cell subpopulations that are rare in number, such as tissue-specific or cancer stem cells. The 

use of non-single-cell expression profiling techniques will result in the averaging of expression 

values across all cell subpopulations present in the samples, therefore masking any 

heterogeneity among cells present within the samples. The use of single-cell expression 

profiling has discovered the widespread presence of heterogeneity within seemingly 

homogenous cell populations, as evident in studies performed across different biological 

systems (Wilson et al. 2015; Buettner et al. 2015; Scialdone et al. 2016). In addition, single-

cell expression profiling enables the dissection of spatial and temporal resolutions of 

transcriptional changes during biological processes, such as in embryonic development (Yan 

et al. 2013; Moignard et al. 2013; Moignard et al. 2015).  
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Figure 1.3   Protocols for single-cell RNA sequencing. 
Tubes refer to manual isolation of cells using FACS or micropipetting into tubes. UMI, unique 
molecular identifiers; TS, template switching; SSS, second-strand synthesis; IVT-PCR, in 
vitro transcription polymerase chain reaction. [Figure adapted from (Kumar et al. 2017)] 

 

The gene expression variability observed in single-cell RNAseq is likely to be a combination of 

both biological and technical variabilities. The sources of biological variability are varied and 

complex (as discussed in Section 1.1.2), where some noises may contribute to the phenotypes 

observed in the system while other noises are not relevant to the phenotypes studied. To 

complicate matters further, technical variability also comes from multiple sources. Some 

sources of technical variability are common to all experiments, such as the batch effect where 

the samples are being prepared in multiple batches with slightly different external conditions. 

Other sources of technical variability are specific to single-cell expression profiling, where the 

two major sources being drop-outs and overdispersion (Kharchenko et al. 2014). These noises 

arise due to the low amount of input mRNAs in a single cell. Drop-outs refer to genes that are 

expressed, but their expressions are not captured in the expression profiles of some cells. The 

occurrence of drop-outs is due to the low efficiency of mRNA capture from each cell, which is 

around 10% (Ramskold et al. 2012; Hashimshony et al. 2012). In contrast, overdispersion 

refers to unusually low or high levels of expression recorded for a gene in some cells. The 
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causes of overdispersion are less clear, which may be due to the amplification bias of the PCR. 

The effects of both drop-outs and overdispersion can be partially mitigated by the use of 

improved protocols, such as the use of unique molecular identifiers (UMIs) (Islam et al. 2013). 
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1.2 Single-cell RNAseq bioinformatics tools 

 

Because single cell analysis commonly reports expression states for hundreds or thousands 

of individual cells, this unique property offers new opportunities for the development of 

algorithms that can utilise this increased data resolution and handle the increased 

computational complexity due to the data volume. In addition, these algorithms also need to 

account for the increased technical noise which is uniquely present in single-cell RNAseq. 

Many algorithms have been developed for various analyses of single-cell RNAseq, ranging 

from normalisation to differential gene expression analysis. A typical single-cell RNAseq 

bioinformatics processing pipeline is shown in Figure 1.4. 

 

 

Figure 1.4   Typical single-cell RNAseq bioinformatics processing pipeline. 
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1.2.1 Normalisation 

 

Normalisation is one of the most important pre-processing steps for all high-throughput 

expression profiling experiments. Normalisation aims to correct for the differences in library 

sizes across all samples in the experiments, so as to make them comparable in downstream 

analyses. The reads are also normalised by the gene lengths, as longer genes are more likely 

to have a higher number of reads detected. However, normalisation by gene lengths is usually 

not required for protocols that are biased for the 3’ ends of the mRNAs. 

 

Most normalisation methods that were initially used to normalise single-cell RNAseq data were 

originally developed for bulk RNAseq data. These methods include reads per million (RPM), 

DESeq normalisation (Anders & Huber 2010) and Trimmed Mean of M values normalisation 

(TMM) (Robinson & Oshlack 2010), which is implemented in edgeR (Robinson et al. 2010). 

RPM normalisation works by dividing reads from each gene with the total reads in each cell 

before multiplying by a million. This method may skew gene expression values if there are 

some genes that are both very highly expressed and differentially expressed among the cells. 

DESeq normalisation is done by scaling each cell with a size factor which is the median across 

genes on the ratio of each gene expression value to the gene’s geometric mean across cells. 

TMM normalisation is computed by calculating the weighted mean of log fold change between 

the test and reference samples, after excluding the most highly expressed genes and the 

genes with the largest log fold change. 

 

While both DESeq and TMM normalisation methods have been shown to be the best 

performing normalisation methods for bulk RNAseq (Dillies et al. 2013), both methods gave 

biased results for single-cell RNAseq (Vallejos et al. 2017). This is because single-cell RNAseq 

data possess very different technical properties from bulk RNAseq data. For example, the 

calculation of DESeq normalisation, in particular the use of geometric mean, is severely 

affected by the presence of zero inflation in the data due to drop-outs. Geometric mean is only 

clearly defined for genes with non-zero expression values across all cells. 

 

Recent methods have been developed specifically for the normalisation of single-cell RNAseq 

data, which include scran (L. Lun et al. 2016). Scran normalisation calculates normalisation 

factors on pooled cells by summing expression values across cells in a pool and divide by an 

average reference background value. Scran normalisation is more robust than other bulk-
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based methods in the presence of zero inflation and unbalanced differential expression of 

genes across samples (Vallejos et al. 2017). Other single-cell normalisation methods are 

typically implemented as part of a data analysis pipeline (Fan et al. 2016), which typically 

consists of differential expression analysis. Such implementation limits the flexibility of using 

the normalisation in combination with other analyses. Some examples of these methods are 

BASiCS (Vallejos et al. 2015) and SAMstrt (Katayama et al. 2013). Note that SAMstrt utilise 

spike-ins for normalisation, which may not be ideal as spike-ins may vary in ways that are 

independent from other genes (Vallejos et al. 2017). 

 

1.2.2 Confounding effects 

 

Confounding effect corrections attempt to account for or remove confounding differences 

among samples or cells that are not of biological interest. Technically, normalisation can be 

considered a type of confounding effect correction that corrects specifically for differences in 

library sizes. Unfortunately, there exists many other known and unknown factors that are 

contributing to undesired variability among samples or cells besides library sizes. These 

factors may be due to technical reasons such as the batches in which the samples are being 

processed, or due to biological reasons such as the cell cycle phases.  

 

The technical sources of undesired variability typically come from the variations in the 

experimental conditions due to changes in environment, equipment, reagents or personnel. 

These confounding effects, in particular those due to technical reasons, should be accounted 

for or corrected before performing further analyses. Otherwise, these confounding effects may 

lead to weak or invalid conclusions because the variability due to confounding effects is more 

influential than the variability due to biological factors of interest (Leek et al. 2010). Leek et al. 

found that in most high-throughput expression datasets, neither sample processing dates nor 

biological factors account for most of the variability observed, where most variability is shown 

to be caused by unknown sources. Recently, a study assessed the confounding effects in 

published single-cell RNAseq datasets and found high correlations between biological factors 

of interest and sequencing runs (Hicks et al. 2017). This result suggests that care should be 

taken when designing future experiments to reduce or prevent such correlations. This is 

because high correlations between biological factors of interest and technical variabilities 

cannot be easily corrected via post hoc bioinformatics corrections without proper experimental 

designs. 
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As for the biological sources of undesired variability, they usually come from the variations 

introduced by other known or unknown biological factors that are not of interest in the studies. 

One such example which is common in single-cell RNAseq is the differences in cell cycle 

phases. The differences in cell cycle phases may exert a very strong effect that mask the 

weaker signals from the differences in other biological processes. Algorithms have been 

developed to account for, such as the cyclone classifier (Scialdone et al. 2015); or to correct 

the cell cycle phase differences, such as single-cell latent variable model (scLVM) (Buettner 

et al. 2015). The cyclone classifier was trained on a single-cell RNAseq dataset where the cell 

cycle stage of each cell is known, and works by comparing the relative expressions of pairs of 

genes known to correspond to cell cycle phases. scLVM works by estimating a latent variable 

that best explained the variance observed in a set of known cell cycle genes, which is then 

used for variance decomposition to obtain the cell-cycle corrected expression data. Note that 

a further study suggests that sometimes the latent variable identified using scLVM may not be 

due to cell cycle, hence scLVM should be used with caution (McDavid et al. 2016).  

 

There are two steps in handling confounding effects. Firstly, the confounding effects should be 

identified and quantified using exploratory statistical analyses, such as principal component 

analysis (PCA) and hierarchical clustering. In terms of PCA, the top principal components that 

do not correlate well with biological factors of interest are likely to be explained by confounding 

factors. In terms of hierarchical clustering, it is expected that the major differences among 

samples should be due to biological factors of interest. In addition, there are also algorithms 

that are specifically designed to estimate hidden confounding factors that are not known in 

advance. Some examples of these algorithms include the surrogate variable analysis (SVA) 

(Leek & Storey 2007) and svLVM (Buettner et al. 2015). 

 

Once the confounding effects are identified and quantified, the confounding factors can then 

be either accounted for by including the factors in the formulation of models for downstream 

analyses, or corrected by regressing out the confounding effects to give a corrected expression 

data. Many existing algorithms support the accounting of confounding effects through the 

inclusion of additional factors into the models, which are typically linear models. For example, 

this can be done easily in differential expression analysis algorithms such as DESeq2. The 

correction of confounding factors is slightly more involved, but allows more freedom in 

downstream analyses as the corrected expression data can be used as it is. An example of 

such algorithms includes ComBat (Johnson et al. 2007) and PEER (Stegle et al. 2012). Note 
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that ComBat is designed for microarray and therefore may not be suitable for single-cell 

RNAseq. Lastly, it should be noted that confounding effects can only be accounted for or 

corrected if they do not correlate fully with the biological factors of interest.  

 

1.2.3 Dimensionality reduction 

 

In terms of dimensionality reduction, most existing methods can be readily applied to single-

cell RNAseq data. This is because single-cell RNAseq data is similar with other high-

dimensional data typically analysed with dimensionality reduction methods, which are usually 

very noisy and can have up to millions of dimensions in the field of text and image processing. 

The aim of dimensionality reduction analyses is to convert the high-dimensional data into a 

low-dimensional map while preserving as much information as possible. The type of 

information preserved is dependent on the dimensionality reduction methods used. Some 

methods emphasise dissimilarities among the data points by showing disjoint clusters (e.g. 

tSNE), while other methods emphasise similarities among the data points by connecting them 

into a continuous process (e.g. diffusion map). 

 

Dimensionality reduction methods can be separated into two major classes, namely linear and 

non-linear methods. An example of linear methods include principal component analysis (PCA) 

(Hotelling 1933); while examples of non-linear methods include kernel PCA (Scholkopf et al. 

1998), diffusion map (Nadler et al. 2005) and t-distributed stochastic neighbour embedding 

(tSNE) (van der Maaten & Hinton 2008). PCA calculates orthogonal principal components that 

maximise the explained variations in the data. As for the non-linear methods, they rely on the 

use of kernels to represent data points in a low-dimensional non-linear subspace. Similar with 

other statistical approaches, trade-off exists between linear and non-linear methods. While 

non-linear methods may offer more informative low-dimensional maps, they typically have 

more hyperparameters to tune that may be subjected to human bias. 

 

Most dimensionality reduction methods have been used to analyse single-cell RNAseq data, 

such as PCA and tSNE. The methods were used to either visualise the data for exploratory 

analysis, or to generate dimensionally reduced data for further analyses such as clustering or 

pseudotime inference. Examples of dimensionality reduction methods integrated as part of 

clustering or pseudotime inference algorithms will be discussed in the next sections. Among 

these dimensionality reduction methods, a new method, ZIFA, has been developed specifically 
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for single-cell RNAseq to take account of the zero-inflation due to drop-outs (Pierson & Yau 

2015). ZIFA is a non-linear method that extends factor analysisand has been shown to offer 

more robust results compared to PCA. 

 

1.2.4 Clustering 

 

Clustering methods represent an active field of new algorithm development for single-cell 

RNAseq. This is because the aim of most single-cell RNAseq experiments is to detect 

subpopulations of cells with different expression profiles in a cell population that is assumed 

to be homogeneous (Figure 1.5). In order to achieve this aim, clustering methods were used 

to cluster cells by their expression profiles into distinct groups. Most new clustering methods 

developed for single-cell RNAseq can be separated into two categories, namely hierarchical 

clustering-based and graph-based. The key difference between hierarchical and graph-based 

clustering is that hierarchical clustering assumes an underlying tree structure relationship that 

connects all clusters, but graph-based clustering is not constrainted to a tree structure and 

hence allows for a more complex relationship between the clusters. New hierarchical-based 

clustering methods usually use different distance metric and tree-building techniques. Some 

examples of these methods include ICGS (Olsson et al. 2016), SIMLR (Wang et al. 2017) and 

SC3 (Kiselev et al. 2017). ICGS performs iterative clustering with the HOPACH algorithm in 

order to select for final clusters with genes that are highly correlated within clusters but lowly 

correlated among clusters. SIMLR is based on a distance function that is a linear combination 

of several Gaussian kernels with different hyperparameters, where the weight of each kernel 

is learned from the expression data.  

 

Figure 1.5   Application of clustering in single-cell RNAseq. 
[Figure adapted from (Kumar et al. 2017)] 
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In graph-based clustering, each cell is considered a node, with the edge lengths between the 

cells being the similarity measures between the cells. Depending on the methods, the space 

where the cells are located in may not have any meaning, or it may be a dimensionally reduced 

space that relates to the similarity measures. Thresholding or preliminary clustering were 

usually applied to the fully connected graph of cells in order to get a sparser graph that prevents 

short-circuit edges that wrongly connect irrelevant pairs of cells (Balasubramanian et al. 2002). 

Clustering can then performed on the graph with community detection algorithms that search 

for groups of nodes in the graph (Fortunato 2009). Some examples of graph-based clustering 

designed for single-cell RNAseq include SNN-Cliq (Xu & Su 2015) and SPRING. SNN-Cliq 

searches for clusters in the form of quasi-cliques in the shared-nearest neighbour graph, which 

measures the similarity between two cells in terms of their connectivity to the neighbourhood. 

SPRING generates a force-directed graph from a k-nearest neighbour graph which are useful 

for identifying clusters (Weinreb et al. 2017). 

 

The key consideration when using any clustering method is the input gene set used for 

clustering, which is a feature selection problem (Guyon & Elisseeff 2003). The gene set used 

for clustering is essential to obtain distinct clusters, as not all genes are differentially expressed 

among the cell subpopulations of interest. The inclusion of non-informative genes is likely to 

reduce the effectiveness of identifying cell subpopulations due to the presence of non-relevant 

variations in gene expression. Most clustering methods require manual selection of the gene 

set used for clustering, which can be done for example by selecting the set of all differentially 

expressed genes via performing differential expression analysis across known samples. Some 

clustering methods utilise an unbiased feature selection approach to choose the most 

informative gene set as part of the clustering routine, such as ICGS. 

 

1.2.5 Pseudotime inference 

 

Besides the detection of cell subpopulations, the other common aim of single-cell RNAseq 

experiments is to reconstruct the temporal progression in expression states across a biological 

process, such as during the derivation of differentiated cells from stem cells (Figure 1.6). This 

temporal reconstruction using single-cell RNAseq data can be achieved by pseudotime 

inference. Pseudotime inference algorithms aim to arrange the cells in a pseudotime trajectory 

that represent the underlying continuous biological process based on their expression profiles. 
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The concept of pseudotime is introduced to represent asynchronous developmental cellular 

progressions in which the cells collected from a particular time point are not all at the same 

state of developmental progression (Cannoodt, Saelens & Saeys 2016). In addition, most 

pseudotime inference algorithms also attempt to identify any branches in the trajectory that 

represent decision points in the underlying biological process. Understanding the decision 

points is particularly important for studying the developmental process, as the cells in two 

branches beyond a decision point have typically adopted two distinct cell identities. 

Reconstructing the branches can be considered as a particularly difficult clustering problem, 

as the algorithms need to identify disjoint clusters that are placed on branches, as well as the 

preceding common cluster that connects to these disjoint clusters in a continuous process. 

 

 

Figure 1.6   Application of pseudotime inference in single-cell RNAseq. 
[Figure adapted from (Kumar et al. 2017)] 

 

Most pseudotime inference algorithms contain two major steps, with some algorithms having 

an intermediate clustering step (Cannoodt, Saelens & Saeys 2016). The first step in 

pseudotime inference usually involves generating a low-dimensional, usually in two 

dimensions, representation of the high-dimensional expression data. The last step involves 

finding a path through the cells in the dimensionality reduced space, thereby giving an order 

to the cells in the form of a trajectory. Some algorithms only locate a single path through the 

cells, but most algorithms also attempt to detect divergent bifurcation points along the path 

which result in multiple branches. The distance among the cells along the trajectory path is 

measured in terms of pseudotime, which can be calculated using the reduced low-dimensional 

or original high-dimensional representation of the gene expression data.  

 

One of the first pseudotime inference algorithms developed for single-cell RNAseq is Monocle 

(Trapnell et al. 2014). Monocle firstly uses independent component analysis (ICA) for 

dimensionality reduction, and then uses minimum spanning tree with Euclidean distance to 

connect the cells into a trajectory. Recently an improved version of Monocle, known as 

Monocle2, is developed (Qiu et al. 2017). In Monocle2, a non-linear principal graph-based 

method, DDRTree, is used for dimensionality reduction instead of the linear ICA. Besides 
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Monocle, another pseudotime inference algorithm, Wanderlust, which was initially designed 

for mass cytometry data was released around the same time (Bendall et al. 2014). Wanderlust 

firstly constructs a k-nearest neighbour graph, and then computes the average minimum path 

that passes through user-defined start cell and random waypoint cells on the graph. Recently 

Wanderlust has been extended into Wishbone, which has the ability to infer bifurcation 

branching points (Setty et al. 2016). There are also many other pseudotime inference 

algorithms developed, such as SLICER (Welch et al. 2016), embeddr (Campbell et al. 2015) 

and TSCAN (Ji & Ji 2016).  

 

1.2.6 Differential expression  

 

Differential expression analysis represents the key analysis step across most high-throughput 

expression profiling experiments. The aim of differential expression analysis is to detect gene 

expressions that are significantly different statistically between pairs of sample groups. The 

genes that are differentially expressed in different samples are assumed to be biologically 

important in distinguishing and understanding the different samples. The typical downstream 

analysis that follows differential expression analysis is gene set enrichment analysis that 

provides functional annotations to the sets of differentially expressed genes. This analysis 

allows the comparison of differentially regulated biological processes among sample groups, 

rather than just comparing differentially expressed genes. Note that the gene set enrichment 

analysis here refers to the broad class of methods for functionally annotating genes, and not 

specifically to the GSEA algorithm which tests for differences in pre-defined gene sets between 

two biological conditions (Subramanian et al. 2005). 

 

The single-cell RNAseq algorithms for differential expression analysis can be separated into 

three major groups, namely conventional statistical tests, tests designed for bulk RNAseq and 

tests designed for single-cell RNAseq. Conventional statistical tests, which include Wilcoxon 

rank sum test and Kolmogorov-Smirnov test, are becoming increasingly applicable to single-

cell RNAseq data due to the increased number of cells sequenced in each experiment. The 

higher number of cells offer increased statistical power to the conventional statistical tests 

used, which are typically non-parametric and therefore require less assumptions on the 

properties of expression data. As for the tests designed for bulk RNAseq, there are two major 

methods that are well-established, namely edgeR (Robinson et al. 2010) and DESeq2 (Love 

et al. 2014). Both edgeR and DESeq2 model gene expression in different samples with 
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negative binomial linear models, and use likelihood ratio test or Wald test to compare these 

models in order to detect differentially expressed genes. 

 

Single-cell RNAseq-specific differential expression tests that have been developed include 

SCDE (Kharchenko et al. 2014) and MAST (Finak et al. 2015). These methods typically contain 

model extensions that account for additional sources of technical noise specific to the single-

cell RNAseq. SCDE performs differential expression analysis with a mixture of two 

distributions, with the first being a negative binomial distribution that models expression levels, 

and the second being a Poisson distribution that models dropouts. MAST utilises a two-part 

generalised linear model to model the fraction of cells that express a certain gene and the level 

of expression for each gene separately. Recently, SCDE has been improved further to yield 

better computation speed and results, as well as being incorporated into a pipeline called 

PAGODA (Fan et al. 2016). 

 

Differential expression analysis can be performed across discrete variables (e.g. multiple 

samples), as well as across continuous variables (e.g. pseudotime). The most common use 

case of differential expression analysis in single-cell RNAseq is to compare sample 

differences, therefore requiring only discrete variables that distinguish each sample or 

continuous variables acting as weights for each sample. Most of the algorithms discussed 

above are designed with this use case in mind. However, with the advent of single-cell RNAseq 

data coupled with pseudotime inference, another interesting use case of differential expression 

analysis is to detect genes that are differentially expressed across the pseudotime, possibly 

also differentially expressed among different trajectory branches. The simplest method that 

can be used in this case is just simple correlation between gene expression and pseudotime. 

Another method, which is implemented as part of Monocle2, is to firstly fit a spline model on 

gene expression against pseudotime, then perform a likelihood ratio test between a model 

fitted on pseudotime and a null model. While the use case with temporal differential expression 

is similar in concepts with sample-wise differential expression, temporal differential expression 

contains additional information in the form of pseudotime and branches that will benefit from 

tailored differential expression algorithms. 
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1.3 Gene network inference 

 

1.3.1 Characteristics of networks 

 

Before going into details on biological networks, it is important to understand networks and 

their associated technical properties. A network, also known as a graph, is defined by a set of 

𝑛 nodes connected by edges. The edges can be directed or weighted to indicate the direction 

or the strength of the interactions respectively. The topological information in a network can be 

represented compactly with a 𝑛 × 𝑛 adjacency matrix, where each element in the matrix 

indicate the presence of an edge between two nodes with a binary value. The adjacency matrix 

is symmetric for an undirected network, and asymmetric for a directed network. In a weighted 

network, the elements in an adjacency matrix indicate the weights of edges instead, where 

zero values show the absence of edges while non-zero values correspond to the weights. 

 

The topological properties of a network can also be described by several measures, such as 

lower-order measures (e.g. degrees) and higher-order measures (e.g. clustering coefficients). 

The degree of a node refers to the number of neighbouring nodes connected by edges. When 

viewing the network as a whole, the degree distribution 𝑃(𝑘) represents the fraction of nodes 

with degree 𝑘. The degree distribution is particularly interesting, as it is a measure that allows 

us to distinguish between different classes of networks, such as random and scale-free 

networks. Scale-free networks, where the degree distribution follows the power-law, are an 

important class of network, because many real-life networks such as social networks and 

biological networks are scale-free networks (Barabasi & Oltvai 2004). A scale-free network has 

mostly low-degree nodes and some high-degree nodes that connect to a significant number of 

other nodes, where in biology the high-degree nodes correspond to important global regulators 

such as the tumour suppressor p53 protein (Kruse & Gu 2009). Scale-free networks have a 

few interesting features, which include being highly robust against node failures (Albert et al. 

2000) and have better dynamic controllability (Nepusz & Vicsek 2012). In contrast, higher-

order measures like clustering coefficients describe the connectivity of local subgraphs, 

instead of focusing on individual nodes. The structures of local subgraphs, also known as 

motifs, have important roles in biological networks. The motifs act as fundamental components 

in forming modular networks, where each motif serve a defined function in the network (Wong 

et al. 2012). An example of motifs include feedforward loop, which plays important regulatory 

roles in many genetic systems (Mangan & Alon 2003). 
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1.3.2 Biological networks 

 

Correctly identifying the underlying interaction network in biological systems has been a key 

common goal in many fields of biological studies. This is based on the understanding that while 

each individual biological factor may have unique functions, the ultimate contribution to the 

phenotypes exhibited by a biological system comes from a combination of multiple factors in 

the form of a network in the system (Barabasi et al. 2011). These biological factors contribute 

in varying degrees and in different ways to the system, as well as interacting with one other to 

mediate each other’s response. While the bottom up approach of studying each biological 

factor in isolation allows a clear understanding of the properties of each gene, it is essential to 

ultimately view and analyse the biological system as a whole in a top down approach in order 

to understand the behaviour of a biological system (Figure 1.7). 

 

 

Figure 1.7   Studying a biological system as represented in multiple omics levels. 
[Figure adapted from (Yugi et al. 2016)] 

 

Due to the complexity involved in biological systems, there are multiple types of networks 

studied, such as metabolic networks, protein interaction networks and transcriptional 

regulatory networks (Figure 1.7). Metabolic networks describe multiple interconnected 

biochemical pathways, where the nodes represent metabolites and the edges connect 

metabolites that participate in the same reaction. Among the different networks, metabolic 

networks have the most well-established reconstruction procedures (Heinrich & Schuster 

1998; Thiele & Palsson 2010) and have been studied in many organisms (Oberhardt et al. 

2009). Metabolic network reconstruction is a time-consuming process that involves extensive 
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manual curations partly assisted by automated reconstruction algorithms (Thiele & Palsson 

2010; Buchel et al. 2013). In protein interaction networks, the nodes represent proteins and 

the edges represent interactions among them. Depending on the data used to generate the 

networks, the interactions can be direct physical interactions or indirect interactions as inferred 

from information such as protein co-occurrence (von Mering 2002). It is worth noting that most 

direct physical protein interactions detected in experiments may not be biologically relevant, 

as the proteins may only interact with each other under specific biological conditions 

(Hillenmeyer et al. 2008). Besides conducting experiments, protein interactions may be 

predicted computationally through various approaches such as physical modelling of protein 

binding (Deeds et al. 2006; Aloy & Russell 2006). 

 

In contrast to both metabolic and protein interaction networks, transcriptional regulatory 

networks represent a relatively new development (Buchanan et al. 2010). In a transcriptional 

regulatory network, the nodes represent genes and the edges represent interactions among 

the genes. The genes considered are mostly transcription factor genes, but other elements 

such as non-coding RNA genes can also be considered. In a transcriptional regulatory network, 

these different regulators mediate the expression of one another, which lead to a cascade of 

expression changes that ultimately lead to changes in phenotypes. Note that transcriptional 

regulatory networks are abstracted, because the genes themselves can only interact with other 

genes through the RNAs and/or proteins they encode. While the abstraction makes the 

networks easier to understand, the reconstruction of transcriptional regulatory networks is 

difficult due to the need of considering multiple omics data. An ideal set of data for 

reconstructing transcriptional regulatory networks requires information from all omics level, 

including genomics, transcriptomics and proteomics data, to account for the entire 

transcriptional regulation process. However, obtaining such detailed data is often not possible, 

therefore most studies resort to using protein-DNA binding or transcriptomics data for network 

reconstruction. 

 

Studies have found that transcriptional regulatory networks have a multi-layer hierarchical 

structure (Ma et al. 2004; Yu & Gerstein 2006). In this structure, global regulators at the top 

layers regulate many downstream regulators, while regulators at the bottom layers generally 

do not regulate upstream regulators. Both upstream and downstream regulators are controlled 

via external feedback mechanisms such as metabolite-protein interactions (Martínez-Antonio 

et al. 2006). In addition, transcriptional regulatory networks have been found to be highly 

interconnected and possess highly integrated network motifs connected by global regulators 
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(Guelzim et al. 2002; Dobrin et al. 2004; Resendis-Antonio et al. 2005). These structural 

properties are likely to play important roles for facilitating the rapid regulatory changes through 

the global regulators, as well as enabling fine tuning of the regulatory changes by downstream 

regulators. 

 

Besides static topological information, the dynamic of the network plays an important role on 

the functional properties of a transcriptional regulatory network. Studies have shown that most 

regulatory interactions are condition-specific and vary significantly under different conditions 

(Segal et al. 2003; Luscombe et al. 2004). Due to these condition-specific changes of 

regulatory interactions, the same transcriptional regulators can be used under different 

conditions to achieve condition-specific response via regulating a different set of genes. In 

addition, the dynamic of the network is also facilitated by various network motifs, such as 

feedback loops and feedforward loops (Rosenfeld et al. 2002; Mangan et al. 2003). These 

network motifs have been shown to speed up or delay the propagation of regulatory signals 

along the network, in order to keep the network robust by filtering out noises while ensuring 

the signals are transmitted rapidly. 

 

While these studies have elucidated the properties of transcriptional regulatory networks, the 

experiments were mostly performed in unicellular organisms, such as the bacteria Escherichia 

coli and the yeast Saccharomyces cerevisiae. It is likely that the insights are transferable to 

more complex organisms such as mice and humans, but they are likely to display more intricate 

controls of transcription that are specific to certain biological processes. Due to the difficulties 

in experimentally manipulating more complex organisms, the knowledge and data available on 

transcriptional regulations are less detailed than the simpler organisms. Recent advances have 

been made in studying transcriptional regulatory networks in specific biological processes in 

human, such as in cell cycle (Elkon et al. 2003), in blood cells (Zhu et al. 2010), in B cells 

(Basso et al. 2005), in brain tumours (Carro et al. 2010) and in glioblastoma (Sumazin et al. 

2011). Interestingly, Basso et al. found that the transcriptional regulatory network in human B 

cells follows the hierarchical, scale-free network organisation as observed in simpler 

organisms. In addition, a study which investigated expression profiles from yeast, worms, flies 

and humans has found that many gene interactions are evolutionary conserved across 

organisms (Stuart et al. 2003). 
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1.3.3 Network reconstruction approaches  

 

Biological networks can either be constructed through manual specification by curating 

literature or performing specific experiments, or through automatic prediction by running 

network inference algorithms on high-throughput data. The ultimate aim of network 

reconstruction is to accurately identify causal relationships among biological partners, and 

quantify the dynamics of such relationships. As the focus of this thesis is on understanding 

transcriptional regulation, the following section discusses network reconstruction methods 

related to transcriptional regulatory networks. Methods for manual specification of networks 

are simpler. The steps involve firstly using well-characterised networks from other species or 

biological systems to act as the starting points, and then extend the networks with additional 

information obtained by conducting experiments or curating literature (Faria et al. 2013).  

 

Algorithm-based network reconstructions require some forms of omics data, which most 

commonly record the regulatory binding sites on genomic DNA or the gene expression levels. 

Regulatory binding sites data can be obtained from chromatin immunoprecipitation (ChIP) or 

DNase experiments combined with in silico regulatory binding predictions (Furey 2012), while 

gene expression data can be obtained from microarray or RNAseq experiments. While 

regulatory binding sites indicate where the proteins bind on genomic DNA, the distance-

independent nature of such regulatory binding sites make the identification of downstream 

target genes difficult, and the identification of regulatory binding sites gave little indication of 

the dynamic of gene expression. The dynamic of transcriptional regulation can be more easily 

obtained by studying gene expression data, which also distinguish between the transcript 

isoforms expressed. The following section focuses on the discussion of network reconstruction 

using gene expression data. 

 

Network inference algorithms for inferring transcriptional regulatory networks can be separated 

into two categories with different levels of granularity (Marbach et al. 2012). The first category 

predicts the presence or absence of gene interactions to give a static network; while the second 

category predicts the rate of gene interactions, given an underlying static network, to give a 

dynamic network. A static network describes only the topological information, while a dynamic 

network describes both topological and dynamic information. This means that a dynamic 

network can be simulated to generate in silico predictions that can be verified in experiments. 

Some established frameworks for working with dynamic networks include differential equation-
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based models (Davidson et al. 2002; Li & Wang 2013) and single-molecule simulation models 

(Drew 2001; Armbruster et al. 2009). However, such models rely on a higher number of 

parameters which are often difficult to obtain and verify without a large amount of data. 

 

Besides the more detailed frameworks mentioned above, there are other commonly used 

major frameworks that require less data, namely correlation, mutual information, regression 

Bayesian networks and Boolean models. While correlation and mutual information-based 

methods generate static networks, the other three methods can give both static and dynamic 

networks depending on their implementations. Both correlation and mutual information-based 

methods are used to measure the association between the values of all pairs of variables. 

Some examples of popular algorithms include weighted gene correlation network analysis 

(WGCNA) (Langfelder & Horvath 2008) and CLR (Faith et al. 2007). The assumption is that 

genes with expression profiles that correlate to one another are likely to work in the same 

pathway. The networks inferred by both correlation and mutual information-based methods 

can be further refined by removing the effects of another variable through conditioning, which 

is done in generalisations such as partial correlation (Yuan et al. 2011) and conditional mutual 

information (Xiao et al. 2016).  

 

Regression-based network inference methods can be viewed as an extension of correlation-

based methods. An example of regression-based methods is TIGRESS (Haury et al. 2012). 

The main difference of regression-based methods is that they attempt to infer directed gene 

interactions instead of just quantifying their associations. Simple linear models can be used in 

regression-based networks, but the generalised forms are more commonly used for network 

inference due to non-linearity of gene interactions and high-dimensionality in the expression 

data. The generalisation to tackle non-linearity in regression-based methods involved 

extending a linear model into a generalised additive model that supports non-linear functions 

such as spline (Fan & Peng 2016). As for the high-dimensionality problem, regression-based 

methods often incorporate regularisations, such as Lasso, when estimating the regression 

coefficients (Haury et al. 2012). An alternative framework is the Bayesian network. In Bayesian 

networks, the network is a direct acyclic probabilistic graphical model where the nodes 

represent a set of random variables and the edges specify the conditional dependencies of the 

nodes (Friedman et al. 2000). An example of Bayesian network inference methods is ebdbNet 

(Rau 2016). Bayesian networks can be generalised into dynamic Bayesian networks, which 

support cyclic relationships among the nodes (Murphy & Mian 1999). 
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Boolean models represent a simple alternative to describe networks, in which the values of 

gene expressions are binary and the interactions among genes are described by Boolean 

logic. Some examples of Boolean model inference methods include REVEAL (Liang et al. 

1998) and SCNS (Moignard et al. 2015). The simplifications mean that Boolean models 

represent one of the simplest dynamic networks that can be simulated. The properties of 

Boolean models depend hugely on the simulation update scheme used, which is most 

commonly either synchronous or asynchronous updates. Synchronous update scheme 

assumes changes in the expression of all genes happen simultaneously, which results in 

deterministic simulation. In contrast, asynchronous update scheme only allows one gene to 

update at each time step, which is closer to biological systems where different genes are 

expressed in different rates. Similar to other frameworks, Boolean models also have 

generalised forms such as probabilistic Boolean models and fuzzy logic models. In probabilistic 

Boolean models, each gene has several Boolean update functions, each of which has a 

probability of being chosen during simulation (Shmulevich et al. 2002; Liang & Han 2012). This 

probabilistic generalisation allows a better understanding of a stochastic system that can have 

multiple steady states. As the binary approximation may be too limiting, a Boolean model can 

be generalised into a fuzzy logic model which allows each variable to have multiple discrete 

levels of values (Schaub et al. 2007; Park et al. 2014). 

 

In summary, these different network modelling frameworks are based on different 

assumptions, which lead to different pros and cons that make each modelling framework 

suitable in particular use cases. For example, correlation and mutual information-based 

approaches can be applied to biological systems without prior knowledge, and the algorithms 

are relatively scalable to accommodate a large number of genes. Signalling pathways can be 

easily modelled by Boolean models, as signals are assumed to be transmitted in binary form 

and with Boolean logic. These different network modelling frameworks complement one 

another, and the information encoded in them can eventually be combined to generate a 

consensus network. Consensus networks generated by combining the results of multiple 

methods have been shown to be superior than using results generated individually by each 

method (Marbach et al. 2012). In addition, these networks derived from different frameworks 

can be unified into a whole-cell model. As a proof of feasibility, a detail whole-cell simulation 

of Mycoplasma genitalium is created by combining multiple modelling frameworks, ranging 

from Boolean models to stochastic processes (Karr et al. 2012). 
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1.4 Thesis aims 

 

While single-cell expression profiling techniques offer the advantage of increased data 

resolution, the data generated suffer from additional technical noise. Besides improving the 

experimental protocols to increase the efficiency of mRNA capture and to reduce amplification 

bias, new computational algorithms that can effectively account for the technical noise unique 

to single-cell RNAseq are still required, particularly for gene network inference. Besides 

developing new algorithms, existing algorithms should also be benchmarked against synthetic 

expression data or gold standard real expression data in order to assess their performance in 

an unbiased way. Assessing the performance of these algorithms are especially important, as 

most of the existing algorithms are either originally designed for non-single-cell expression 

data, or the characteristics of the algorithms are not properly investigated. Once the 

performance and the properties of these algorithms are understood, they can then be applied 

to single-cell RNAseq data collected from various biological systems to obtain novel insights. 

 

This thesis aims to study transcriptional regulation by computational analyses of single-cell 

RNAseq data by following the objectives stated below: 

1. To develop new network inference algorithms for transcriptional regulatory networks 

that are specifically designed for single-cell expression data. The frameworks used for 

new network inference algorithms development are Boolean model and regression. 

2. To benchmark existing and newly developed algorithms that are critical for single-cell 

expression data analysis in an unbiased way by using synthetic data. The categories 

of algorithms to be investigated include pseudotime inference, gene network inference 

and differential expression analysis. 

3. To utilise the investigated algorithms in understanding biological systems by analysing 

and studying single-cell expression data. The two biological systems studied are the 

epiblast stem cells reprogramming system and the acute myeloid leukaemia system. 
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2 Inferring gene regulatory networks with a 

Boolean model-based method 

 

Sections of this chapter have been published during the course of this PhD (Lim et al. 2016). 

 

2.1 Background 

 

Boolean models are one of the simplest models that can describe the dynamics of a system 

without the need of many parameters [For reviews, see (de Jong 2002; Fisher & Henzinger 

2007)]. In a Boolean model, each gene can take a value of 0 or 1, which represents the 

absence or presence of gene expression respectively. The interactions among genes in a 

Boolean model are described by Boolean operators like AND, OR and NOT, which closely 

resembles how biologists describe such interactions. Boolean models were first used to study 

gene regulatory networks by Kauffman in the 1970s, and since then have been used 

extensively to study different biological systems (Li et al. 2004; Fauré et al. 2006; 

Giacomantonio & Goodhill 2010; Dunn et al. 2014). 

 

Single-cell expression data offer the advantage of capturing the expression profiles of many 

single cells, but the additional data resolution comes with the cost of increased technical noise, 

such as drop-outs. Therefore, network inference techniques that are robust to the effect of 

drop-outs are required when reconstructing networks using single-cell expression data. Among 

all network inference frameworks, Boolean models are implicitly robust to the presence of drop-

outs. This is due to the binarisation of expression values in Boolean models by setting genes 

with high expression to 1 and genes with low expression to 0, while not trying to account for 

any intermediate expressions. Drop-outs are more likely to affect genes with low expressions, 

but genes with low expressions are often already binarised to 0. 

 

In this chapter, a model learning algorithm BTR (BoolTraineR) that can reconstruct and train 

asynchronous Boolean models using single-cell expression data is described (Section 2.2). 

BTR differs from other algorithms described above in that it can infer both network structure 

and Boolean rules without needing information on trajectories through cell states. When 

inferring gene networks with BTR, there are 2 key steps. Firstly, BTR evaluates how well the 
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predictions made by a Boolean model match with the single-cell expression data by using the 

Boolean state space (BSS) scoring function. BTR then iteratively modifies the Boolean model 

to generate a series of Boolean models that offer improving BSS scores through a swarming 

hill climbing strategy. At the end of the BTR optimisation process, the best scoring Boolean 

model represents the asynchronous Boolean model that can best explain a single-cell 

expression dataset. In Section 2.3, the BSS scoring function in BTR is shown to be a viable 

distance measures for Boolean models. Section 2.4 shows that BTR performed well in terms 

of network inference when compared with other established network inference algorithms. In 

Section 2.5, BTR predicted new gene interactions in blood cell development by training 

published Boolean models using independent single-cell expression data. The chapter then 

ends with conclusions in Section 2.6, and materials and methods in Section 2.7. 
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2.2 Framework of BTR 

 

This section first explains the definitions of Boolean models, before exploring the concept and 

the framework underlying BTR.  

 

2.2.1 Boolean models 

 

A Boolean model B consists of 𝑛 genes 𝑥1, … , 𝑥𝑛 and 𝑛 update functions 𝑓1, … , 𝑓𝑛: {0, 1}𝑛 →

{0, 1}, with each 𝑓𝑖 being associated with gene 𝑥𝑖 (Figure 2.1). Each gene 𝑥𝑖 corresponds to a 

binary variable representing the expression value of the gene, i.e. 𝑥 ∈ {0, 1}. Gene 𝑥𝑖 is a target 

gene when it acts as a response variable and an input gene when it acts as a predictor variable. 

Each update function 𝑓𝑖 can be evaluated to give a value to a target gene 𝑥𝑖, and is expressed 

in terms of Boolean logic by specifying the relationships among a subset of the input genes 

𝑥1, … , 𝑥𝑛 using Boolean operators AND (∧), OR (∨) and NOT (¬). An update function 𝑓𝑖 consists 

of an activation clause and an inhibition clause in the form of: 

(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑢𝑠𝑒 ) ∧ ¬(𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑢𝑠𝑒) 

 

 

Figure 2.1   Representations of a Boolean model.  
A Boolean model can be expressed graphically in terms of nodes and edges, as well as in 
tabular form in terms of update functions. Note that the small black node refers to AND 
interaction. 
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Each clause is individually expressed in disjunctive normal form, (𝑢1) ∨ (𝑢2) ∨ (𝑢3) ∨ … ∨ (𝑢𝑛), 

where 𝑢 represents a slot which can either take in a single input gene 𝑥𝑖 or a conjunction of 

two input genes 𝑥𝑖 ∧ 𝑥𝑖+1. An example update function 𝑓1(𝑠𝑡) for a target gene 𝑥1 with an input 

state 𝑠𝑡 is given below: 

𝑥1 =  𝑓1(𝑠𝑡) = ((𝑥3 ∧ 𝑥4)) ∧ ¬((𝑥5) ∨ (𝑥2 ∧ 𝑥9)) 

 

A few constraints are imposed on the update functions during model learning in BTR. Firstly, 

the update function allows a conjunction of up to two input genes in each slot 𝑢. Secondly, 

each input gene 𝑥𝑖 can only be present in a single update function once, but the same input 

gene 𝑥𝑖 can be present in multiple update functions. Thirdly, a user can specify a soft limit on 

the number of input genes (i.e. in-degree) allowed per update function, where the default in 

BTR is 6 in-degree per gene. Lastly, by default no self-loop is allowed in BTR. 

 

2.2.2 Boolean model states and simulations 

 

A model state given by a Boolean model B is represented by a Boolean vector 𝑠𝑡 = {𝑥1𝑡, … , 𝑥𝑛𝑡} 

at simulation step 𝑡. A model state space 𝑆 represents the set of all model states 𝑠𝑡 reachable 

from an initial model state 𝑠1, i.e. 𝑆 = {𝑠1, … , 𝑠𝑡}. 𝑆 can be obtained by simulating the model B 

starting from an initial model state 𝑠1 using the asynchronous update scheme. The 

asynchronous update scheme specifies that at most one gene is updated between two 

consecutive states (Figure 2.2). If a state has already been encountered earlier, it is ignored. 

This results in a directed graph of states as exemplified in Figure 2.2, where any two connected 

states change in just one variable. Asynchronous updating is critical when modelling 

developmental systems that generate distinct differentiated cell types from a common 

progenitor, because synchronous updating generates fully deterministic models and therefore 

cannot capture the ability of a stem cell to mature into multiple different tissue cells. 

 

Assuming we have a model state 𝑠t which is not a steady state, there will be 𝑖 (𝑖 ≥ 1) genes 

in 𝑠𝑡 such that 𝑥𝑖𝑡 ≠ 𝑓𝑖(𝑠𝑡). Therefore at simulation step 𝑡 + 1, 𝑠𝑡+1 would have 𝑖 possible 

configurations 𝑠𝑡+1
𝑖 , where 𝑠𝑡+1

𝑖 = {𝑥1𝑡, … , 𝑓𝑖(𝑠𝑡), … , 𝑥𝑛𝑡}. This simulation is repeated until it 

reaches a steady state. By definition, steady states are a set of states whose destination states 

also belong to the same set. That is, a steady state may be a single model state 𝑠𝑡, or it may 

consist of a cyclic sequence of model states 𝑠𝑡, … , 𝑠𝑡+𝑗. The initial state used in a simulation 
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can be obtained from the expression values at time = 0 for a time-series expression dataset, 

or it can be obtained from the expression values of known parental cell types. 

 

 

Figure 2.2   Asynchronous simulation of the Boolean model specified in Figure 2.1. 
The asynchronous update scheme is best explained with the use of a graph representation 
of state space, in which each connected state differs in only one node. Starting from the 
initial state 𝑠1={0,0,1,1} and evaluated using the update functions in (A), asynchronous 
simulation produces a model state space with 15 states. The initial state is shown in red 
node, while the final steady state is shown in pink node. 

 

2.2.3 Single-cell expression data 

 

The single-cell expression data used in this study are each a matrix consisting of 𝑛 individual 

genes in the columns and 𝑘 individual cells in the rows. The expression data are normalised 

and standardised to give 𝑦𝑘𝑛 ∈ [0, 1]. A data state 𝑣𝑘 = {𝑦1, … , 𝑦𝑛} represents the expression 

state of cell 𝑘 for 𝑛 genes that are observed in the cell. A data state space 𝑉 = {𝑣1, … , 𝑣𝑘}  

represents the set of all data states that are observed in an experiment. 

 

2.2.4 General concept of BTR 

 

The model state space of an asynchronous Boolean model resembles the data state space of 

a single-cell expression data. The model state space contains predicted expression states that 
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are dictated by a known gene network that underlies a Boolean model; while the single-cell 

expression data can be viewed as a data state space which contains observed expression 

states that are dictated by an unknown gene network. By fine-tuning the network rules 

underlying the Boolean model, it should be possible to produce a predicted model state space 

that closely resembles an observed data state space, thereby allowing us to reconstruct the 

unknown gene network. BTR uses this framework to reconstruct a Boolean model from single-

cell expression data (Figure 2.3).  

 

By utilising the Boolean state space (BSS) scoring function (See Section 2.2.5.1), BTR 

evaluates how well a particular Boolean model explains the single-cell expression data by 

scoring the model state space with respect to the data state space. During the model training 

process, BTR uses a swarming hill climbing strategy (See Section 2.2.5.2) to generate 

minimally modified Boolean models based on an initial Boolean model. These minimally 

modified Boolean models are then scored using the BSS scoring function, and BTR selects 

the best scoring Boolean models for the next iteration. By performing this process iteratively, 

BTR reconstructs the asynchronous Boolean model that can best explain a single-cell 

expression dataset. 
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Figure 2.3   The framework underlying BTR.  
A Boolean model can be simulated to give a model state space, while a single-cell 
expression data can be preprocessed to give a data state space. Boolean state space 
scoring function can then calculate the distance score between the model and data state 
spaces. Lastly, BTR uses the computed distance score to guide the improvement of the 
Boolean model through an optimisation process that minimises the distance between model 
and data state spaces. 

 

2.2.5 BTR model learning algorithm 

 

The aim of BTR is to identify a Boolean model 𝐵 with 𝑥𝑛 genes and 𝑓𝑛 update functions, that 

can produce a model state space which closely resembles an independent single-cell 

expression data (i.e. data state space). Note that model state space and data state space are 

defined in a similar way, the only difference being that the 𝑛 genes take continuous values in 

[0,1] within a data state, while the 𝑛 genes take binary values 0 and 1 in a model state. The 

distance between model and data state spaces is measured by the pairwise distance between 
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pairs of model and data states, as stated in the scoring function (See below). By iteratively 

modifying an initial Boolean model 𝐵1, the distance between the model and data state spaces 

can be minimised until a resulting final Boolean model 𝐵𝑓with less distance is obtained. BTR 

performs model learning by utilising techniques in discrete optimisation framework. In any 

optimisation problem, there are two important components, namely a scoring function and a 

search strategy. 

 

2.2.5.1 BSS scoring function in BTR 

 

The scoring function used in BTR is a novel scoring function, termed as Boolean state space 

(BSS) scoring function. The BSS scoring function  𝑔(𝑆, 𝑉) is a distance function, where 𝑆 is the 

model state space and 𝑉 is the data state space.  𝑔(𝑆, 𝑉)  consists of a base distance variable 

and two penalty variables, and is given by: 

𝑔(𝑆, 𝑉) = ℎ(𝑆, 𝑉) +  𝜆1𝜀1 + 𝜆2𝜀2 

Where ℎ(𝑆, 𝑉) = base distance, 𝜀 = penalty variable, 𝜆 = constant for penalty variable. 

 

The base distance ℎ(𝑆, 𝑉) is given by the following equation. To prevent multiple model states 

from matching to a single data state, one-to-one matching between model and data states is 

enforced if the number of data states, 𝑁𝑣, are more than or equal to the number of model 

states, 𝑁𝑠, i.e. 𝑁𝑣  ≥  𝑁𝑠. For cases where 𝑁𝑣 <  𝑁𝑠, one-to-one matching between model and 

data states is enforced greedily up until the point where all data states have been assigned a 

matching model state, then non-unique matching will occur for the remaining model states with 

respect to each corresponding data state with the minimum distance. 

ℎ(𝑆, 𝑉) =  
∑ 𝑚𝑖𝑛𝑘=1

𝑁𝑣 (𝑑(𝑠𝑡, 𝑣𝑘))𝑁𝑠
𝑡=1

𝑁𝑠 𝑛
 

Where 𝑑(𝑠𝑡, 𝑣𝑘) = pairwise distance between each model state 𝑠𝑡 and data state 𝑣𝑘 (0 ≤

𝑑(𝑠𝑡, 𝑣𝑘) ≤ 1), 𝑁𝑠 = number of model states, 𝑁𝑣 = number of data states, 𝑛 = number of genes. 

 

The distance between model state 𝑠𝑡 and data state 𝑣𝑘, 𝑑(𝑠𝑡, 𝑣𝑘), is defined as the sum of the 

absolute differences between values of each gene 𝑖 in model state 𝑠𝑡 and data state 𝑣𝑘. 

𝑑(𝑠𝑡, 𝑣𝑘) =  ∑| 𝑥𝑡𝑖 −  𝑦𝑘𝑖|

𝑛

𝑖=1
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Where  𝑥𝑡𝑖 ∈ {0, 1} is the value of gene 𝑖 in model state 𝑠𝑡 and 𝑦𝑘𝑖 ∈ [0,1] is the value of gene 

𝑖 in data state 𝑣𝑘. 

 

The two penalty variables, 𝜀1 and 𝜀2, in 𝑔(𝑆, 𝑉) are used to prevent underfitting and overfitting. 

𝜀1 penalises the proportions of 0s, 𝑝0, and 1s, 𝑝1, across all genes and all states in a model 

state space. The concept of 𝜀1 is that it penalises complexity in Boolean models by their 

simulated model state spaces. As a Boolean model becomes more complex (i.e. increase in 

the number of edges), both 𝑝0 and 𝑝1 of its model state space will become closer to 0.5 (Figure 

2.4), therefore making 𝜀1 a good penalty for model complexity. 

𝜀1 =  𝑒−𝑎, 𝑤ℎ𝑒𝑟𝑒 𝑎 = ∑
(𝑝𝑖 − 0.5)2

0.5
𝑖∈{0,1}

 

 

Figure 2.4   The ratios of 0s over 1s (𝒑𝟎/𝒑𝟏) in model state spaces plotted against the 
exponents of a power-law distribution. 
A power-law distribution is used to model the number of in-degree and out-degree of each 
node. The smaller the exponent in a power-law distribution, the higher the number of in-
degree and out-degree of each node. The red line is a linear model fitted to illustrate the 
general relationship between ratio of 0s over 1s and the exponent. As the proportion of 0s 
and 1s become more similar (i.e. approach 0.5), the ratio of 0s over 1s will be closer to 1. 

 

𝜀2 penalises based on the number of input genes present in each of the update function 𝑓𝑖 in 

a Boolean model 𝐵, given a specified threshold 𝑧𝑚𝑎𝑥. 



51 
 

𝜀2 =  ∑ 𝑤𝑖

𝑛

𝑖=1

 

Where 𝑤𝑖 the penalty for each update function 𝑓𝑖  is given by: 

𝑤𝑖  =  {
 
𝑧𝑖 − 𝑧𝑚𝑎𝑥

𝑛
 ,                   𝑖𝑓 𝑧𝑖 > 𝑧𝑚𝑎𝑥 

 0 ,                                  𝑖𝑓 𝑧𝑖 ≤ 𝑧𝑚𝑎𝑥

 

Where 𝑧𝑖 = the number of input genes in update function 𝑓𝑖, 𝑧𝑚𝑎𝑥 = the maximum number of 

input genes allowed per update function. The default 𝑧𝑚𝑎𝑥 in BTR is 6, which means that each 

target gene is encouraged to have not more than 6 input genes. 

 

2.2.5.2 Search strategy in BTR 

 

A good search strategy is required in optimisation to locate the optimal solutions within a high 

dimensional and complex solution space. The search strategy in BTR is a form of swarming 

hill climbing strategy, in which multiple optimal solutions are kept at each search step and the 

search only ends when the score converges for all the optimal solutions (Figure 2.5). In BTR 

search algorithm, the search starts from an initial Boolean model, and iteratively explores the 

neighbourhood of the current Boolean model in the solution space by minimal modification. 

When no initial model is given to BTR, it will generate a random initial model whose degree 

distribution satisfies a power-law distribution with a degree exponent 𝛾 = 3.  

 

 

Figure 2.5   Pseudocode of the search algorithm in BTR. 
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The minimal modification of a Boolean model is performed by adding or removing a gene from 

a single update function in the Boolean model. The resulting modified model is then evaluated 

by the BSS scoring function. By repeating this procedure, BTR is able to explore the solution 

space and eventually arrives at a more optimal Boolean model. Due to the nature of Boolean 

models that multiple possible Boolean models can give rise to the exact same simulated state 

space, BTR usually retains a list of equally optimal Boolean models at the end of the search 

process. In such cases, a consensus model, whose edges are weighted according to the 

frequencies of their presence in the list of optimal Boolean models, will be generated. Due to 

the design of the search strategy, it is more geared towards a local search rather than a global 

search. Therefore in line with the results shown in Figure 2.9, BTR is best used for iteratively 

improving a gene network with known biological knowledge using an independent set of single-

cell expression data. 
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2.3 Describing Boolean state space scoring function as a 

model distance measure for Boolean models 

 

How well BTR performs depends heavily on the performance of the BSS scoring function. 

Among different modelling frameworks, the Bayesian network framework is known to possess 

several well-established scoring functions that evaluate how well a particular network fits a 

given dataset. These scoring functions include log-likelihood, Bayesian information criterion 

(BIC), Bayesian Dirichlet and K2 [See (Liu et al. 2012; Carvalho 2009) for reviews]. Since 

expression data have continuous values for gene expressions, the BIC scoring function, which 

can handle continuous variables, was selected as a scoring function from the Bayesian 

network framework for comparison purpose. 

 

BSS and BIC scoring functions were evaluated using synthetic data. The true network and 

expression data in the synthetic data were generated using GeneNetWeaver (Schaffter et al. 

2011), which is also used in the DREAM5 network inference challenge (Marbach et al. 2012). 

In order to simulate the zero-inflated property of single-cell expression data due to the 

presence of drop-outs, zero inflation was introduced into the synthetic data as described in the 

Methods section. An ideal scoring function should give an increasing distance score, as the 

evaluated network becomes increasingly different from the true network. In order to test this, 

a list of modified networks that are increasingly different from the true network in terms of 

edges was generated. As Bayesian networks and Boolean frameworks imposed different 

network structure constraints, the modified networks were generated separately to give a list 

of modified Bayesian networks and another list of modified Boolean networks. Although the 

modified Bayesian and Boolean networks are not identical, they possess the same number of 

differing edges when compared to the true network, ranging from 2 edges up to 40 differing 

edges. Five independent benchmark data, each with a different true network, true data and 

modified models, were used in the evaluation of scoring functions. 

 

By evaluating networks using zero-inflated synthetic data, both BSS and BIC scoring functions 

performed well when acyclic networks are considered (Figure 2.6). Both scoring functions were 

able to give increasing distance scores as the underlying networks become increasingly 

different from the true network. The BSS scoring function achieves this by considering the input 

expression data as a data state space, and then computing the distance score by comparing 

the data state space with the model state space simulated from a given network. It is expected 
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that as a network becomes increasingly different, its model state space will become 

increasingly different from the data state space, which is reflected in the distance score as 

shown in Figure 2.6C. The BSS scoring function, which is based entirely on the Boolean 

modelling framework, has been demonstrated to give comparable performance with a scoring 

function for Bayesian networks. The fluctuations in the scores computed by the BSS scoring 

function are due to the fact that small modications to the structure of a Boolean model may 

result in a drastic change in its simulated model state space in certain cases. The exact cause 

of this phenomenon is unknown, but it is likely to be due to the presence of particular motifs in 

the gene network that underlies the Boolean model. 

 

As indicated in the results for Network 2 (Figure 2.6C), the BSS scoring function is dependent 

on the underlying true network structure in certain cases and will work better on distinguishing 

networks that are very different. However the BSS scoring function has a distinct advantage 

over scoring functions for Bayesian networks. The Bayesian networks are known to impose 

relatively strict constraints on permissible network structures, in particular Bayesian networks 

are not allowed to contain any cyclic network structure. Therefore scoring functions for 

Bayesian networks cannot be used to evaluate cyclic networks. Cyclic networks are ubiquitous 

in biological systems, in which cyclic motifs can be present in the form of negative and positive 

feedback loops. Boolean models on the other hand are allowed to have any number of cyclic 

motifs in the networks. Therefore, the BSS scoring function can be used to compute scores for 

cyclic networks. By using another five independent benchmark data with true networks that 

contain at least one cycle, the distance scores for modified networks were computed (Figure 

2.7). The distance scores for cyclic networks have more fluctuations compared to acyclic 

networks due to the presence of cyclic motifs. However, the general trend where the distance 

scores increase as the underlying networks become increasingly different from the true 

network was still observed.  
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Figure 2.6   BSS scoring function compares favourably with BIC scoring function on 
acyclic networks using zero-inflated synthetic expression data.  
(A) True acyclic networks. Each node corresponds to a gene. Black edges indicate activation 
interactions, while red edges indicate inhibition interactions. Mean distance scores computed 
using (B) BIC scoring function and (C) BSS scoring function. The error bar is the standard 
error of the mean. 
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Figure 2.7   BSS scoring function is able to calculate distance scores for cyclic 
networks using zero-inflated synthetic expression data.  
(A) True cyclic networks. Each node corresponds to a gene. Black edges indicate activation 
interactions, while red edges indicate inhibition interactions. (B) Mean distance scores 
computed using BSS scoring function. The error bar is the standard error of the mean. 
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The series of acyclic and cyclic networks were also investigated using non zero-inflated data. 

When the results computed with non zero-inflated data are compared to the results computed 

using zero-inflated data, we can see that zero-inflation has no effect on BIC scores and a small 

effect on BSS scores that does not affect the general trend (Figure 2.8A). In summary, the 

relative mean scores that average across the results of all networks (Figure 2.8B) show that 

although the BIC scoring function performs slightly better than the BSS scoring function, the 

BSS scoring function has the advantage that it can evaluate cyclic networks. 

 

 

Figure 2.8   Summary of BIC and BSS scoring functions.  
(A) Non zero-inflated synthetic expression data, (B) Zero-inflated synthetic expression data. 
Mean scores have been calculated across all networks (five acyclic networks and five cyclic 
networks) for BIC and BSS scoring functions calculated using zero-inflated synthetic 
expression data. All scores have been standardised for comparison purpose, such that the 
scores range from 0 to 1. 
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2.4 Assessing network inference performance of BTR 

using synthetic data 

 

Next, the network inference performance of BTR was compared with other well-known network 

inference algorithms. Two search algorithms guided by the BSS Boolean and BIC Bayesian 

network scoring functions were included in the comparison, indicated as BTR and BIC 

respectively. The search algorithms used for both scoring functions are based on hill climbing. 

The additional network inference algorithms included in the comparison are BestFit 

(Lähdesmäki et al. 2003), ARACNE (Margolin et al. 2006), CLR (Faith et al. 2007), bc3net (de 

Matos Simoes & Emmert-Streib 2012), GeneNet (Opgen-Rhein & Strimmer 2007) and Genie3 

(Huynh-Thu et al. 2010) (See Section 2.7.5 for brief details on the algorithms).  

 

By using the same synthetic networks, as well as both non zero-inflated and zero-inflated 

synthetic data, network inferences were performed using the synthetic expression data alone 

without any extra information. In contrast to the DREAM5 challenge (Marbach et al. 2012) 

which also provides perturbed expression data, only a single type of expression data is 

provided to all the network inference algorithms, which is the wild type time course expression 

data in steady state. For BTR, besides performing inference with only expression data 

(indicated as BTR-WO), network inferences were also performed with both expression data 

and initial networks (indicated as BTR-WI) to show that BTR is able to use initial networks with 

partially known network structure to improve the inference process. The initial networks are 

generated randomly to contain 18 edges that are different compared with the true networks. 

The performance of the network inference algorithms is assessed in terms of F-scores 

(Sokolova et al. 2006) (Figure 2.9). In order to allow comparisons on the performance across 

all network inference algorithms tested, F-scores were calculated based only on the presence 

or absence of edges, while ignoring any additional information such as the types of edges. 

 

In terms of acyclic networks, the results show that the top inference algorithms using either 

non zero-inflated or zero-inflated data are BTR-WI, CLR, BIC and BTR-WO. As for cyclic 

networks, the top inference algorithms differ between using non zero-inflated and zero-inflated 

data. BTR-WI, BTR-WO, CLR and BC3NET gave the best performance with non zero-inflated 

data, while BTR-WI, ARACNE, GENIE3 and CLR gave the best performance with zero-inflated 

data. When all results are taken together, BTR-WI, CLR, BTR-WO and GENIE3 gave the best 

performance overall. Note that the ranking of network inference algorithms in this study differs 
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from the ranking of the DREAM study because different scoring criteria are used (F-score is 

used here as opposed to the area under the precision-recall (AUPR) and receiver operating 

characteristic (AUROC) curves in the DREAM study); and the DREAM study was done using 

multiple types of synthetic data, such as expression data with gene perturbations. In general, 

the presence of drop-outs affects the performance of network inference algorithms in different 

ways (Figure 2.9B). In cases such as bc3net and GeneNet, their performance decreases when 

drop-outs are present, while the impact of drop-outs on the performance of BTR is minimal. 

Interestingly, the performance of BestFit increases with the presence of drop-outs, possibly 

due to better binarisation of data due to the information given by drop-outs. As both BTR and 

BestFit are algorithms for inferring Boolean model, this result provides further support that 

Boolean models are robust to the presence of drop-outs in single-cell expression data.  

 

 

Figure 2.9   BTR outperforms other network inference algorithms. 
Mean F-scores of network inference algorithms inferred using (A) non zero-inflated synthetic 
data and (B) zero-inflated synthetic data. Plots titled ‘Both’ show the combined results of 
acyclic and cyclic network inference. The error bar is the standard error of the mean. 

 

When given an initial network as in BTR-WI, the BTR algorithm was able to perform very well 

in locating the true network. While the performance of the BTR algorithm without an initial 

network (BTR-WO) is comparable with other inference algorithms, BTR-WO scored less well 

A 

B 
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compared to BTR-WI. This indicates that the greedy hill climbing search strategy implemented 

in BTR may not be able to traverse the solution space efficiently without any initial information. 

Taken together, while BTR can be used for reconstructing network models without initial 

information, BTR performed the best when it is used to train and improve on existing networks 

that contain a partially true structure. It is also worth noting that BTR produced a dynamic 

model with a directed underlying static network, in contrast to most other algorithms such as 

CLR that only produce an undirected static network.  
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2.5 Utilising BTR to train haematopoietic Boolean models 

with single-cell expression data 

 

BTR was then applied to biological data to evaluate its performance on real data and to gain 

new biological insights.  Haematopoiesis research has provided many paradigms for modern 

biological research, and was one of the first fields to embrace single cell expression profiling 

(Ramos et al. 2006; Pina et al. 2012; Moignard et al. 2013). Moreover, literature curated 

Boolean network models have been reported both for blood stem cell maintenance and blood 

progenitor differentiation (Bonzanni et al. 2013; Krumsiek et al. 2011). The single-cell 

expression data used here includes single-cell qPCR and single-cell RNA-Seq data, which are 

both obtained from (Wilson et al. 2015). The two Boolean models will be referred to as the 

Bonzanni model (Bonzanni et al. 2013) (Figure 2.10A) and the Krumsiek model (Krumsiek et 

al. 2011) (Figure 2.10C). Both models had been constructed via manual literature curation by 

the authors of the original papers. The Bonzanni model aims to capture haematopoietic stem 

cell (HSC) self-renewal capacity, while the Krumsiek model describes the differentiation 

process of the erythro-myeloid lineage in haematopoiesis. 

 

The Bonzanni model was firstly trained using single-cell RNA-Seq data collected from HSCs. 

Compared to the original model, the resulting trained Bonzanni model (Figure 2.10B & Figure 

2.11A) shows the deletions of 10 gene interactions and the additions of 13 gene interactions. 

The state space of the trained Bonzanni model contains 1486 states when simulated using the 

initial state used in the original study (Figure 2.12A). Of note, there are many densely 

connected transitional states in the state space, which may be related to the complexity of cell 

fate decision making processes in multipotent progenitor cells. Steady state analysis 

performed showed that the steady states of the trained Bonzanni model are almost identical 

to the steady states of the original Bonzanni model (Figure 2.13A), except with the absence of 

cyclic steady states. The authors suggested that the cyclic steady states in the original 

Bonzanni model correspond to the self-renewal maintenance loop in HSCs, which is not 

present in our trained model possibly because the number of cells profiled by single-cell RNA-

seq is not enough to sufficiently capture the HSC self-renewal expression signature.  

 

Next the Krumsiek model was trained by using single-cell qPCR data collected from over 450 

cells along the erythro-myeloid lineage, which includes common myeloid progenitors, 

granulocyte-monocyte progenitors and myeloid-erythroid progenitors. In order to demonstrate 
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that BTR can be used in cases where we may want to extend a current Boolean model by 

adding more genes to it, BTR was used to train and add two additional genes to the Krumsiek 

model. The resulting trained Krumsiek model (Figure 2.10D & Figure 2.11B) contains 3 deleted 

gene interactions and 12 added gene interactions when compared to the original Krumsiek 

model. For the two additional genes Ldb1 and Lmo2, BTR has predicted gene interactions 

among Ldb1, Lmo2, Fli1, Gata1 and Gata2. Previous studies have shown that genome-wide 

binding profiles for Lmo2, Gata2 and Fli1 show significant overlaps (Wilson et al. 2010), and 

that Ldb1 also occupies nearly all of the binding sites of Gata2 (Li et al. 2011), consistent with 

a model where these TFs engage in combinatorial interactions. The state space of the trained 

Krumsiek model contains 21 states when simulated using the initial state used in the original 

study (Figure 2.12B). The two steady states reachable in this state space may correspond well 

to cell populations that are primed for the erythrocyte and myeloid lineage divergence. When 

examining the steady states reachable from all possible initial states, the trained Krumsiek 

model produces additional steady states when compared with the original model due to the 

addition of two extra genes (Figure 2.13B), which may correspond to intermediate cell types 

along the erythro-myeloid differentiation pathway.  

 

Taken together, the result suggests that both the trained Bonzanni and Krumsiek models have 

been trained by BTR to predict new gene interactions which give rise to interesting state 

spaces and steady state properties. Note that the state space of the trained Bonzanni model 

is substantially larger than the state space of the trained Krumsiek model due to the denser 

interactions among genes and a lower proportion of inhibitory edges in the trained Bonzanni 

model. 
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Figure 2.10   BTR predicts gene interactions by training the Bonzanni and Krumsiek 
Boolean models.  
(A) Original Bonzanni model. (B) Trained Bonzanni model. (C) Original Krumsiek model. (D) 
Trained Krumsiek model. Round orange nodes indicate genes, square black nodes indicate 
AND gates that combine the two input gene interactions. Blue edges indicate activation 
interactions, red edges indicate inhibition interactions. Dashed lines in the original models 
indicate edges that are present in the original models, but are removed in the trained models. 
Dashed lines in the trained models indicate edges that are added to the trained models and 
are not present in the original models. 
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Figure 2.11   BTR-trained Boolean models.  
(A) Trained Bonzanni model, (B) Trained Krumsiek model.  

 

 

Figure 2.12   State spaces for the trained Bonzanni and Krumsiek Boolean models.  
(A) State space of trained Bonzanni model. (B) State space of trained Krumsiek model. Blue 
nodes represent transitional model states, while pink nodes represent steady model states. 
Each arrow indicates transitions among states. 

A B 

A B 



65 
 

 

 

Figure 2.13   Steady states for the Bonzanni and Krumsiek Boolean models.  
(A) Steady states of Bonzanni models. (B) Steady states of Krumsiek models. 

 

 

2.6 Conclusions 

 

The BTR model learning algorithm has been developed for training asynchronous Boolean 

models using single-cell expression data. The key component in BTR is a novel Boolean state 

space (BSS) scoring function, which BTR uses to infer a Boolean model through an 

optimisation process. The BSS scoring function has been shown to be capable of giving 

meaningful scores to networks when compared with the BIC scoring function for Bayesian 

networks. When compared to other network reconstruction algorithms, BTR gave the best 

result when initial networks were provided. In two case studies, BTR was able to suggest 

modifications to existing Boolean models based on information from single-cell qPCR and 

RNA-Seq data. 
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2.7 Materials and methods 

 

2.7.1 Data preprocessing 

 

BTR is capable of handling all types of expression data, including qPCR and RNA-Seq. 

Expression data should be processed and normalised before being used in BTR. In BTR, the 

expression data is further processed in order to facilitate score calculation by the BSS scoring 

function. Firstly, if the input data is qPCR expression data, it should be inversed such that the 

gene with a low expression level should have a low value and vice versa. Finally, the 

expression values for each gene in the data are scaled to continuous values with a range of 

0 ≤ 𝑥 ≤ 1.  

 

2.7.2 F-score as a measure of the performance of network inference 

algorithms 

 

F-score, which is the harmonic average of precision and recall, represents precision and recall 

concisely (Sokolova et al. 2006), is often used to assess the performance of network inference 

algorithms. Precision denotes the proportion of edges that are truly present among all edges 

classified as present, while recall denotes the proportion of edges that are truly present among 

all correctly classified edges (including both edges that are present and absent) (Bockhorst & 

Craven 2005). The calculations were performed on a directed adjacency matrix. 

 

Precision is defined as: 

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Where 𝑇𝑃 = true positive and 𝐹𝑃 = false positive. 

 

Recall is defined as: 

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where 𝑇𝑃 = true positive and 𝐹𝑁 = false negative. 
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F-score is defined as: 

𝐹 =
2𝑝𝑟

𝑟 + 𝑝
 

 

2.7.3 Synthetic data for benchmarking network inference algorithms 

 

The synthetic data used for comparing scoring functions and network inference algorithms 

consist of true networks, expression data and lists of modified networks. The true networks 

and expression data were generated using GeneNetWeaver version 3.1.2 (Schaffter et al. 

2011). The true networks contain 10 genes each and were extracted from the gene network of 

yeast. Each true network generated by GeneNetWeaver was then categorised into acyclic and 

cyclic networks. A total of five acyclic and five cyclic true networks were used in this study. The 

expression data were generated using ordinary and stochastic differential equations based on 

the true networks. A single time series expression data with 1000 observations were generated 

per true network, and the expression data were simulated under steady state wild type 

condition. A coefficient of 0.05 was used for noise term in the stochastic differential equations. 

The synthetic expression data as generated by GeneNetWeaver is used as non zero-inflated 

data. In addition, the synthetic expression data is converted into a zero-inflated data to simulate 

drop-outs in single-cell expression data by calculating the probability of a reading being a drop-

out (i.e. zero value) based on its expression level. The probability of a reading being a drop-

out, 𝑝𝑑, is modelled using the following equation: 

𝑝𝑑  =  2−𝑐𝑦 

Where 𝑐 = a constant (), and 𝑦 = a reading of the expression level of a particular gene. In this 

study, 𝑐 = 6 was estimated empirically by quantifying the distribution of gene expression 

values observed in real single-cell expression data. 

 

The lists of modified networks were generated in R using the bnlearn package (Scutari 2010) 

for Bayesian networks and the BTR package for Boolean models. The modified networks were 

generated by modifying the number of edges that differ from the true network, ranging from 2 

edges up to 40 differing edges. The modified Bayesian networks and the modified Boolean 

models were generated separately due to different underlying structural constraints imposed 

by each framework. In Bayesian framework all networks must be directed acyclic graphs, while 
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Boolean models do not have such restrictions. In contrast, Boolean models require explicit 

specification of activation and inhibition edges, while Bayesian networks handle activation and 

inhibition implicitly without modifying the edges. Although the generation of modified Bayesian 

networks and Boolean models were done separately and therefore they are not identical, all 

modified networks contain the same number of differing edges (2 to 40 edges) with respect to 

the true network. Note that the differences in edges for acyclic modified networks are not 

cumulative, due to difficulties in generating a directed acyclic graph with cumulative edge 

differences. The differences in edges for cyclic modified networks are also not cumulative to 

maintain consistency with the acyclic modified networks. For synthetic data, the initial state 

used for the simulation of Boolean models is the expression values at time 𝑡 = 0.  

 

2.7.4 Real experimental data from the haematopoietic system 

 

Two Boolean models of haematopoiesis were used as initial models for model learning in this 

study, namely Krumsiek (Krumsiek et al. 2011) and Bonzanni models (Bonzanni et al. 2013). 

The update functions of both models were converted into functions with an activation clause 

and an inhibition clause, in which each of the clauses are individually expressed in disjunctive 

normal form. Note that one of the nodes (EgrNab) in the Krumsiek model comprises of three 

different genes, Egr-1, Egr-2 and Nab-2. The initial states used in the simulation were obtained 

from both papers respectively. 

 

A single-cell qPCR data and a single-cell RNA-Seq data, both obtained from Wilson et al. 2015 

(Wilson et al. 2015), were used for model learning. The single-cell qPCR data contain 44 genes 

from 1626 cells (992 HSCs, 178 LMPPs, 147 CMPs, 185 GMPs and 124 MEPs), while the 

single-cell RNA-Seq data are collected from 96 HSCs. The expression data are processed and 

normalised as described in the original paper. For Bonzanni and Krumsiek models, the initial 

states used for the simulation Boolean models are obtained from each paper respectively. 

 

2.7.5 Network inference algorithms and analyses software used 

 

BIC and its associated hill-climbing algorithm are implemented in bnlearn (Scutari 2010). 

BestFit (Lähdesmäki et al. 2003) is an algorithm for inferring Boolean models under 

synchronous framework implemented in BoolNet (Müssel et al. 2010). ARACNE (Margolin et 
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al. 2006) and CLR (Faith et al. 2007) are inference algorithms for inferring relevance networks 

based on mutual information. bc3net (de Matos Simoes & Emmert-Streib 2012) and GeneNet 

(Opgen-Rhein & Strimmer 2007) are inference algorithms based on Bayesian networks, while 

GENIE3 is a type of tree-based methods (Huynh-Thu et al. 2010). 

 

Plots in this study were generated using ggplot2 (Wickham 2009), except network plots that 

were generated using Cytoscape (Shannon 2003) and heat maps that were generated using 

gplots (Warnes et al. 2015). Steady state analysis was performed using genYsis (Garg et al. 

2008), which search for steady states reachable from all possible initial states. 
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3 Inferring gene regulatory networks with a 

pseudotime-ordered autoregression-based 

method 

 

3.1 Background 

 

In this chapter, a new framework for gene network inference, which is based on the 

autoregression formalism, is described. Autoregression is particularly suitable for predicting 

causal gene interactions using expression data with time information. This is because 

autoregression is a well-established method used widely for time series analysis, particularly 

in the field of economics (Granger 1981; Enders 2014). The fundamental concept of the 

autoregression framework is that if variable a affects variable b, a fluctuation in the value of 

variable a will lead to a fluctuation in the value of variable b at a later time point, assuming 

everything else is constant. This concept of inferring causality among variables is known as 

the Granger causality (Granger 1969). In the context of gene network inference, a target gene 

is regressed against all other genes with an autoregression formulation, and any non-zero 

coefficients inferred suggests the presence of gene interactions between the other genes with 

the target gene. 

 

The typical implementation of autoregression, which uses the simple ordinary least square 

method for inferring coefficient, works very well with a large number of time points or samples. 

However it does not perform variable selection, which leads to an implicit assumption that all 

genes interact with all other genes and therefore is not suitable for gene network inference. To 

overcome this problem, regularisation terms are introduced to enable variable selection in 

penalised autoregression, such that the inferred coefficient matrix is sparse. While the use of 

regularisation enables variable selection, the presence of regularisation terms makes the 

calculation of uncertainty in inferred coefficients difficult. One way to ensure that the inferred 

coefficients are robust is through the use of random sampling techniques such as cross-

validation and stability selection. 

 

Here, I implemented stable penalised vector autoregression, SPVAR, which combines Elastic 

net regularisation with stability selection. SPVAR requires time-ordered expression data to 
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infer a gene network, but most single-cell expression data do not contain high resolution time 

information. One way to overcome this problem is to introduce time information into the single-

cell expression data by performing pseudotime inference. The pseudotime inference algorithm 

used here is diffusion map-diffusion pseudotime (DM-DPT), which is built on top of the diffusion 

map (Haghverdi et al. 2015) and diffusion pseudotime (Haghverdi et al. 2016) algorithms. 

SPVAR and DM-DPT were then used together as part of a single-cell network inference 

framework that works on single-cell RNAseq.  

 

The single-cell network inference framework contains four main steps (Figure 3.1). The first 

step converts the single-cell RNAseq data into an expression data ordered by pseudotime, 

which is done by using DM-DPT. As the total number of genes is too big to be used for network 

inference, one way to reduce the number of genes to work with is to identify the genes that are 

differentially expressed as a function of pseudotime. This is done by performing likelihood ratio 

tests on negative binomial spline fitted models. Once the differentially expressed genes are 

identified, spline fit imputation is used to remove technical noise from the expression data. 

Finally, SPVAR can be used to infer gene networks on the pseudotime-ordered denoised 

single-cell RNAseq data. 

 

 

Figure 3.1   Single-cell network inference framework. 

 

This chapter describes the single-cell network inference framework evaluated with synthetic 

data, with particular focus on the pseudotime inference method DM-DPT and the network 

inference algorithm SPVAR. Both DM-DPT and SPVAR are defined in Section 3.2. In Section 

3.3, DM-DPT is shown to be superior to other existing pseudotime methods when tested with 

synthetic data. Section 3.5 shows the performance of SPVAR as a conservative network 

inference method that predicts fewer false positives than other network inference methods. In 
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Section 3.6, the entire network inference framework, which also includes pseudotime 

differential expression analysis and technical noise reduction, is shown to be a feasible 

framework for gene network inference from single-cell expression data. The chapter then ends 

with conclusions in Section 3.7, and materials and methods in Section 3.8.  
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3.2 Frameworks of PCA-based and DM-DPT pseudotime 

inference methods 

 

This section describes the frameworks of the PCA-based and DM-DPT pseudotime inference 

methods. 

 

3.2.1 PCA-based pseudotime trajectory 

 

The PCA-based pseudotime inference method is implemented to infer a single developmental 

trajectory from a starting state to an ending state using single-cell expression data. In PCA-

based pseudotime inference method, PCA was firstly performed on the log2(𝑥 + 1)-

transformed single-cell expression data, and the two principal components that best represent 

the developmental progression of cells are selected, which are usually from the first few 

principal components. Note that the expression data should be preprocessed and normalised 

as in a typical single-cell RNAseq processing pipeline. A polynomial curve with a degree of 3 

was then fitted on the cells in the two dimension components representation. 

 

Each cell was then projected onto the fitted curve at the projected point which has the shortest 

distance to the original coordinate of the cell (Figure 3.2). The projection was done analytically 

by solving for the minimum Euclidean distance between the original and the projected cell 

coordinates. Given a fitted curve of 𝑦 = 𝛽3𝑥3 + 𝛽2𝑥2 + 𝛽1𝑥 + 𝛽0, the Euclidean distance 𝑑𝑃 

between the original coordinate 𝑥1, 𝑦1 and the projected coordinate 𝑥2, 𝑦2 is given by 𝑑𝑃 =

√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. The values of 𝑥2, 𝑦2 can then be obtained by solving for the first order 

differential of 𝑑𝑃 in the form of 𝑑𝑃
′ = 0, which is equivalent to the equation for a line that is 

perpendicular to the curve at the point 𝑥2, 𝑦2 and passed through the point 𝑥1, 𝑦1. Since the 

log2(𝑥 + 1)-transformed expression data and hence the PCA coordinates are bounded in 

terms of their numeric values, all possible solutions of 𝑥2, 𝑦2 were iteratively tested to find a 

coordinate 𝑥2, 𝑦2 that gives the minimum 𝑑𝑃. This 𝑥2, 𝑦2 coordinate was then regarded as the 

projected cell coordinate. 
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Figure 3.2   Orthogonal projections of cells onto the fitted curve in a dimensionally 
reduced space.  
The grey points represent the original coordinates of the cells, while the blue points represent 
the projected coordinates of the cells. The red lines indicate the projections of cells onto the 
black fitted curve. 

 

All projected cells were located on a single path, therefore the ordering among cells can be 

obtained by the orders of their projections on the curve. The two cells on the two ends of the 

path were identified as the tip cells, which can be further separated as the start and the end 

cells if external biological information about the tip cells (e.g. cell types) are available. The cells 

can then be ordered relative to the starting cell. Once the cell order is obtained, the next step 

involves inferring the distance between every pair of ordered cells, which can also be 

understood as the pseudotime between a pair of ordered cells. The pseudotime is calculated 

based on the distance between cells in a PCA represented by two principal components. 

Formally, the pseudotime 𝑡𝑃 between two cells 𝑐1 and 𝑐2 was defined as the distance on the 

curve 𝑑𝐶 between the PCA coordinates for projected cells 𝑐̂1 and 𝑐̂2. 𝑑𝐶 between 𝑐̂1 and 𝑐̂2 is 

given by 

𝑑𝐶 = 𝑡𝑃 = ∫ √1 + (𝑦′)2

𝑥2

𝑥1

 

Where 𝑦′ is the first order differential of the curve 𝑦, 𝑥1 and 𝑥2 correspond to the x-coordinates 

of 𝑐̂1 and 𝑐̂2 respectively. 
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3.2.2 DM-DPT pseudotime trajectory 

 

Besides the PCA-based pseudotime inference method, diffusion map-diffusion pseudotime 

(DM-DPT) pseudotime inference method was also implemented. DM-DPT is based on two 

related algorithms, diffusion map and diffusion pseudotime. Diffusion map (DM) is similar to 

kernel principal component analysis (PCA), which uses a kernel to represent the points in a 

low-dimensional non-linear subspace (Haghverdi et al. 2015). A normalised isotropic Gaussian 

kernel is used in DM to calculate a transition probability matrix based on the Euclidean distance 

in gene expression space. The idea of the transition probability as a diffusion process allows 

the modelling of the data as a continuously changing process, rather than other non-linear 

approaches such as tSNE which tends to split the data into disjoint groups.  

 

Diffusion pseudotime (DPT) is computed based on the same transition probability matrix 

calculated for DM (Haghverdi et al. 2016). In DM, a few dominant eigenvectors of the transition 

probability matrix are used for the purpose of dimensionality reduction. However in DPT, the 

entire transition probability matrix is used to compute an accumulated transition probability 

matrix, which contains the sum of transition probabilities for each pair of cells across random 

walks of all lengths. DPT distance between any two cells is then defined as the Euclidean 

distance between the accumulated transition probabilities of the two cells.  

 

The main motivation for building on top of DPT to yield DM-DPT is that while DPT gives the 

pseudotime between all pairs of cells, it does not explicitly specify the best approach to connect 

the cells into a connected graph, i.e. a trajectory. The easiest way is to iteratively connect two 

cells that share the minimum distance as measured by pseudotime. However this does not 

yield a good result as tested on a synthetic data (Section 3.3). An alternative way to construct 

a trajectory from the cells is to obtain the cell ordering information from the DM, as implemented 

in DM-DPT. The reason DPT is used for computing pseudotime rather than using the direct 

distances among cells on a diffusion map is because DPT considers all diffusion components 

when computing the pseudotime, while distances computed from a diffusion map only use 

information from two diffusion components. It should be noted that DM-DPT relies on two 

assumptions. Firstly, the diffusion components used in DM should ideally contain only one or 

multiple components that represent time progression, as well as one or multiple components 

that represent changes in gene expression due to time progression. Secondly, DM-DPT only 
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works on a single unbranched trajectory, although this issue can be partly overcome by running 

DM-DPT multiple times separately on each of the branches. 

 

The exact implementation is the same as the implementation of PCA-based pseudotime 

inference method as described in Section 3.2.1, with only two major differences. Firstly, a DM 

is used in this method in place of a PCA. Secondly, the pseudotime in this method is calculated 

using DPT rather than calculating direct distances among cells on the DM. Formally, the 

pseudotime 𝑡𝑃 between two cells 𝑐1 and 𝑐2 was defined as the DPT distance between cells 𝑐1 

and 𝑐2. 

 

Theoretically a higher number of dimension components can work with this method, although 

the difficulties come in selecting the best dimension components that represent developmental 

progression, as well as the extra computational efforts required to compute projections of cells 

onto the fitted surface in a high dimensional setting. Note that no branch point identification is 

performed by DM-DPT, so this method will only work on a single trajectory path. Outlier cells 

that cluster separately from other cells for technical reasons should be excluded from the 

pseudotime inference analysis. 
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3.3 Testing PCA-based and DM-DPT pseudotime using 

synthetic data 

 

In order to assess the performance of the proposed DM-DPT pseudotime inference methods, 

six independent synthetic time series gene expression datasets, which contain 250 cells and 

either 1000 or 3000 genes, were generated by GeneNetWeaver as described in Section 3.8.1. 

Three of the synthetic expression datasets consist of 1000 genes, while the other three 

synthetic expression datasets consist of 3000 genes. Each dataset varies in terms of the 

structure and kinetics of the underlying synthetic gene regulatory networks, as well as the 

genes that are perturbed. Note that the synthetic expression data were simulated from an 

underlying gene regulatory network, and hence the perturbation of the expression of one gene 

will lead to perturbations of the expression of downstream genes, thereby representing a 

synthetic system that resembles a biological cell. 

 

The synthetic expression data is a time series data, in which the expression state at a previous 

time point is used to simulate the expression state at the current time point. Each expression 

state consists of the expression values of all genes, therefore can be viewed as a cell which is 

represented by the expression state. As time progresses, the expression state of the cell 

changes according to the underlying gene interactions and perturbations. Note that the 

described process is very similar to cells that undergo systematic changes in expression state 

due to biological development, which is known to be influenced by both gene interactions and 

environmental factors. In order to capture the changes in expression states in cells along a 

developmental process, single-cell expression profiling experiments such as single-cell 

RNAseq are often performed. Pseudotime inference algorithms are then used to resolve the 

temporal order of cells according to their expression states, which then allows the 

understanding how gene expression changes reflect the developmental process. Therefore 

these synthetic expression datasets can be used as a robust framework to assess the 

performance of pseudotime inference algorithms. 

 

3.3.1 Technical properties of synthetic expression data 

 

Before using the synthetic expression data for performance assessment, it is important to 

investigate the technical properties of the underlying data. The synthetic expression data 
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represent the expression states of cells collected along a single developmental trajectory, in 

which a proportion of genes are either upregulated or downregulated while the remaining 

genes remain constant (Table 3.1). The perturbation strengths for upregulation and 

downregulation are randomly generated, which ranges in proportion terms from 0 (no effect on 

gene expression) to 1 (complete turn off of gene expression). Note that the expression values 

of genes not directly affected by perturbations may also change as time progresses, due to 

interactions among the genes. 

 

The original synthetic expression data as generated by GeneNetWeaver are stochastic and 

contain a small amount of noise, but in general the original synthetic expression data represent 

the ideal expression data that suffer from very little technical bias. In order to simulate the 

technical bias experienced in single-cell expression data, drop-outs and overdispersion noise 

were introduced into the original synthetic expression data to generate a separate set of data 

with single-cell noise, hereby denoted as single-cell synthetic expression data (Section 3.8.1).  

 

Datasets Number of genes Perturbation strength 

Upregulated Downregulated Unchanged Minimum  Median Maximum 

Dataset 1 171 (0.17) 192 (0.19) 637 (0.64) 0.0014 0.3607 0.9929 

Dataset 2 149 (0.15) 163 (0.16) 688 (0.69) 0.0022 0.3829 0.9777 

Dataset 3 184 (0.18) 171 (0.17) 645 (0.65) 0.0008 0.3664 0.9829 

Dataset 4 479 (0.16) 532 (0.18) 1989 (0.66) 0.0001 0.3981 0.9993 

Dataset 5 483 (0.16) 502 (0.17) 2015 (0.68) 0.0004 0.3741 0.9974 

Dataset 6 477 (0.16) 543 (0.18) 1980 (0.66) 0.0018 0.3776 0.9975 

Table 3.1   Summary of technical properties of synthetic expression data.  
Values in brackets besides number of genes indicate the proportion relative to the total, 
rounded to 2 decimal places. The perturbation strength is represented in terms of 
proportions, which range from 0 to 1. 

 

Diffusion map (DM) was performed as a low dimensional visualisation of the changes in 

expression states in the cells over time on both original and synthetic expression data (Figure 

3.3). In general, it can be seen from Figure 3.3 that diffusion component 1 corresponds to the 

progression of cells in time as driven by the underlying changes in expression due to 

perturbations. For the original synthetic expression data, DM can be seen to captured the 

progression of cells very well, with almost all the cells lying on a perfect curve. In the single-

cell synthetic expression data, DM can still capture the progression of cells rather well in a 

diffused arc even with the extra noise present. Note that although only the DM plots of two 

datasets are shown here, the results of both datasets are very similar and are representative 

of the rest of the datasets in terms of DM plots.  
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Figure 3.3   Diffusion map plots of the original and single-cell synthetic expression 
dataset 1 and 4.  
(A) original synthetic dataset 1, (B) original synthetic dataset 4, (C) single-cell synthetic 
dataset 1, (D) single-cell synthetic dataset 4. The blue colour gradient indicates the time 
progression from starting cells (dark blue) to ending cells (light blue). Synthetic dataset 1 
consists of 250 cells and 1000 genes, while synthetic dataset 4 consists of 250 cells and 
3000 genes. 

 

3.3.2 Assessing performance of pseudotime inference algorithms on 

original and single-cell synthetic expression data 

 

With the technical properties of the original and single-cell synthetic expression data explored, 

pseudotime inference algorithms were run on these datasets to assess their performance. The 

basis for the performance assessment is that since the synthetic expression data is simulated 

in a sequential manner for each time point, the true cell ordering and time elapsed are known 

for each synthetic expression data. Therefore by comparing the true and inferred cell ordering, 

as well as the true time and inferred pseudotime, it is possible to objectively and quantitatively 

A B 

C D 
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assess the performance of pseudotime inference algorithms. It is worth noting that the kinetics 

of gene expressions are highly non-linear, both in terms of responses to external perturbations 

and gene interactions. This leads to an interesting test case where the ability of pseudotime 

inference algorithms in dissecting non-linearity in the system can be tested. 

 

The algorithms were assessed by two performance criteria, namely the cell ordering error and 

the pseudotime error, using all six synthetic datasets (Figure 3.4). The cell ordering error is 

quantified by the absolute difference between the true and inferred cell order, while the 

pseudotime error is measured by the absolute difference between the true and inferred 

pseudotime. 

 

Seven pseudotime inference algorithms were tested here, which are Monocle2, TSCAN, 

SCORPIUS, SLICER, DPT, PCA-based pseudotime and DM-DPT. Monocle2 is based on 

principal graph-based method, DDRTree, for dimensionality reduction, and minimum spanning 

tree for trajectory inference (Qiu et al. 2017). TSCAN is based on principal component analysis 

and model-based clustering for dimensionality reduction, and travelling salesman problem 

(TSP) algorithm for trajectory inference (Ji & Ji 2016). SCORPIUS is based on 

multidimensional scaling for dimensionality reduction, and principal curve for trajectory 

inference (Cannoodt, Saelens, Sichien, et al. 2016). SLICER is based on locally linear 

embedding for dimensionality reduction, and shortest connected graph for trajectory inference 

(Welch et al. 2016). DPT is based on diffusion map for dimensionality reduction (Haghverdi et 

al. 2015; Haghverdi et al. 2016). In its original implementation, DPT only calculates a 

pseudotime distance matrix among all cells, and does not explicitly specify an ordering of cells 

in a trajectory. The DPT method used in comparison here was based on this cell distance 

matrix, and the trajectory was generated by assuming the order of each cell is based on their 

respective cell distance to the first cell in the trajectory.  

 

PCA-based pseudotime is included here as a control, because it represents one of the simplest 

pseudotime inference algorithms possible. Wanderlust/Wishbone (Bendall et al. 2014; Setty et 

al. 2016) and embeddr (Campbell et al. 2015) pseudotime inference algorithms were also 

tested on these test datasets. However, complete results could not be obtained as 

implementation errors arise when running these algorithms on certain datasets, likely due to 

the relatively smaller number of cells present in the test datasets.  
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When assessed using the original synthetic expression data which is less noisy and does not 

possess single-cell specific noise (Figure 3.4A & B), the top three pseudotime inference 

algorithms with the least cell ordering errors were SLICER, DPT and DM-DPT. All top three 

algorithms achieved near perfect results when inferring cell orders using the original synthetic 

expression data. In terms of pseudotime error, the top three algorithms were DM-DPT, DPT 

and Monocle2. In the case of single-cell synthetic expression data, the top three algorithms 

were SCORPIUS, DM-DPT and PCA-based pseudotime in terms of cell ordering errors (Figure 

3.4C & D). In terms of pseudotime errors, the top three algorithms were DM-DPT, Monocle2 

and PCA-based pseudotime. It should be noted that both TSCAN and SLICER always assume 

equidistant pseudotime between each pair of consecutive cells, therefore the results from 

TSCAN and SLICER were not included when pseudotime errors were assessed because they 

will always get 0 error due to the underlying true time having equal time intervals. 

 

In summary, DM-DPT is consistently among the best pseudotime inference algorithms when 

tested on both original and single-cell synthetic expression data. This is especially true when 

assessing the pseudotime errors, in which DM-DPT is the top algorithm largely due to its ability 

in dissecting the non-linear gene expression changes. Among the two custom implemented 

methods, PCA-based pseudotime performed badly in both criteria due to the linear nature of 

PCA and the use of only 2-dimensional PCA space for cell ordering and pseudotime inference. 

 

 

 

 

 

 

 

 

 



82 
 

 

 

Figure 3.4   Cell ordering and pseudotime errors of pseudotime inference algorithms 
using the original and single-cell synthetic expression datasets.  
(A) Cell ordering errors on original synthetic datasets, (B) Pseudotime errors on original 
synthetic datasets, (C) Cell ordering errors on single-cell synthetic datasets, (D) Pseudotime 
errors on single-cell synthetic datasets. 

 

3.3.3 Assessing performance of pseudotime inference algorithms on 

sparsified synthetic expression data 

 

Besides the presence of strong technical noise, expression profiling experiments can seldom 

sample the complete trajectory of expression state changes, due to both random sampling 

effects and experimental constraints. Random sampling effects can arise if the number of cells 

which is sampled for expression profiling is not enough to cover most of the trajectory, 

especially when the actual number of cells present is different along different developmental 

stages of the trajectory. This results in bias representations of the actual developmental 

trajectory. In addition, experimental constraints such as monetary issue can results in only 

certain stages of the trajectory from being sampled. This results in gaps in the expression data 

A B 

C D 
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that correspond to the stages of trajectory that are not sampled. Therefore, it is important to 

evaluate pseudotime inference algorithms on synthetic expression data that also exhibit 

missing samples besides technical noise.  

 

A set of synthetic expression data with missing samples was derived from the single-cell 

synthetic expression data, which is denoted as sparsified single-cell synthetic expression data 

(Section 3.8.1). Sparsified single-cell synthetic expression data possess missing samples in 

two forms. Firstly, some cells were randomly excluded and considered as missing along the 

entire trajectory. Secondly, huge gaps that represent entire sections of the trajectory that are 

not sampled were introduced by removing groups of adjacent cells on the trajectory. As before, 

the sparsified single-cell expression data were visualised through DM (Figure 3.5), in which 

the first diffusion component still represents the cell progression in the trajectory despite having 

a large amount of missing cells. There are fewer cells on the plots when compared to Figure 

3.3 due to the missing cells, and there are also two obvious gaps in the plots which correspond 

to two sections of the trajectory that are not sampled. 

 

 

Figure 3.5   Principal component analysis and diffusion map plots of the sparsified 
single-cell synthetic expression dataset 1 and 4.  
(A) DM of sparsified single-cell synthetic dataset 1, (B) DM of sparsified single-cell synthetic 
dataset 4. Synthetic dataset 1 consists of 250 cells and 1000 genes, while synthetic dataset 
4 consists of 250 cells and 3000 genes.  

 

The same set of seven pseudotime inference algorithms were tested on sparsified single-cell 

synthetic expression data, with cell ordering and pseudotime errors calculated as before 

(Figure 3.6). In terms of cell ordering errors, DM-DPT, SCORPIUS and PCA-based 

pseudotime were the top three performers. In terms of pseudotime errors, DM-DPT, Monocle2 

A B 
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and PCA-based pseudotime were the top three performers. It is worth noting that DM-DPT has 

the most consistent cell ordering and pseudotime results among all algorithms, with standard 

deviations of 385.97 and 2.24 respectively. In the presence of sparsified synthetic expression 

data, the performance of SLICER deteriorates drastically, which is due to the algorithm 

excluding cells from cell ordering and pseudotime inferences. In addition, the gaps in sparsified 

synthetic expression data may also cause each groups of cells separated by gaps to be 

categorised as a separate branch, especially for algorithms that rely on an additional clustering 

step. Note that since all synthetic data only contains a single trajectory, branch inference in the 

pseudotime inference algorithms was turned off where possible and the branch detection 

capability of the algorithms was not assessed here. 

 

 

 

Figure 3.6   Cell ordering and pseudotime errors of pseudotime inference algorithms 
using the sparsified single-cell synthetic expression datasets.   
(A) cell ordering errors on sparsified single-cell synthetic datasets, (B) pseudotime errors on 
sparsified single-cell synthetic datasets. 

 

In summary, DM-DPT offered the best performance both in terms of inferring cell order and 

pseudotime in sparsified single-cell synthetic expression data, which suggests that DM-DPT is 

capable of inferring robust single unbranched trajectory from single-cell RNAseq data. 
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3.4 Framework of SPVAR gene regulatory network 

inference algorithm 

 

This section describes the framework of the SPVAR gene regulatory network inference 

algorithm. 

 

3.4.1 Definitions of stable penalised vector autoregressive model 

 

The stable penalised vector autoregressive (SPVAR) model has been developed to infer gene 

regulatory network by using time-series gene expression data. The core concept that underlies 

SPVAR is the Granger causality, which basically states that causes must occur before the 

effects (Granger 1969). That is a change in the gene expression of gene A, 𝑥𝐴, at time t must 

be due to an event that occurs before time t, possibly due to the change of the gene expression 

of gene B, 𝑥𝐵, at time t-1. Such causal relationships can be detected through modelling time-

series gene expression data using an autoregressive model, which is a well-established 

regression-based method for understanding time-series data widely used in economics 

(Granger 1981) and neuroscience (Eichler 2005). Hence by modelling time-series expression 

data using autoregression-based methods such as SPVAR, the resulting fitted model 

corresponds to a reconstructed gene regulatory network that can explain the temporal changes 

in gene expression due to gene interactions. 

 

SPVAR works on both bulk time series and single-cell expression data, however it is designed 

for single-cell expression data due to the increased data resolution provided by the higher 

number of samples available. The effect of single-cell specific noise can be mitigated by 

running SPVAR on pseudo-expression values, which are estimated by fitting splines on actual 

expression values in a pseudotime trajectory. In the following subsections, I will describe the 

framework, which includes definitions and principles, that underlies SPVAR. 

 

3.4.1.1 Vector autoregressive model 

 

A stable penalised autoregressive model is a generalisation of a regression model, which can 

be represented in a general linear form as 
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𝑦 =  𝛽𝑥 +  𝜀 , 

Or a non-linear form as 

𝑦 =  𝑓(𝑧) +  𝜀 , 𝑧 = 𝛽𝑥, 

Where y is the response variable, x is the independent variable, β is the regression coefficient, 

𝑓(. ) represents the link function and the errors ε are assumed to be independently and 

identically distributed with 𝜀 ~ 𝑁(0, 𝜎2). 

 

A simple regression can be generalised into an autoregressive model, which is used to model 

time-series data.  In a first order autoregressive model AR(1), the response variable 𝑥𝑡 at time 

t is regressed on its past value with a time lag of 1, 𝑥𝑡−1. Note that while the errors 𝜀𝑡 are still 

normally distributed with mean 0 and constant variance, they are no longer independent from 

one another. 𝛽0 is a variable-specific constant. 

𝑥𝑡 =  𝛽1𝑥𝑡−1 + 𝛽0 + 𝜀𝑡   

 

An autoregressive model can be further generalised into a multivariate vector autoregressive 

model where p variables are represented as 𝑥𝑖, 𝑖 ∈ {1, 2, … , 𝑝}, with each 𝑥𝑖 having an equation 

of the form stated below. 

𝑥𝑖,𝑡 =  ∑ 𝛽𝑖𝑥𝑖,𝑡−1

𝑝

𝑖=1

+ 𝛽0 +  𝜀𝑡 

 

A vector autoregressive model can be used to describe a gene regulatory network, where each 

variable 𝑥𝑖 represents the expression level of a gene and 𝛽𝑖 describes the interaction among 

the genes. For any regression model, the key is to estimate the values of β coefficients by 

minimising the sum of the squared differences between the observed and fitted data.  

𝛽̂ = arg min
𝛽

∑(𝑦𝑖  − 𝛽𝑖𝑥𝑖)2

𝑝

𝑖=1

 

= arg min
𝛽

∑ 𝜀𝑖
2

𝑝

𝑖=1

 

In a simpler regression model, the values of β coefficients can be estimated by ordinary least 

squares. However for more complex regression models that includes penalty terms, β 

coefficients have to be estimated through an optimisation process, such as gradient descent. 
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3.4.1.2 Variable selection via penalty terms 

 

When fitting any model, variable or feature selection is a very important step in determining 

what variables should be included in the fitted model. The aim of variable selection is to select 

a subset of variables with the minimum number of variables, 𝑃𝑚𝑖𝑛 where 𝑃𝑚𝑖𝑛 ⊂ 𝑃, that can 

best explain the data observed. In the context of inferring gene regulatory network, this 

minimum set of variables corresponds to the set of the most important genes whose expression 

values influence the expression value of a target gene. Variable selection is especially 

important for gene regulatory network inference, as the number of genes in a complex 

biological system, such as mice, far exceeds the number of samples available. 

 

There are many ways in which variable selection can be achieved, such as through stepwise 

or criterion-based procedures (Guyon & Elisseeff 2003). In a generalised linear model, penalty 

terms can be introduced into the model fitting process as regularisation to perform variable 

selection. Commonly used regularisation methods include Lasso (L1-norm), Ridge (L2-norm) 

and Elastic net (L1L2-norm). In summary, Lasso regularisation tends to set less important 

regression coefficients to zero, while Ridge regularisation tends to shrink the regression 

coefficients of correlated variables together. In SPVAR, the regularisation method used is the 

Elastic net, which offers a mixture of Lasso and Ridge regularisations that is controlled by the 

parameter α.  α = 0.5 is used in this algorithm, which means it has equal contributions from 

Lasso and Ridge regularisations. This enables Lasso regularisation to produce a sparse matrix 

where most 𝛽̂𝑖 = 0, while Ridge regularisation helps limit the 𝛽̂𝑖 values when many of the 

variables are highly correlated (Friedman et al. 2009). 

 

With Elastic net regularisation, β coefficients can be estimated by minimising the following 

objective function. 

𝛽̂ = arg min
𝛽

∑(𝑦𝑖  − 𝛽𝑖𝑥𝑖)2

𝑝

𝑖=1

+  𝜆 [𝛼‖𝛽‖1 +  (1 − 𝛼)‖𝛽‖2] 

= arg min
𝛽

∑(𝑦𝑖  − 𝛽𝑖𝑥𝑖)2

𝑝

𝑖=1

+  𝜆 [𝛼 ∑|𝛽𝑖|

𝑝

𝑖=1

+ (1 − 𝛼)√∑|𝛽𝑖|2

𝑝

𝑖=1

] 
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Where 𝜆 is a parameter that specifies the degree of regularisation,  𝛼 is a parameter that 

specifies the mixed contribution of L1 and L2-norm, ‖𝛽‖1 corresponds to L1-norm and ‖𝛽‖2 

corresponds to L2-norm. 

 

SPVAR uses the GLMNET R package, which is based on cyclical coordinate descent 

optimisation, to estimate the 𝛽̂ with Elastic net penalty (Friedman et al. 2009). 𝛽̂ is estimated 

by fitting by a regularisation path which consists of a sequence of 𝐾 𝜆 values, where 𝐾 = 100. 

𝜆𝑚𝑎𝑥 is defined as the 𝜆 value when all 𝛽̂ = 0, while 𝜆𝑚𝑖𝑛 is defined as 𝑐𝜆𝑚𝑎𝑥, where 𝑐 = 0.001. 

The sequence of 𝐾 𝜆 values is then taken as the series of 𝜆 values that decrease from 𝜆𝑚𝑎𝑥 to 

𝜆𝑚𝑖𝑛 in the log scale.  

 

3.4.1.3 Stability selection 

 

Variable selection can reduce the number of variables to be included in a model by selecting 

for the subset of variables 𝑃𝑚𝑖𝑛. However, 𝑃𝑚𝑖𝑛 inferred can vary depending on the variable 

selection techniques, parameters and data used, especially on high dimensional problems that 

involve a higher number of variables than the number of samples (Meinshausen & Bühlmann 

2010). Validation methods that subsample data repeatedly such as bootstrapping and cross 

validation can be employed to ensure the generality of 𝑃𝑚𝑖𝑛 irrespective of parameters and 

data used. One such method that is employed in SPVAR is known as stability selection 

(Meinshausen & Bühlmann 2010). In stability selection, the data is subsampled multiple times 

without replacement for model fitting with variable selection, and the variables that are present 

in a large proportion of the resulting models are selected as stable 𝑃𝑚𝑖𝑛. 

 

As mentioned in Section 3.4.1.2, a regularisation path is used to fit a penalised linear model, 

which gives a vector 𝛽̂𝑖 , 𝑖 ∈ {1,2, … , 𝑝} for every 𝜆. Stability selection is built upon the concept 

of regularisation path, by extending it into the concept of stability path. When a penalised linear 

model is fitted, a stability path is obtained by calculating the probability of a variable being 

selected in the results, also known as the selection probability 𝑃𝑆, for each variable across all 

sets of subsampled data such that there is a vector 𝑃𝑖
𝑆, 𝑖 ∈ {1,2, … , 𝑝} for each 𝜆, where 𝜆𝑚𝑖𝑛 ≤

𝜆 ≤ 𝜆𝑚𝑎𝑥. The selection probability 𝑃𝑖
𝑆 for gene variable 𝑖 is defined as 

𝑃𝑖
𝑆(𝛽̂𝑖 ≠ 0) =

𝑛𝛽̂𝑖≠0

𝑛𝐷
 



89 
 

Where 𝑛𝛽̂𝑖≠0 is the number of non-zero 𝛽̂ coefficients and 𝑛𝐷 is the total number of set of 

subsampled data. In SPVAR, 90% of all data is used per subsample as this provides better 

sampling coverage for the cases where the number of samples is small. 

 

With a stability path, instead of deciding on a single 𝜆 value that gives the most optimal 𝑃𝑆, it 

is better to take a consensus 𝑃̂𝑆 across all 𝑃𝑖
𝑆 obtained with a sequence of 𝜆 values as defined 

below. 

𝑃̂𝑆 = max
1≤𝑖≤𝑛𝜆

 (𝑃𝑖
𝑆) 

Where 𝑛𝜆 is the total number of 𝜆 values. 

 

The set of stability selected variables 𝑆 is then defined by using a threshold 𝑝𝑡ℎ𝑟𝑒 , 0 < 𝑝𝑡ℎ𝑟𝑒 <

1 as follows. 

𝑆 = {𝑃̂𝑖
𝑆 ≥ 𝑝𝑡ℎ𝑟𝑒} , 1 ≤ 𝑖 ≤ 𝑛𝜆 

 

The use of stability selection ensures that the selected variables are insensitive to 𝑝𝑡ℎ𝑟𝑒 and 

the sequence of 𝜆 values used (Meinshausen & Bühlmann 2010). Meinshausen and Bühlmann 

have suggested 𝑝𝑡ℎ𝑟𝑒 ∈ (0.6, 0.9) with a lower bound of  𝑝𝑡ℎ𝑟𝑒 ≥ 0.5, which is based on 

empirical evidence and the assumption that variable selection works better than by chance. In 

SPVAR, a threshold of 0.6 is used as single-cell RNAseq data is very noisy. 

 

3.4.2 Implementation of stable penalised vector autoregressive model 

 

SPVAR is implemented in R, and uses the GLMNET R package for fitting a penalised linear 

regression. SPVAR takes a 𝑚 × 𝑝 matrix as the input expression data, where each row 𝑚 

corresponds to a time point and each column 𝑝 corresponds to a gene. Since autoregressive 

models work best when the time series data is stationary, that is there is no consistent overall 

trend in the gene expression values, the input expression data usually need to be differenced,  

𝑥𝑡
′ = (𝑥𝑡 − 𝑥𝑡−1) 
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First order differencing calculates the difference between two consecutive time points as 

demonstrated above. The order of differencing depends on the strength of trend in the data 

and the number of time points available. Generally, a higher order is required for data with a 

stronger trend, however this is feasible only if there is a large enough number of time points 

available because each increasing order will reduce the number of time points available. In 

practise, the order is rarely more than 2. 

 

Once the input data is ready, the next step is to obtain a fixed sequence of 𝜆 values as 

described in Section 3.4.1.2, and generate a set of subsampled data for stability selection. 

Model fitting is then performed on each subsampled data, and stably selected genes are 

selected based on the selection probabilities calculated. Note that the observations in the time 

series data should be weighted for model fitting if the time points are not evenly spaced, or if 

a subset of time points are known to be more important than the others. As differencing on the 

data may not be able to make the data stationary, this will confound the effects exerted by 

actual causal genes on a target gene. To reduce this confounding effect, the past expression 

values of a gene are assumed to not affect its future expression values after differencing. 

 

Finally, after obtaining the set of stably selected causal genes for each target gene, the stably 

selected genes are then used to fit a model which gives a 𝛽̂𝑖 for each gene 𝑖. The value of 𝛽̂𝑖 

can be interpreted as the strength of the gene interaction, which is proportional to the 

probability of the inferred interaction being a true interaction. SPVAR outputs a 𝑝 × 𝑝 directed 

real-valued adjacency matrix that describes the interactions among the genes. Note that due 

to the general difficulty in inferring self-interaction in a network inference problem and the 

potential confounding effects arising from trying to account for self-interaction, SPVAR 

explicitly does not model self-interaction of any gene. The algorithm of SPVAR is summarised 

in the form of a pseudocode in Figure 3.7. 
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Preprocess time series data 

Calculate differenced data 

Setup a model framework 

Remove self-interaction 

Scale time points 

Obtain a sequence of λ values 

Generate a list of subsampled data 

Fit a model to each subsampled data 

Calculate the selection probabilities 

Obtain the set of stably selected variables with associated selection probabilities 

Output a directed real-valued adjacency matrix 

Figure 3.7   Pseudocode of SPVAR. 
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3.5 Testing SPVAR using synthetic data 

 

Once a pseudotime trajectory was inferred for a single-cell expression data, the inferred cell 

ordering and pseudotime enable the single-cell expression data to be considered as a time 

series expression data. This effectively allows the inference of gene interactions by studying 

the changes in gene expression according to time, even if the explicit experimental time 

considered during the expression profiling experiment does not have a high enough resolution 

or is not present. By considering a pseudotime-ordered single-cell expression data as a time 

series expression data, it is possible to infer causal interactions among genes based on 

Granger causality (Granger 1981). Many frameworks can be used for inferring gene regulatory 

networks with a time series expression data, which includes regression models. Here SPVAR, 

which is based on regression and is formally defined in Section 3.4.1, was developed for 

inferring gene regulatory network from a time series expression data. Specifically, SPVAR 

infers a multivariate vector autoregressive model, which is fitted with Elastic net regularisation 

and stably selected, for modelling gene regulatory network.  

 

3.5.1 Technical properties of synthetic expression data 

 

The performance of SPVAR was assessed by comparing with other gene regulatory network 

inference algorithms using a set of synthetic expression data as described in Section 3.8.1. 

Note that the synthetic expression data used here contains much fewer genes, therefore is 

different from the synthetic expression data used for assessing pseudotime inference 

algorithms. This is because pseudotime inference algorithms scale well with increasing 

number of genes in terms of computational complexity, while gene regulatory network 

inference usually scales more poorly with the number of genes. 10 independent synthetic time 

series gene expression data, which contain 50 cells and either 10 or 20 genes, were generated 

by GeneNetWeaver as described in Section 3.8.1. Five of the synthetic expression datasets 

have 10-gene networks, while the other five synthetic expression datasets have 20-gene 

networks. The properties of the datasets with associated networks were summarised in Table 

3.2. The synthetic networks have a good range of numbers of edges, types of edges and are 

sparsely connected, which agree well with known structural knowledge on biological networks 

(Jeong et al. 2000). 
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Networks Number of  Average 
degree per 
node 

Clustering 
coefficients Positive 

edges 
Negative 
edges 

Total 
edges 

Total 
nodes 

Network 1 5 8 13 10 2.6 0.207 

Network 2 4 6 10 10 2 0.273 

Network 3 5 4 9 10 1.8 0 

Network 4 8 5 13 10 2.6 0.188 

Network 5 13 5 18 10 3.6 0.105 

Network 6 15 14 29 20 2.9 0.186 

Network 7 9 20 29 20 2.9 0.186 

Network 8 20 13 33 20 3.3 0.233 

Network 9 18 11 29 20 2.9 0.079 

Network 10 17 14 31 20 3.1 0.061 

Table 3.2   Properties of the synthetic networks.  
Clustering coefficient measures the relative number of triangles in the graph. 

 

As the purpose here is to test the performance of causal direct gene interactions, the knocked 

out synthetic expression data were used for assessing the performance of gene regulatory 

network inference algorithms. Knocked out expression data represent a cleaner and simpler 

test case than randomly perturbed expression data, as the expression of a single gene is 

gradually reduced to zero over the time course of an expression data, in which any large 

changes in other gene expressions must be due to gene interactions with the knockout gene. 

Note that small random fluctuations that are not due to gene knockouts are also present in the 

datasets. 

 

For each dataset, each gene is simulated to be knocked out individually, and the expression 

of other genes changes as a result of gene interactions. Similar to the assessment of 

pseudotime inference algorithms, the gene regulatory network inference algorithms were also 

tested on two sets of synthetic data, namely the original and the single-cell synthetic 

expression data. The single-cell synthetic expression data were derived from the original 

synthetic expression data by introducing drop-outs and overdispersion noise as described in 

Section 3.8.1. In addition, first order differencing of both time series expression data was 

performed to calculate the difference between consecutive time points as described in Section 

3.4.2. The same differenced expression data were used for assessing all network inference 

algorithms to enable a fair comparison of their performances. 

 

The properties of the data can be visualised in Figure 3.8, where the expression of a gene is 

reduced to 0 due to gene knockout in network 1 with 50 time points. Both original and single-

cell synthetic expression data are stochastic and noisy, however the single-cell synthetic 
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expression data is a lot noisier due to drop-outs and overdispersion (Figure 3.8A & B). The 

corresponding differenced data were shown in Figure 3.8C & D.  

 

 

Figure 3.8   Expressions of genes over time with 50 time points.  
This data contains 10 genes, where each coloured line corresponds to one gene. Gene 1 
(red line, YGL096W) is knocked out in this data. (A) Original synthetic expression data, (B) 
Single-cell synthetic expression data, (C) Differenced original synthetic expression data, (D) 
Differenced single-cell synthetic expression data. (A) shows the original expression data 
without any additional noise or preprocessing. (B) shows the single-cell expression data, 
which is the original expression data in (A) with dropout and overdispersion effects added. 
(C) shows the difference in expression values between consecutive time points using the 
original expression data in (A). (D) shows the difference in expression values between 
consecutive time points using the single-cell expression data in (B). 

 

3.5.2 Assessing performance of gene regulatory network inference 

algorithms on original and single-cell synthetic data 

 

Five gene regulatory network inference algorithms were tested using the synthetic data, 

namely CLR, GENIE3, TIGRESS, EBDBNet and SPVAR. CLR is based on mutual information 

(Faith et al. 2007), GENIE3 is based on random forest (Huynh-Thu et al. 2010), TIGRESS is 

based on regression with variable selection using LARS (Haury et al. 2012), while EBDBNet 

is based on dynamic Bayesian network (Rau et al. 2010). CLR and GENIE3 are not designed 

A B 

C D 
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for time-series data specifically, while TIGRESS has been adapted for time-series data current 

gene expression values on their past values. EBDBNet and SPVAR are designed for time-

series data specifically.  

 

In addition, random network inference results were also included in the study as controls, 

denoted as RMAT10 and RMAT100. Both random results were generated by sampling values 

from an exponential distribution, which ranges between 0 to 1, to construct artificial weighted 

adjacency matrices. RMAT100 uses the entire artificial weighted adjacency matrices without 

further modifications, while RMAT10 sets 90% of the elements in the matrices to 0 to simulate 

the sparse nature of biological gene networks. 

 

The performance of gene regulatory network inference algorithms was firstly assessed by 

using the conventional receptor operating characteristic (ROC) and precision-recall (PR) 

curves (Figure 3.9). ROC and PR curves were used to assess the ability of algorithms to locate 

all gene interactions in both original and single-cell synthetic expression data. The most ideal 

algorithm that gives the best performance should have a ROC curve that passes through the 

(0,1) coordinate on the ROC graph, and a PR curve that passes through the (1,1) coordinate 

on the PR graph. Therefore a good algorithm should have ROC and PR curves that are as 

close as possible to the coordinates mentioned above. The ROC and PR curves of RMAT10 

and RMAT100 can be interpreted as the baseline controls. The results in Figure 3.9 suggest 

that no network algorithm performs better than randomly generated networks. This suggests 

that gene network inference is a very hard problem, likely due to the high number of potential 

gene interactions available, the confounding effects from indirect gene interactions and 

complex network motifs. Note that the results from Figure 3.9 agrees with independent 

assessment of network inference algorithms on gene networks derived from yeasts (Marbach 

et al. 2012; Qi & Michoel 2012). 
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Figure 3.9   Receptor operating characteristic and precision-recall curves for each 
algorithm.  
(A) ROC and (B) PR for original synthetic expression data, (C) ROC and (D) PR for single-
cell synthetic expression data. 

 

For a more straightforward evaluation of the performance of the algorithms, performance 

scores in the form of the F-score and the SAR measures were also computed. The F-score is 

a measure that summarises PR, while the SAR is a measure that combines accuracy, ROC 

and root mean squared error (Section 3.8.3). Note that the F-score and SAR measures provide 

complementary representations of the performance of network inference algorithms. F-score 

favours algorithms that predict more positives, while SAR measure favours algorithms that 

predict more negatives. A F-score and a SAR measure were computed for each algorithm with 

all networks combined. 

 

When assessed using the original synthetic expression data which is less noisy and does not 

possess single-cell specific noise, the top three gene regulatory network inference algorithms 

were GENIE3, EBDBN and RMAT100 in terms of F-scores (Figure 3.10A), and SPVAR, 

TIGRESS and RMAT10 in terms of SAR measures (Figure 3.10B). When tested using single-

A B 

C D 



97 
 

cell synthetic expression data, the top three gene regulatory network inference algorithms with 

the best F-score GENIE3, EBDBN and RMAT100 (Figure 3.10C), which remained the same 

as before. However, the additional technical noise present in this data has resulted in RMAT10, 

SPVAR and TIGRESS being the top three algorithms (Figure 3.10D). The additional technical 

noise has resulted in poorer performance in the algorithms as expected. 

 

 

 

Figure 3.10   Performance scores of gene regulatory network inference algorithms.  
(A) F-score on original synthetic expression data, (B) SAR measure on original synthetic 
expression data, (C) F-score on single-cell synthetic expression data, (D) SAR measure on 
single-cell synthetic expression data.  

 

The differences in the top algorithms between F-score and SAR measures are due to the 

properties of the scoring measures as indicated by the RMAT10 and RMAT100 controls. 

RMAT100 gives a fully weighted adjacency matrix without any zero, which results in a better 

F-score; while RMAT10 gives a sparse weighted adjacency matrix with only 10% of non-zero 

values, which results in a better SAR measure. This suggests that algorithms ranked higher in 

terms of the F-score tend to predict a fully weighted adjacency matrix that requires a user-

A B 

C D 
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defined threshold to extract a sparsely connected gene network. As for algorithms ranked 

higher in terms of the SAR measure, the algorithms tend to predict a sparse weighted 

adjacency matrix that does not require a user-defined threshold to extract a gene network. The 

sparsity in the adjacency matrix results from the use of regularisation during the model fitting 

process. 

 

Taken together, the results show that the gene regulatory network inference algorithms tested 

here were unable to infer networks that are significantly better than by chance, even on 

synthetic data that possess a lower degree of noise than real data. The best network inference 

algorithms can be separated into two main categories, as indicated by F-score and SAR 

measures that rank algorithms based on different properties. Gene regulatory network 

inference algorithms which employed regularisation during the model fitting step, such as 

TIGRESS and SPVAR, result in sparser adjacency matrices that do not require users to define 

their own thresholds. Lastly, SPVAR has a similar level of performance compared to TIGRESS. 

However, SPVAR is more conservative in predicting the presence of gene interactions relative 

to TIGRESS as indicated by a higher SAR measure but a lower F-score. 
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3.6 Testing pseudotime differential expression and spline-

fit imputation in single-cell network inference 

framework 

 

It is important to test DM-DPT and SPVAR separately with synthetic expression data to assess 

their performance in their respective functions of inferring pseudotime trajectory and gene 

regulatory network. However it would be interesting to consider both DM-DPT and SPVAR in 

a single framework, by investigating how well SPVAR performs on pseudotime-series 

expression data inferred by DM-DPT when coupled with pseudotime differential expression 

and spline-fit imputation. The six independent synthetic expression datasets, which were used 

to assess the performance of pseudotime inference algorithms, were used to assess the 

performance of SPVAR on DM-DPT inferred pseudotime-series expression data. These 

datasets contain either 1000 or 3000 genes, which therefore represent a more realistic and 

difficult test case for SPVAR. Only the sparsified single-cell synthetic expression data, which 

represent the noisiest synthetic data, will be used for performance assessment here. 

 

DM-DPT was ran on the single-cell synthetic expression data to obtain a pseudotime-series 

expression data as described in Section 3.3. As SPVAR does not scale well computationally 

relative to the number of genes present in the data, it is important to select the most important 

subsets of genes for inferring gene regulatory network. This was achieved here by using 

pseudotime differential expression analysis to select for the top 20 genes that are the most 

differentially expressed along the trajectory as a function of pseudotime. 

 

The performance of negative binomial generalised linear model (GLM)-based pseudotime 

differential expression analysis was briefly assessed by comparing with Spearman rank 

correlation-based pseudotime differential expression analysis (Figure 3.11). The Spearman 

rank correlation pseudotime differential expression analysis works by calculating the 

correlation between each gene expression and the pseudotime. The negative binomial GLM 

pseudotime differential expression analysis works by firstly fitting a spline model for expression 

values of cells along the trajectory against the pseudotime for each gene. A likelihood ratio test 

is then performed on each of the fitted spline models against a null spline model where only 

an intercept is fitted for each gene. Genes with fitted models that had statistically significantly 
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larger likelihood ratio test statistic (p < 0.1) were deemed as differentially expressed along the 

pseudotime.  

 

Both Spearman rank correlation and negative binomial GLM differential expression analysis 

methods gave similar level of performance in these datasets, with Spearman rank correlation 

performing slightly better than negative binomial GLM differential expression analysis method 

in terms of F-score and SAR measure. However there are two things to note regarding the 

comparison of the two methods. Firstly, negative binomial GLM differential expression analysis 

method appears to be more conservative than Spearman rank correlation in predicting 

differentially expressed genes, with fewer genes predicted as differentially expressed (Figure 

3.12). The conservative property of the negative binomial GLM may be a useful characteristic 

as this leads to fewer false positives. Secondly, the gene expressions in these datasets mostly 

exhibit monotonic relationships with pseudotime, which may lead to improved Spearman rank 

correlation results. This is because while both Spearman rank correlation and negative 

binomial GLM can detect non-linear relationship, Spearman rank correlation can only detect 

monotonic relationship, while negative binomial GLM can also detect non-monotonic 

relationship. It is expected that negative binomial GLM will perform better in real single-cell 

RNAseq data which exhibits non-monotonic relationships, and hence negative binomial GLM 

differential expression analysis method was chosen for detecting differentially expressed 

genes in this test case. 

 

 

Figure 3.11   Performance comparison of two pseudotime differential expression 
analysis methods.  
(A) F-score, (B) SAR measure. COR, Spearman rank correlation; NBGLM, negative binomial 
GLM. 

A B 
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Once the top 20 differentially expressed genes were selected, SPVAR can then be deployed 

to infer gene regulatory networks. As single-cell expression data is noisy, it is possible to use 

SPVAR either directly on the original expression data with single-cell noise or on the spline-

imputed expression data, both of which are illustrated in Figure 3.13. The main advantage of 

the spline-imputed expression data is the reduced technical noise, which essentially average 

out the effects of outlier expression values that are caused by drop-outs and overdispersion.  

 

 

 
Figure 3.12   Numbers of true positive, false positive, true negative and false negative 
differentially expressed genes predicted by Spearman rank correlation and negative 
binomial GLM.  
TP, true positive; FP, false positive; TN, true negative; FN, false negative; COR, Spearman 
rank correlation; MONO, negative binomial GLM. 
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Figure 3.13   The expression values of four randomly selected genes which are 
differentially expressed as a function of pseudotime.  
Black points represent original expression data, while red points represent spline-imputed 
expression data. 

 

The performance of SPVAR on pseudotime-ordered time series expression data, as well as 

the impact of spline-imputed expression data on SPVAR were assessed in terms of F-score 

and SAR as before (Figure 3.14). When the spline-imputed expression data were used as an 

input for SPVAR, it can be seen that the performance of SPVAR improved in terms of F-score 

relatively to when the original expression data were used. Although it should be noted that the 

use of spline-imputed expression data led to higher variation in F-score, as the values of spline-

imputed expression data depend on how well the splines were fitted. Note that SAR measure 

was higher on the original relative to the spline-imputed expression data due to SPVAR 

predicting more gene interactions with spline-imputed expression data. However, the gain in 

F-score was of a much higher degree than the drop in SAR measure, which justified the 

performance gain of using spline-imputed expression data. In summary, SPVAR has been 

demonstrated to perform well on DM-DPT pseudotime-ordered expression data, together with 

the use of negative binomial GLM for differential expression analysis and the use of spline 

imputation for reducing technical noise.  
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Figure 3.14   Mean performance scores of SPVAR on original and spline-imputed 
synthetic expression data.  
(A) F-score, (B) SAR measure. 
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3.7 Conclusions 

 

A framework for gene regulatory network inference was demonstrated and assessed using 

synthetic expression data in this chapter. The framework firstly involves converting a single-

cell expression data into a pseudotime-series expression data by using DM-DPT. Then 

negative binomial GLM differential expression analysis is used to detect genes that are 

changing as a function of pseudotime. Once the differentially expressed genes are identified, 

splines are used to imputed expression values to reduce the effects of technical noise. The 

spline-imputed expression values of the differentially expressed genes can then be used for 

gene regulatory network inference using SPVAR.  

 

Two key components of the framework, DM-DPT for pseudotime inference and SPVAR for 

network inference, were evaluated in comparison with other algorithms. DM-DPT has been 

shown to perform very well compared to other algorithms in both cell ordering and pseudotime 

inference when inferring robust single unbranched trajectory from single-cell RNAseq data. 

While SPVAR is not the best performing network inference algorithm, it is very conservative in 

predicting gene interactions and does not require user defined thresholds for extracting a gene 

network. The overall results suggest that the single-cell network inference framework 

performed well on synthetic expression data, and is a novel alternative for gene network 

inference using single-cell expression data.  
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3.8 Materials and methods 

 

3.8.1 Synthetic data for the evaluation of pseudotime trajectory inference 

and gene regulatory network inference algorithms 

 

The synthetic data used for the performance assessment of both pseudotime trajectory 

inference and gene regulatory network inference algorithms were generated using 

GeneNetWeaver version 3.1.2 (Schaffter et al. 2011). The synthetic networks were extracted 

from the gene regulatory network of yeast. The expression data were generated using ordinary 

and stochastic differential equations based on the synthetic networks. A coefficient of 0.05 was 

used for noise term in the stochastic differential equations. Note that the expression values 

generated by GeneNetWeaver range between 0 and 1. 

 

The transiently perturbed time-series expression data generated from GeneNetWeaver were 

used for assessing the performance of the pseudotime inference algorithms and the entire 

single-cell network inference framework, with pseudotime differential expression analysis and 

spline imputation included. A total of six sets of synthetic networks and expression data were 

generated, in which three sets consist of 1000 genes and the other three sets consist of 3000 

genes. For each set of data, there are multiple genes that are transiently upregulated or 

downregulated as the time progresses. 

 

For comparing the network inference algorithms, the knockout time-series expression data 

generated from GeneNetWeaver were used. A total of 10 sets of synthetic networks and 

expression data were generated, in which five sets consist of 10 genes and the other five sets 
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consist of 20 genes. For each set of data, there is a separate expression data for each gene 

in which the gene was knocked out.  

 

The synthetic expression data as generated by GeneNetWeaver is used as original synthetic 

expression data. To introduce technical noise that is specific to single-cell RNAseq, 

overdispersion and zero-inflation noises were added into the synthetic expression data, which 

is used as the single-cell synthetic expression data. Overdispersion was introduced into the 

data by sampling the increase in expression values 𝛿𝑂𝐷 with a probability of 𝑝𝑂𝐷. The general 

assumption is that the higher a single expression value, the more likely it is to be inflated in 

values due to overdispersion. An exponential distribution 𝑓𝑒𝑥𝑝 is used to provide a continuous 

approximation to Poisson distribution to model the additional overdispersed component. 

𝑝𝑂𝐷 =
2𝑎𝑥

2𝑎
 

𝛿𝑂𝐷 = min  (𝑓𝑒𝑥𝑝(𝑏𝑝𝑂𝐷), 𝑐) 

Where 𝑥 is the expression value, and 𝑎, 𝑏, 𝑐 are constants set at 5, 20 and 1 respectively. 

 

Zero-inflation noise was introduced into the data by sampling from the probability of an 

expression value being a drop-out, 𝑝𝐷, and setting the expression value to 0. The general 

assumption is that the lower a single expression value, the more likely it is to be drop-out from 

the sequencing.  

𝑝𝐷  =  2−𝑎𝑥 

Where 𝑥 is the expression value, and 𝑎 is a constant which is set to 3. 

 

To simulate the numeric properties of RNAseq data, the synthetic expression data were 

converted into discrete values by multiplying each expression value with a constant of 10000. 

 

In the case of synthetic expression data with missing cells, the missing cells were introduced 

in two ways. Firstly, each synthetic cell has a 10% uniform probability of being considered as 

missing, in order to simulate the phenomenon where the cells are not captured in an 

expression profiling experiment. Secondly, the synthetic cells were clustered into five groups 

using k-means clustering by their true cell orders. Cells belonging to the two intermediate 

groups (i.e. group 2 and 4 out of group 1 to 5) were considered as missing, in order to simulate 
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the effects of sparse sampling in experiments which results in certain intervals of the 

expression trajectory not being captured by any cell. 

 

3.8.2 Other pseudotime trajectory algorithms 

 

DM-DPT was run with six other pseudotime inference algorithms on the same set of data. All 

algorithms were run using the recommended or default parameters. The algorithms were set 

to infer only a single trajectory without branching whenever the algorithms allow such constraint 

specifications. Note that some algorithms implicitly detect branches with no option or easy way 

to overcome this. 

 

Monocle2 is implemented in the monocle R package (Trapnell et al. 2014). TSCAN is 

implemented in the TSCAN R package (Ji & Ji 2016). SCORPIUS is implemented in the 

SCORPIUS R package (Cannoodt, Saelens, Sichien, et al. 2016). SLICER is implemented in 

the SLICER R package (Welch et al. 2016). DPT is implemented in the destiny R package 

(Haghverdi et al. 2015; Haghverdi et al. 2016). 

 

Both cell ordering and pseudotime errors calculated are the absolute differences between the 

true and inferred values for cell ordering and pseudotime respectively. Both true cell ordering 

and true pseudotime were obtained from the synthetic data generated from GeneNetWeaver. 

 

3.8.3 Other gene regulatory network inference algorithms 

 

SPVAR was run with four other network inference algorithms on the same set of data. The 

algorithms are CLR, GENIE3, TIGRESS and EBDBNet, and were run using the recommended 

or default parameters. CLR used is implemented in the minet R package (Meyer et al. 2008). 

GENIE3 used is as implemented by the authors in R scripts (Huynh-Thu et al. 2016). TIGRESS 

used is implemented in the metanetwork R package (Logsdon 2016). EBDBNet used is 

implemented in the EBDBNet R package (Rau 2016). 

 

The results of gene regulatory network inference algorithms were assessed using several 

criteria, which include the area under the curve (AUC) for receiver operating characteristic 
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(ROC), the AUC for precision-recall (PR), F-score, accuracy, root mean squared error (RMSE) 

and the SAR measure. The F-score is a measure based on PR and is defined as described in 

Section 2.2.7. The SAR measure is a measure based on ROC and is defined as 𝑆𝐴𝑅 =

1

3
 ×(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝐴𝑈𝐶 𝑅𝑂𝐶 + 𝑅𝑀𝑆𝐸). The ROCR R package was used to calculate these 

measures (Sing et al. 2005). 

 

3.8.4 Differentially expressed genes along the pseudotime trajectory 

 

The pseudotime trajectory was inferred as described in Section 3.2.2. Once the pseudotime 

trajectory is inferred, the differentially expressed genes along the pseudotime trajectory were 

identified by using either the Spearman rank correlation or the negative binomial generalised 

linear model (GLM) as implemented by Monocle2 R package (Trapnell et al. 2014).  

 

For the assessment of performance between the Spearman rank correlation and negative 

binomial GLM pseudotime differential expression analysis methods, the synthetic expression 

data used were as described in Section 3.8.1. The true differentially expressed genes were 

defined as the genes which expressions are perturbed externally and the genes which are 

immediately downstream of the externally perturbed genes. The information is provided by the 

GeneNetWeaver software, which is used to generate the synthetic expression data. 
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4 iEsrrb, iKlf2 and GY118F transgene cell lines 

drive EpiSC reprogramming via different 

mechanisms 

 

Results of this chapter are being used in preparing a manuscript for publication. RNAseq data 

used were generated by Hannah Stuart and Tim Lohoff from Jose Silva’s lab as a collaboration.  

 

4.1 Background 

 

Stem cells are defined as cells that possess self-renewal capability and the ability to generate 

differentiated progeny (Lajtha 1979). There are three main types of stem cells, namely stem 

cells obtained from embryos, stem cells obtained from adults (i.e. adult stem cells), and 

induced stem cells generated from reprogramming (i.e. induced pluripotent stem cells) (Figure 

4.1). Among the stem cells present in a developing embryo, there are embryonic stem cells 

(ESCs) that are derived from the inner cell mass, epiblast stem cells (EpiSCs) that are derived 

from post-implantation epiblast, and embryonic germ cells (EGCs) that are derived from 

primordial germ cells. 

 

Among all the stem cells discussed here, epiblast stem cells (EpiSCs) represent a good system 

to study the naïve reprogramming process where a cell acquires the naïve stem cell identity 

(Nichols & Smith 2012). This is because EpiSC represents the primed pluripotent state, which 
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is distinct but more similar to the naïve pluripotent state in embryonic stem cell (ESC) than 

other stem cells. By studying reprogramming in EpiSCs, this allows a closer inspection of the 

initiation of reprogramming without substantial influences from other biological processes such 

as differentiated cell-specific biological processes. 

 

 

Figure 4.1   Different types of stem cells in mice.  
[Figure adapted from (Watt & Driskell 2010; NIH n.d.; Staveley n.d.)] 

 

Genetic factors, as introduced via transgenes, and environmental factors, as introduced via 

culture conditions, were known to be important for the successful reprogramming of cells into 

induced pluripotent stem cells (iPSCs) which possess naïve identity that is similar to ESCs 

(Yamanaka & Blau 2010; Robinton & Daley 2012). Both genetic and environmental factors 

result in gene expression changes in the transcriptional regulatory network responsible for 

establishing and maintaining naïve identity. The transcriptional regulatory network is known to 

contain key transcriptional regulator genes such as Oct4, Sox2 and Nanog, which are widely 

studied and are known to be important for regulating ESC self-renewal and pluripotency 

(Nichols & Smith 2012). 

 

In this study, we focus on studying the changes in transcriptomics along the reprogramming 

process due to the overexpression of three genes, Esrrb, Klf2 and GY118F, in EpiSCs cultured 

Embryo 

Adult 

Reprogramming 
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under 2i-LIF condition. GY118F is a chimeric gene that leads to increased STAT3 protein 

phosphorylation and Socs3 transcriptional activation. These three genes are involved in the 

naïve core transcriptional regulatory network, and are shown to be immediately downstream 

of the signalling pathways activated by 2i-LIF (Figure 4.2) (Hackett & Surani 2014). In addition, 

it has been shown that each of the individual transgenes is able to reprogram EpiSCs into 

iPSCs efficiently under 2i-LIF condition, where the identity of iPSCs was confirmed by colony 

formation assay and chimera formation (Hannah et al., unpublished).  

 

 

Figure 4.2   The genes studied are downstream of the signalling molecules used in the 
2i+LiF culture condition. 
PD and Chiron represent the 2i culture condition. 

 

Esrrb is a transcription factor that is expressed in ESCs and is required for the self-renewal 

ability (Martello et al. 2012) and pluripotency (Festuccia et al. 2012) for ESCs. Esrrb is a class 

of nuclear receptors that can bind to DNA to activate transcription in the absence of exogenous 

ligand (Giguère 1999), and it is also a part of the pluripotency gene regulatory network (van 

den Berg et al. 2010; Chen et al. 2008). In addition, Esrrb is shown to be inhibited by Tcf3, 

which is itself is inhibited by Chiron, the GSK3 inhibitor used as part of the 2i ESC culture 

condition (Martello et al. 2012). Notably, the study shows that Esrrb overexpression can 

replace Chiron. In ESCs, the GSK3/TCF3 pathway is responsible for inducing differentiation 

of ESCs into EpiSCs (Berge et al. 2011; Wray et al. 2011). This is achieved by Tcf3 acting as 

a transcriptional repressor that binds to the promoters of many pluripotency genes including 

Nanog and Esrrb (Martello et al. 2012).  

 

Klf2 is a zinc-finger transcription factor that belongs to the Kruppel-like transcription factor 

family, and is known to regulate the proliferation and differentiation of many developmental 
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processes including lung, blood and endothelial (McConnell & Yang 2010). Klf2 has been used 

for the successful generation of iPSCs (Nakagawa et al. 2007). A recent study shows that Klf2 

is inhibited post-translationally by the Mek/Erk signalling pathway (Yeo et al. 2014). In ESCs, 

MEK/ERK pathway is responsible for initiating differentiation and lineage commitment (Kunath 

et al. 2007; Stavridis et al. 2007). The result of the study is interesting as the PD inhibitor, 

which is part of the 2i ESC culture condition, is previously known to affect MEK but the exact 

molecular mechanism was unknown. The inhibition of MEK stops the ERK2-mediated 

phosphodegradation of KLF2, which is critical for maintaining pluripotency. 

 

GY118F is a chimeric LIF receptor that consists of human GCSF (granulocyte colony 

stimulating factor) receptor as the extracellular component, and GP130 signal-transducing 

component of the LIF receptor as the transmembrane and intracellular component (Niwa et al. 

1998). In addition, the GP130 component contains a mutation that leads to specific activation 

of certain members of the JAK/STAT3 pathway when GCSF is present. In particular, GY118F 

cells stimulated with GCSF show increased STAT3 phosphorylation which leads to the 

transcriptional activation of its direct target Socs3. With wild type STAT3 protein, it is transiently 

activated via phosphorylation by associated kinases in response to specific cytokines and 

growth factors. Once phosphorylated, pSTAT3 protein mediates the expression of multiple 

genes important in biological processes such as differentiation and proliferation. As part of the 

larger STAT protein family, Stat3 is widely studied in the context of cancer and development 

(Calò et al. 2003; Dorritie et al. 2014). In terms of reprogramming, increased activation of 

JAK/STAT3 pathway via the induction of GY118F is shown to promote the reprogramming of 

EpiSCs into iPSCs (Yang et al. 2010; van Oosten et al. 2012). Another study shows that 

JAK/STAT3 pathway may promote reprogramming by epigenetic regulation via inhibiting 

Dnmts and promoting the demethylation of Oct4 and Nanog in mouse embryonic fibroblasts 

(Tang et al. 2012). 

 

By studying iEsrrb, iKlf2 and GY118F transgene cell lines (Figure 4.3), this chapter aims to 

investigate how the introduction of transgenes perturbs the expression levels of genes in the 

transcriptional regulatory network, and how the perturbed expressions contribute to the 

reprogramming of EpiSCs. Note that iEsrrb and iKlf2 refer to induced Esrrb and induced Klf2 

respectively. Section 4.3 firstly describes the quality control and pre-processing of RNAseq 

data to reduce technical bias for downstream analyses. In Section 4.2, the differences in 

transcriptomics profiles among the three cell lines are discussed in details using bulk RNAseq. 

Section 4.4 then uses single-cell RNAseq to dissect the transcriptomics differences within the 
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cell lines, as well as the changes in transcriptomes along pseudotime trajectory. The chapter 

then ends with conclusions in Section 4.5, and materials and methods in Section 4.6. 

 

 

 

Figure 4.3   Overview of EpiSC reprogramming.  
The brackets indicate cells were collected from day 2, 3 and 4 for single-cell RNA 
sequencing. 
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4.2 Bulk RNAseq shows that iEsrrb, iKlf2 and GY118F 

transgene cell lines drive reprogramming via different 

routes 

 

As an initial step to investigate the mechanism of reprogramming EpiSC into iPSC, bulk 

RNAseq data were generated for the three cell lines each with a separate transgene 

respectively (i.e. iEssrb, iPStat3, iKlf2) at multiple time points (Section 4.6.1). The time points 

start from 0 hour in EpiSC up to the end of reprogramming in iPSC, with intermediate time 

points at 1, 3, 6, 12, 24 (1 day), 48 (2 days), 72 (3 days), 96 (4 days) and 120 hours (5 days). 

For the sake of analysis, iPSCs were given a time point of 168 hours (7 days) because iPSCs 

in these cell lines have mostly finished reprogramming at 168 hours, as indicated by Rex1 GFP 

reporter. Rex1 is a good marker of naïve pluripotency, as it is expressed specifically in the 

naïve undifferentiated pluripotent cells and is downregulated very quickly at the beginning of 

differentiation (Toyooka et al. 2008). In addition to the Rex1 GFP reporter, the pluripotency of 

iPSCs was verified through colony formation assay and chimera formation (Hannah et al., 

unpublished). 

 

The bulk RNAseq data was analysed firstly by principal component analysis (PCA) and 

diffusion map (DM) (Figure 4.4). Both PCA and DM analyses had similar results, with DM 

showing less variations within each cell line (Figure 4.4). In both PCA and DM, the first 

component, which explains the most variations in the data, separated the samples by the 

degree of reprogramming of EpiSC into iPSC. The second component, which explains the 

second most variations in the data, separates the samples by the differences caused by the 

three different transgenes. The PCA loadings plot of top 20 genes with the highest loadings 

shows that the key signatures in PCA are mostly dominated by genes unique to iKlf2 cell line, 

with a smaller set of genes that are unique to the reprogrammed cells.  
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Among the top 20 genes, Zfp42, also known as Rex1, is the naïve pluripotency state marker 

used in the cell lines of this study. Dppa5a is a known pluripotency gene (Tanaka et al. 2002), 

CrxOS is a known self-renewal gene (Saito et al. 2009), while Calcoco2 is shown to be 

associated with Oct4 and is expressed in early embryonic tissues (Bortvin et al. 2003). The 

rest of the genes are likely to be associated with iKlf2 cell line due to the high contribution to 

separation in PC2 of the PCA. By observing the PCA and DM results, it is clear that the 

induction of a single transgene is able to efficiently drive the reprogramming of EpiSC into 

iPSC, albeit with differences in the reprogramming paths taken by each transgene. It is 

hypothesised that the differences among transgenes are driven by differences both in the 

kinetics and the key genes involved. 

 

 

Figure 4.4   Similarities in expression profiles among reprogramming cells.  
(A) Principal component analysis, (B) Diffusion map results and (C) PCA loadings. PCA 
loadings plot shows the top 20 genes with the highest absolute loadings value with both PC1 

A B 

C 
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and PC2 combined. Each line indicates the reprogramming trajectory for each cell line from 
EpiSC to iPSC. Green line, iEsrrb; Brown line, GY118F; Blue line, iKlf2. 

 

In order to investigate the differences between each transgene-driven reprogramming with 

respect to both EpiSCs and iPSCs, pairwise differential expression analyses were performed 

on the samples by comparing each transgene intermediates with both EpiSCs and iPSCs. The 

differentially expressed genes were combined from all pairwise differential expression 

analyses, which give a total of 1213 non-overlapping set of genes. The non-overlapping set of 

genes was then used for clustering the samples to visualise the relationships among the cell 

lines (Figure 4.5). The dendrogram in Figure 4.5 showed that at the early reprogramming 

stage, iEsrrb and GY118F cell lines were very similar to EpiSCs. iKlf2 cell line showed the 

most distinct gene expression profile with 959 differentially expressed genes, as shown by the 

isolated iKlf2 cluster and by the huge separation of iKlf2 trajectory in the PCA (Figure 4.4). At 

the later reprogramming stage, GY118F was the most similar to iPSCs as shown by the 

dendrogram. However, this may be due to differences in the time points taken for each cell 

line. It should be noted that the time points taken for later reprogramming stage (day 2 and 

above) are different for each cell line, with time points taken respectively at day 2 and 3 for 

iEsrrb, day 3 and 4 for iKlf2, and day 4 and 5 for GY118F. Despite the time point differences, 

iKlf2 cell line remained very different from other cell lines.  

 

Gene Ontology (GO) analysis was then performed using the differentially expressed genes to 

investigate the differences in the biological functions of the three cell lines driven by Esrrb, 

GY118F and Klf2 (Table 4.1 & Table 4.2). The enriched GO biological processes were different 

among cell lines, which suggest that the three transgenes were driving reprogramming in 

different ways.  
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Figure 4.5   Heatmap of differentially expressed genes across all cell lines.  
The non-overlapping set of differentially expressed genes across all cell lines with respect to 
both EpiSCs and iPSCs was used for this heatmap. 
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4.2.1 iEsrrb cell line reprograms by modulating transcriptional regulation 

responsible for establishing naïve ESC identity 

 

Esrrb is a transcription factor which is important for the self-renewal and pluripotency of ESC. 

As expected, the results show that the top upregulated biological process in iEsrrb cell line is 

transcriptional regulation (Table 3.1). This suggests that Esrrb is likely to interact with other 

transcription factors during the reprogramming process. One of the genes upregulated in iEsrrb 

cell line and is involved in transcriptional regulation is Gata6, which is important for 

development and has been shown previously to be activated directly by Esrrb (Uranishi et al. 

2016). Another transcription regulator that is upregulated by Esrrb is Otx2, which is a 

transcription factor that regulates the transition of naïve ESCs into primed EpiSCs (Acampora 

et al. 2013). Upregulation of Otx2 activates the expression of FGF proteins and lowers the 

formation efficiency of chimeric embryos. In contrast, the downregulated biological processes 

in iEsrrb cell line may reflect the inhibition of differentiation as indicated by the cell type specific 

biological processes, cell-cell adhesion and signalling pathways (Table 4.2).  

 

Taken together, it is likely that the iEsrrb cell line achieved reprogramming via directly 

modulating the expression of key genes important for the naïve ESC identity. In comparison 

to other cell lines, iEsrrb cell line has fewer differentially expressed genes and is more similar 

to EpiSCs and iPSCs as shown in the PCA (Figure 4.4) and the dendrogram (Figure 4.5). Note 

that the dendrogram also shows that iEsrrb in later time points as being more different from 

iPSCs than GY118F. This is because the time points taken for GY118F (day 4 & 5) are later 

than for iEsrrb (day 2 & 3). 
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4.2.2 GY118F cell line reprograms by regaining trophectoderm potential 

and downregulating BMP/SMAD pathway 

 

As for GY118F cell line, the top upregulated biological processes are mostly related to 

developmental processes such as placenta development (Table 4.1). This suggests that 

GY118F cell line may be regaining the potential to give rise to trophoblast cells, which in turn 

contribute to placenta. Among the development related genes, many are transcription factors, 

such as Cebpa, Gata2 and Gata3. A study on granulocyte development shows that the 

activation of STAT3 via GCSF leads to the upregulation of Cebpa expression, and activated 

STAT3 enhances the transcriptional activity of C/EBPA by binding to C/EBPA (Numata et al. 

2005). Cebpa has been shown to enhance the reprogramming efficiency of B cells into iPSCs 

by post-transcriptionally enhancing the abundance of many important proteins for 

reprogramming such as Lsd1 and Brd4. In embryonic development, both Gata2 and Gata3 

have been shown to regulate trophoblast development (Ray et al. 2009) and later on blood 

development (Tsai et al. 1994; Pandolfi et al. 1995). Although Gata2 or Gata3 alone is not 

crucial for trophoblast development, embryos exhibit lethality if both Gata2 and Gata3 are 

knocked out (Home et al. 2017). 

 

The top downregulated biological processes in GY118F cell line include BMP signalling 

pathway and SMAD family transcription factor, of which the enriched genes are Bmp7, Fgf8, 

Nodal and T (Table 4.2). BMP signalling pathway is important for many developmental 

processes, and it can act via both SMAD-dependent and independent pathways (Miyazono et 

al. 2010). In SMAD-dependent pathway, BMP ligands bind to TGF-beta receptors, which in 

turn activates SMAD family transcription factor. Studies have shown that the BMP signalling 

pathway is important in pre-implantation development (Graham et al. 2014; Papanayotou & 

Collignon 2014; Reyes de Mochel et al. 2015) as well as during gastrulation (Mishina et al. 

1995; Arnold et al. 2006) in mouse embryo. Interestingly, BMP/SMAD pathway has been 

shown to be dispensable for maintaining naïve pluripotency, as BMPs act via non-SMAD 
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MEK5/ERK5 pathway in ESCs (Morikawa et al. 2016). Taken together, GY118F cell line may 

achieve reprogramming by regaining trophectoderm potential and downregulating BMP/SMAD 

pathway that may induce differentiation. 

 

4.2.3 iKlf2 cell line reprograms by regulating cell surface proteins, cell 

proliferation and cell differentiation 

 

In iKlf2 cell line, the top upregulated biological processes are developmental processes, slower 

cell proliferation and membrane transport (Table 4.1). Many genes are upregulated in iKlf2 cell 

line compared to other cell lines, which include many transcription factors and signalling 

proteins such as Gata1, Bmp4 and Notch1. Cell cycle has been shown to be important in 

regulating proliferation and differentiation in the ESCs (Pauklin & Vallier 2013). Complete 

suppression of cell cycle is shown to trigger differentiation (Li & Kirschner 2014), but slow 

proliferation rate promotes reprogramming of fibroblasts (Xu et al. 2013). It is likely that a fine 

balance in cell cycle regulation needs to be achieved for optimal reprogramming efficiency. 

The upregulated membrane transport functions are particularly interesting, as they are less 

studied than developmental processes. A study which profiles the membrane proteins of 

ESCs, iPSCs and fibroblasts shows that there are pluripotency-associated membrane 

proteins, as well as a small subset of membrane proteins that differ between ESCs and iPSCs 

(Hao et al. 2013). The increase in membrane transport activities may reflect increased 

metabolism or signalling activities required for reprogramming.  

 

The top downregulated biological processes in iKlf2 cell line are differentiation, cell-cell 

adhesion and male meiosis (Table 4.2). Among the developmental-related processes, the 

most significant process is the inhibition of epithelial cell differentiation, potentially suggesting 

that the cells were progressing towards increasingly naïve pluripotent state that exhibits less 

epithelial properties. Cell-cell adhesion proteins, which often work together with signalling 

pathways, are known to be important for ESC maintenance (Pieters & van Roy 2014). Fzd7 

and Fzd8, which are part of the Wnt signalling pathway, as well as Bmp7 and Smad7, which 

are part of the BMP/SMAD signalling pathway, were downregulated in the iKlf2 cell line. 

Interestingly, male meiosis was detected as a significant process, which may be related to the 

changes on chromosome X due to reprogramming (Stadtfeld et al. 2008) of which Klf2 has 

been shown to play a role in (Gillich et al. 2012). Taken together, the induction of Klf2 exert a 

strong effect on the global expression profile when compared to other cell lines. In particular, 
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slower cell proliferation, the upregulation of membrane transport functions, as well as the 

downregulation of epithelial cell differentiation and cell-cell adhesion support the notion that 

the iKlf2 cell line was being reprogrammed into naïve pluripotency state. 

 

The results of the bulk RNAseq data clearly suggest that the three transgenes drive 

reprogramming in different ways, which involve the activation of different biological processes. 

However, although the cell populations investigated in the bulk RNAseq were enriched for high 

reprogramming efficiency by gating for high REX1-GFP level, there is always a proportion of 

cells within the cell populations that will not be reprogrammed. Therefore, the results of the 

bulk RNAseq may be confounded by the cells that were not undergoing reprogramming. In 

order to investigate this further, single-cell RNAseq experiments were performed on the three 

cell lines driven by iKlf2, iEssrb and GY118F respectively. 
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Biological Process Num. of 

Annotated 

Genes 

Num. of 

Observed 

Genes 

Adjusted 

P-values 

Esrrb (Total: 46 upregulated genes) 

Positive regulation of transcription from RNA polymerase II 

promoter 

1008 8 0.00048 

Cellular response to pH 20 2 0.00065 

Positive regulation of cardiac muscle cell proliferation 21 2 0.00071 

Regulation of transforming growth factor beta production 22 2 0.00078 

Positive regulation of cell cycle arrest 29 2 0.00137 

Positive regulation of histone methylation 30 2 0.00146 

Cell fate determination 41 2 0.00272 

Positive regulation of mitotic nuclear division 47 2 0.00356 

Midbrain development 47 2 0.00356 

Negative regulation of cytokine secretion 48 2 0.00371 

 

GY118F (Total: 208 upregulated genes) 

Cellular response to interferon-beta 39 7 8.00E-08 

Embryonic placenta development 106 8 5.00E-06 

Regulation of keratinocyte differentiation 29 5 7.70E-06 

Tissue development 1690 43 7.80E-06 

Positive regulation of osteoblast differentiation 65 6 3.80E-05 

Regulation of water loss via skin 22 4 5.30E-05 

Defense response 1210 42 6.20E-05 

Cytokine-mediated signaling pathway 268 12 9.70E-05 

Regulation of embryonic development 114 6 0.00042 

Regulation of transcription regulatory region DNA binding 39 4 0.00052 

 

Klf2 (Total: 899 upregulated genes) 

Inner ear morphogenesis 103 15 9.60E-07 

Regulation of ion transmembrane transport 363 32 3.10E-06 

Negative regulation of cell proliferation 594 45 4.10E-06 

Angiogenesis 420 38 2.30E-05 

Regulation of vascular permeability 27 7 3.70E-05 

Regulation of embryonic development 114 14 4.20E-05 

Peptide cross-linking 48 9 4.80E-05 

Calcium ion transmembrane transport 216 22 6.30E-05 

Skin development 254 34 6.40E-05 

Positive regulation of amine transport 31 7 9.70E-05 
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Table 4.1   Top 10 upregulated biological processes in each cell line based on Gene 
Ontology (GO) analysis. 

 

 

 

 

Biological Process Num. of 

Annotated 

Genes 

Num. of 

Observed 

Genes 

Adjusted 

P-values 

Esrrb (Total: 108 downregulated genes) 

Platelet-derived growth factor receptor signaling pathway 51 5 4.10E-06 

Leukocyte adhesion to vascular endothelial cell 24 3 6.40E-05 

Positive regulation of phosphatidylinositol 3-kinase 

signaling 

61 4 0.00019 

Negative regulation of endothelial cell apoptotic process 27 3 0.00027 

Cell-cell signaling 1203 7 0.00053 

Positive regulation of leukocyte cell-cell adhesion 166 3 0.00095 

Positive regulation of MAP kinase activity 169 4 0.001 

Positive regulation of NF-kappaB transcription factor 

activity 

105 4 0.00152 

Negative regulation of inflammatory response 113 4 0.00199 

Positive regulation of DNA replication 54 3 0.00209 

 

GY118F (Total: 86 downregulated genes) 

BMP signalling pathway 144 5 2.00E-05 

Regulation of animal organ formation 38 3 0.00059 

SMAD protein signal transduction 70 3 0.00084 

Neuroepithelial cell differentiation 61 3 0.00122 

Skeletal muscle adaptation 21 2 0.0014 

Pharyngeal system development 22 2 0.00153 

Male genitalia development 22 2 0.00153 

Glomerulus vasculature development 22 2 0.00153 

Signal transduction involved in regulation of gene 

expression 

23 2 0.00168 

Branching involved in salivary gland morphogenesis 28 2 0.00249 

 

Klf2 (Total: 447 downregulated genes) 

Positive regulation of epithelial cell differentiation 53 5 0.00062 

Positive regulation of cell development 527 16 0.00121 

Single organismal cell-cell adhesion 669 22 0.00163 

Synaptonemal complex assembly 20 3 0.00211 

Male meiosis 43 4 0.00233 

Ventricular cardiac muscle tissue morphogenesis 48 4 0.00349 

Positive regulation of leukocyte migration 117 7 0.00349 
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Sulfur compound biosynthetic process 80 5 0.00391 

Pyruvate metabolic process 93 4 0.00506 

Positive regulation of potassium ion transmembrane 

transport 

27 3 0.00507 

Table 4.2   Top 10 downregulated biological processes in each cell line based on Gene 
Ontology (GO) analysis. 

 

4.3 Pre-processing of RNAseq data 

 

As a further investigation into the mechanism of reprogramming of EpiSC into iPSC, single-

cell RNAseq data were generated for the three cell lines each with a separate transgene 

respectively (i.e. iEssrb, GY118F, iKlf2) at multiple time points. The time points start from 0 

hour in EpiSC up to the end of reprogramming in iPSC, with intermediate time points at 48 (2 

days), 72 (3 days), and 96 hours (4 days). As before, iPSCs were given a time point of 168 

hours (7 days) because iPSCs in these cell lines have mostly finished reprogramming at 168 

hours, as indicated by Rex1 GFP reporter. The pluripotency of iPSCs was also verified through 

colony formation assay and chimera formation (Hannah et al., unpublished). The single-cell 

RNAseq data contain 360 cells in total. 

 

Before any analysis is performed, it is important to determine the quality of the RNAseq data 

obtained, and to pre-process the data such that downstream analyses are not biased by 

technical differences in the data. The steps involved are similar for both bulk and single-cell 

RNAseq, although single-cell RNAseq requires less stringent thresholds as the data is noisier 

than bulk RNAseq. In the following subsections, the pre-processing results performed on the 

single-cell RNAseq data analysed in Section 4.4 are discussed. The pre-processing steps for 

bulk RNAseq data analysed in Section 4.2 gave similar results, therefore are not further 

discussed here. 

 

4.3.1 Performing quality control 

 

Quality controls can be performed on sequencing data at three levels, i.e. on the raw 

sequencing reads, on the aligned reads, and on the counted reads. Performing quality control 

on the raw sequencing reads allow us to assess the quality of the sequencing process and any 
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potential problems with the sequencing library. The FastQC program was used for the quality 

control of raw sequencing reads (Andrews S 2010). The quality control performed using 

FastQC on the single-cell RNAseq data showed that all samples have very similar technical 

properties and do not exhibit major technical problems.  

 

The FastQC results for a representative iPSC sample from the single-cell RNAseq data was 

analysed and used to illustrate the general technical properties of the data in Figure 4.6. Figure 

4.6A show that each base sequence is detected unambiguously by the sequencing machine, 

as indicated by the high Phred quality score for each base across the reads. The slight 

decrease of quality at the end of the reads is expected and is due to degradation of sequencing 

chemistry as the read length increases. Figure 4.6B show that generally almost all reads were 

sequenced at the highest quality and there is no subset of reads that were sequenced with a 

lower quality. Figure 4.6C show the sequence content across the reads, which agrees with the 

expectation that each nucleotide should have equal probability (i.e. 25%) of occurring at each 

base position. This is true except for the first few base positions, which always show an 

identical bias pattern in sequence content composition across samples due to the random 

primers used for sequencing. Figure 4.6D show that the distribution of the observed GC 

content in all reads roughly agrees with the distribution of the expected GC content, which 

suggests that the sequences were not contaminated. Figure 4.6E show the number of 

duplicated reads is quite high with about 63% duplicated sequences. This is an expected 

observation for an RNAseq experiment as it is common to greatly over-sequence the 

transcripts in order to detect lowly expressed transcripts. Figure 4.6F show that the Nextera 

transposase sequencing primers are present at a small proportion in the reads, with a 

cumulative percentage of less than 5% at the end of a read. There is usually no need to trim 

off the primer sequences in the reads manually by using read trimming programs such as 

cutadapt or Trimmomatic, as most modern sequence aligners can perform soft-clipping to 

ignore the primer sequences during the alignment process. 

 

Performing quality control on the aligned reads gives further insights on the quality of the data. 

The RSeQC program was used for investigating the quality of alignments (Wang et al. 2012). 

RSeQC showed that all samples from the single-cell RNAseq data have very similar technical 

properties and do not exhibit major technical problems. The same sample that was used in 

Figure 4.6 was used here as well to illustrate the results from RSeQC in Figure 4.7. 
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Figure 4.7A show that the aligned reads covered the gene body well in general, with only a 

slight expected bias for the 3’ end due to poly-A tail reverse transcription. The single-cell 

RNAseq data generally achieved lower gene body coverage than bulk RNAseq data, likely to 

be due to much lower amount of starting RNA materials. Figure 4.7B show properties of the 

clipping profile, which indicates the bases of reads that have been masked or soft-clipped and 

therefore not used in alignment of the reads. Figure 4.7C show the number of bases marked 

as deleted in the aligned reads, while Figure 4.7D show the number of bases marked as 

inserted in the aligned reads. Both deletion and insertion profiles show similar properties with 

higher number of insertion or deletion (indel) events inferred at the middle of the reads. Note 

that zero number of indel events were marked at both ends of the reads by default, because 

GSNAP aligner does not try to infer any indel events at the ends of the reads. Lastly, Figure 

4.7E show the mutation profiles of the reads, which suggest the difference between the 

genomic sequence of the cell line used and the reference genomic sequence.  
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Figure 4.6   Quality control of raw sequencing reads of a single-cell RNAseq iPSC 
sample.  
(A) Per base sequence quality, (B) Per sequence quality scores, (C) Per base sequence 
content, (D) Per sequence GC content, (E) Sequence duplication levels, (F) Adapter content. 
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Figure 4.7   Quality control of aligned reads of a single-cell RNAseq iPSC sample.  
(A) Gene body coverage, (B) Clipping profile, (C) Deletion profile, (D) Insertion profile, (E) 
Mutation profile. 
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Lastly once the aligned reads are counted based on the genes that they aligned to, a final 

quality control should be performed on the counts of reads for each cell. This quality control is 

especially useful for filtering out outlier samples or cells that exhibit unusual technical 

properties, such as abnormally low number of total counts per cell or abnormally high 

proportions of ERCC control counts. Both observations indicate that the sample does not 

contain enough DNA materials to be sequenced, which may be due to the failure of PCR 

amplification or cell not being sorted into the well. Note that while the previously discussed 

quality controls on raw and aligned reads were not used to remove outlier cells, the outlier cells 

that may exhibit problematic properties in previous quality controls are very likely to exhibit 

differing technical properties from other cells in the quality control for the counted reads. 

 

Figure 4.8 shows the technical properties of reads for all samples in the single-cell RNAseq 

experiment. In general, the number of total reads gives a good overview of sequencing depth. 

The fractions of mapped and unmapped reads indicate how well the alignment has performed. 

The fractions of spike-in, mitochondrial and other genes reads indicate the quality of the 

starting RNA materials. The fractions of no feature, ambiguous and low quality reads, which 

are calculated based on HTSEQ-count outputs, show the quality of the counted reads. 

 

Five thresholds on the technical properties of reads were set to remove low quality outlier 

samples from downstream analysis. 24 cells were removed from downstream analysis based 

on the total reads (less than 0.5 million reads per cell), fraction of mapped reads (less than 

45% mapped reads per cell), fraction of spike-in reads (more than 20% spike-in reads per cell), 

fraction of mitochondrial reads (more than 10% mitochondrial reads per cell) and number of 

genes with more than 10 reads per million (less than 3500 genes per cell). Note that the single-

cell RNAseq consists of four 96-well plates, in which the 4th plate is known to possess batch 

effects due to being processed in a different facility, thereby contributing the highest proportion 

of outlier cells. However as most of the cells in each of the four plates were collected from 

different experimental conditions, batch effect correction for plate effects was not attempted as 

performing batch effect correction may reduce real biological effects. 
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Figure 4.8   Quality control of counted reads in all cells.  
Each dot in the plot corresponds to a cell. Each cell always has the same index in the x-axis 
across the plots. The red dashed line indicates the threshold used where a cell is labelled as 
an outlier. 
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4.3.2 Selecting the most suitable normalisation method 

 

After quality control, the most important pre-processing step is the normalisation step. The 

main purpose of normalisation is to correct for differences in library sizes or sequencing depths 

(See Section 1.2.1). Due to the assumptions of different normalisation methods and the 

differences in the underlying technical properties of different RNAseq data, the best 

normalisation method may be different for different RNAseq data, especially in the context of 

single-cell RNAseq data. Here, the performance of three normalisation methods that are very 

different in their theoretical designs and assumptions were tested with this single-cell RNAseq 

data. The three normalisation methods tested are counts per million (CPM), DESeq (Anders & 

Huber 2010) and scran (L. Lun et al. 2016) normalisation methods.  

 

CPM is the most conservative normalisation method which divide reads by total reads in each 

cell then multiplying by a million. Due to the strict assumption of CPM that all cells must have 

the same number of total normalised reads, it is possible that this method may skew gene 

expression values if there are some genes that are both very highly expressed and differentially 

expressed among the cells. DESeq normalisation is done by scaling each cell with a size factor 

which is the median across genes on the ratio of each gene expression value to the gene’s 

geometric mean across cells. Note that DESeq normalisation is designed for bulk RNAseq 

data, and may fail for single-cell RNAseq due to the use of geometric mean which can only be 

calculated for genes with non-zero expression values across cells. Lastly, scran normalisation 

is designed specifically for single-cell RNAseq data to deal with the large number of drop-outs 

(i.e. zero expression values). Scran normalisation calculates normalisation factors on pooled 

cells by summing expression values across cells in a pool and divide by an average reference 

background value. The cells in each pool should ideally share similar expression profiles so as 

to not reduce the effects of differentially expressed genes among cell populations. As each cell 

is present in multiple pools, the normalisation factors on pooled cells can then be deconvolved 

into a separate normalisation factor for each cell.  

 

Figure 4.9 showed the raw reads and reads normalised using the three methods with different 

settings for each sample. DESeq normalisation was tested using two different location 

estimators, namely the default median and the shorth estimator which is more suitable for low 

read counts. Scran normalisation was tested using different clustering methods, namely the 

default Spearman correlation-based hierarchical clustering and by just considering all the cells 
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as a single cluster. The raw reads for each sample clearly show the need of normalisation, as 

the number of reads in each cell differ greatly both within and among samples (Figure 4.9).  

 

The performance of normalisation methods was assessed using two main criteria, which are 

the principal component analysis (PCA) and cell-wise relative log expression (RLE). The ideal 

normalisation method should provide clear separation among samples in the PCA and give 

reduced spread in the RLE relative to the separation and the spread of the raw reads 

respectively. It can be seen from Figure 4.10 that normalisation methods have a significant 

effect on downstream analysis, such as PCA. The results of PCA were very different when 

reads were normalised using different methods. Reads normalised using both DESeq 

normalisation methods offered only marginal improvement when compared to the PCA of raw 

reads. Scran methods offer better PCA results in separating the cells, but it is unable to resolve 

the subgroup of iKlf2 cells that are very similar to EpiSCs and there is a higher degree of 

overlap among iKlf2, iEsrrb and GY118F cells in the intermediate states. In terms of PCA 

results, CPM normalisation gave the results with the clearest separation of samples and the 

result agrees the most with the PCA performed on bulk RNAseq (Figure 4.4). 

 

Cell-wise RLE measure calculates the median log10 expression value for each gene, and then 

calculate the median of the resulting median log10 gene expression values for each cell. The 

calculation of RLE is similar to DESeq normalisation, and assumes that there are roughly equal 

number of gene upregulation and downregulation events across all cells. Therefore, a sample 

with normalised cells should have an RLE that is close to zero. Figure 4.11A shows that raw 

reads result in a huge spread of RLE values for the cells, while all normalisations reduced the 

spread of RLE values. Among all normalisation methods, CPM performed the best in terms of 

RLE by achieving the lowest spread of RLE values. Figure 4.11B shows that all normalisation 

methods roughly retain the variability among samples, although the degree of variability of 

each sample is skewed differently by different normalisation methods.  

 

In summary, the results of PCA and cell-wise RLE show that CPM normalisation method is the 

best and most suitable for this dataset. In addition, there is no relationship between gene length 

and read count due to the 3’ bias of the sequencing library generation protocol (Figure 4.12). 

Therefore, there is no need to normalise read counts by gene lengths. 
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Figure 4.9   Log10 distributions of raw and normalised reads.  
Y-axis scale is fixed to allow for comparisons among different methods. Sample names are 
of the following format, [cell line]-[hours]. CPM, counts per million; scran_auto, Scran with 
default clustering; scran_single, Scran with a single cluster; deseq_ori, DESeq with default 
median; deseq_shorth, DESeq with shorth estimator. 
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Figure 4.10   Principal component analyses of raw and normalised reads.  
CPM, counts per million; scran_auto, Scran with default clustering; scran_single, Scran with 
a single cluster; deseq_ori, DESeq with default median; deseq_shorth, DESeq with shorth 
estimator. 
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Figure 4.11   Cell-wise relative log expressions of raw and normalised reads.  
Sample names are of the following format, [cell line]-[hours]. CPM, counts per million; 
scran_auto, Scran with default clustering; scran_single, Scran with a single cluster; 
deseq_ori, DESeq with default median; deseq_shorth, DESeq with shorth estimator. 

 
Figure 4.12   Relationship between log10 read counts and gene lengths. 
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4.3.3 Investigating potential batch effects 

 

Among the technical factors in single-cell RNAseq experiments, the key confounding factor is 

the batches where the sequenced cells come from. This is because each 96-well plate is 

usually considered as a batch, and is processed separately during cell sorting and sequencing 

library generation. In addition, each 96-well plate is usually sequenced in a separate lane within 

each flow cell. All of these processing steps are known to contribute to technical noise in 

expression data due to the batch differences. This single-cell RNAseq data was generated 

using four 96-well plates, where each plate can be considered as a separate batch. Note that 

most of the samples on the four plates were completely confounded by batch effects, as each 

plate contain a different sample.  

 

The plate information was used to check if the batch effect may be confounding the results by 

performing dimensionality reduction. The dimensionality reduction methods used for this 

purpose are PCA, DM and tSNE (Figure 4.13). The result of DM is very similar to PCA, 

therefore is not shown here. tSNE in particular is very useful for detecting any confounding 

factors, as it can detect complex non-linear relationships and display different samples as 

disjoint clusters. In Figure 4.13, the results of PCA and tSNE showed that specific plates were 

not particularly enriched for certain sub-populations of cells in EpiSCs and iPSCs. For the 

intermediate cells with three transgenes, the experimental time points were completely 

confounded with the plates (Figure 4.13), therefore making batch effect correction for plate 

effects inadvisable.  

 

Batch effect correction using ComBat function in sva R package, which is a linear model-based 

method under Bayesian framework (Johnson et al. 2007), was attempted, but the corrected 

results were not meaningful as most samples are completely confounded by the batch effects. 

However no significant technical noise due to the plate effect is expected, because the PCA 

result on single-cell RNAseq data agrees with the PCA result on bulk RNAseq data (Figure 

4.4). Therefore the single-cell RNAseq data was used for downstream analyses without 

correcting for batch effect. 
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Figure 4.13   Dimensionality reduction analyses with plate information.  
(A) PCA with experimental time and cell line labels, (B) PCA with plate labels, (C) tSNE with 
experimental time and cell line labels, (D) tSNE with plate labels. 
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4.3.4 Testing differential expression analysis methods for single-cell 

RNAseq 

 

Since most differential expression analysis methods were developed for bulk RNAseq, and 

differential expression analysis is one of the key steps in analysing single-cell RNAseq, it would 

be important to investigate the performance of existing differential expression analysis 

methods on single-cell RNAseq. To enable a fair comparison of differential expression analysis 

methods, synthetic expression data with single-cell RNAseq technical noise were generated 

using a Beta-Poisson model with three parameters, 𝛼, 𝛽, and 𝛾 (Wills et al. 2013; Vu et al. 

2016) (Section 4.6.5). Beta-Poisson model offers advantages over negative binomial or zero-

inflated negative binomial models, as it can model over-dispersion and bimodality, as well as 

zero-inflation with a simple extension. In additions, the parameters in a Beta-Poisson model 

has biological meanings, where 𝛼 describes the rate of activation of transcription, 𝛽 describes 

the rate of inhibition of transcription and 𝛾 describes the rate of generation of transcripts while 

transcription is activated.  

 

The synthetic expression data were generated such that they contain a set of genes that was 

differentially expressed between the two samples (Section 4.6.5). The synthetic expression 

data contain 10000 genes and 200 cells. Two different sets of synthetic expression data were 

generated, namely synthetic data with differing mean and variance between the two samples, 

and synthetic data with only differing variance between the two samples. Eight different 

methods were tested here, which include DESeq2 (Love et al. 2014), edgeR (Robinson et al. 

2010), Wilcoxon rank sum test, Kolmogorov-Smirnov test, SCDE (Kharchenko et al. 2014), 

M3Drop (Andrews 2016), MAST (Finak et al. 2015), and Brennecke highly variable genes test 

(Brennecke et al. 2013). Out of all the methods, SCDE, M3Drop, MAST and Brennecke highly 

variable genes test are developed for single-cell RNAseq specifically, while DESeq2 and 

edgeR are developed for bulk RNAseq. SCDE performs differential expression analysis with a 

mixture of two distributions, with the first being a negative binomial distribution that models 

expression levels, and the second being a Poisson distribution that models dropouts. M3Drop 

fits a modified Michaelis-Menten equation to account for the presence of dropouts. MAST 

utilises a two-part generalised linear model to model the fraction of cells that express a certain 

gene and the level of expression for each gene separately. Brennecke highly variable genes 

test attempts to detect variable genes with variations that are higher than variations due to 

technical noise alone by using ERCC spike-ins or control samples. As for DESeq2 and edgeR, 
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they are very similar in utilising likelihood ratio test or Wald test to compare negative binomial 

linear models fitted to the expression values.  

 

When detecting differential gene expression on synthetic data with varying mean and variance, 

it can be seen that SCDE, DESeq2 and edgeR were the best performing algorithms in terms 

of area under the curves (AUC) for receptor operating characteristics (ROC) and precision-

recall (PR) curves (Figure 4.14A & B). The superior performance of DESeq2 and edgeR in 

experiments with high replicate numbers were also verified by an independent study (Schurch 

et al. 2016). The test case described here represents the typical purpose of differential 

expression analyses, which is to find out the difference in expression values between two 

samples in terms of the measure of central tendency (e.g. median). However, in the case of 

single-cell expression data, another interesting objective is to detect for the difference in 

expression values between two samples in terms of the measure of variability (e.g. variance). 

This test case was explored using the synthetic data with varying variance but fixed mean. The 

results showed that MAST, Kolmogorov-Smirnov and Wilcoxon rank sum performed the best 

in terms of AUC for ROC and PR (Figure 4.14C & D). This is likely to reflect that most 

differential expression analysis methods were developed for detecting differences in sample 

means or medians, but not in sample variances. 

 

Lastly, in terms of practical applications, it is important to take account of computing resources 

required for running differential expression analyses. The computing resources that are limiting 

for most people are the CPU cores and memory. Some algorithms do not scale well with the 

number of cells and/or number of CPU cores used, and may require prohibitively large amount 

of memory to be run. Here the computing times required per single CPU core for all differential 

expression analyses algorithms were investigated. The result indicated that while SCDE offers 

the best performance, it took 44 times longer than the second best performing algorithm, 

DESeq2, to run (~5 hours vs ~7 minutes) (Figure 4.15). The rest of the algorithms were finished 

in less than 7 minutes for 10000 genes and 200 cells. 

 

In summary, when accounting for accuracy, error rates and computing times required, DESeq2 

is the most suitable algorithm for detecting differentially expressed genes in terms of sample 

medians in single-cell RNAseq. This conclusion is conditioned on the distributions of the single-

cell expression values and the set of differential expression algorithms tested here. Note that 

DESeq2 differential expression analysis tested here relies on DESeq2 normalisation, which 

has been shown to be not suitable for normalising single-cell RNAseq data (Section 4.3.2). 
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This problem can be overcome by using an alternative normalisation in place of the standard 

DESeq2 normalisation when running DESeq2 differential expression analysis. 

 

 
Figure 4.14   ROC and PR curves of differential gene expression analysis algorithms.  
(A-B) ROC and PR curves on synthetic expression data with varying mean and variance, (C-
D) ROC and PR curves on synthetic expression data with varying variance, but fixed mean. 

 

 

 

 

 

 

 

Figure 4.15   Algorithm run times for differential gene expression analysis algorithms.  
Only a single core is used in each of the algorithms for comparison purpose. Time taken was 
recorded in seconds, and presented in log10 scale. 
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4.4 Single-cell RNAseq reveals expression profile 

differences within each cell line during reprogramming 

 

4.4.1 Most reprogramming cells are in G2/M phase 

 

One of the key biological factors in single-cell RNAseq experiments regardless of the biological 

systems studied is the cell cycle effect. The aim here is two-fold, which is (1) to characterise 

the cell cycle profiles of the reprogramming cells, and (2) to detect and account for the cell 

cycle profiles in downstream analyses. Accounting for cell cycle profiles is very important in 

single-cell RNAseq analysis, as the expression variations of cell cycle-related genes often 

contribute to the clustering and the detection of sub-populations of cells (Buettner et al. 2015).  

 

Here, the cell cycle phase for each cell was inferred using the cyclone function implemented 

in scran package as described in Section 4.6.4. Each cell is assigned a cell cycle phase of 

either G0/1, G2/M, S or unknown phase. The proportion of cells in each cell cycle phase for 

each cell type is summarised in Figure 4.16. It can be seen that almost all cells were in either 

G2/M or S phase in all cell types, with very few cells in G0/1 phase. This shows that the cells 

were actively growing and dividing. The cell cycle profiles of these cells are consistent with the 

understanding of the cell cycle in pluripotent stem cells, where G1 phase is shortened and G1 

checkpoint regulation is absent (Savatier et al. 1996; Coronado et al. 2013). Recent studies 

have shown that the lengthening of the G1 phase is associated with differentiation in both 

mouse and human ESCs (Coronado et al. 2013; Calder et al. 2013). 

 

The identified cell cycle phase information was then used to check if the cell cycle effect may 

be confounding downstream results by performing dimensionality reduction. The 

dimensionality reduction methods used for this purpose are PCA and tSNE (Figure 4.17). The 

result of DM is very similar with PCA, therefore is not shown here. In Figure 4.17, the results 

of PCA and tSNE showed that cell cycle variations were spread out rather uniformly, and were 

not particularly enriched within certain sub-populations of cells. This is true except for the small 

numbers of G0/1 cells that are enriched for earlier time points. However, cell-cycle effect is 

unlikely to confound the results of downstream analyses. 
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Figure 4.16   Number and proportion of cells per cell cycle stage.  
Cell cycles were identified based on known gene expression profiles for each cell cycle 
stage. 
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Figure 4.17   Dimensionality reduction analyses with cell cycle phase information.  
(A) PCA with experimental time and cell line labels, (B) PCA with cell cycle phase labels, (C) 
tSNE with experimental time and cell line labels, (D) tSNE with cell cycle phase labels. 
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4.4.2 iKlf2 cell line contains multiple subpopulations during 

reprogramming 

 

The aim of most single-cell RNAseq experiments is to detect subpopulations within the cells 

that otherwise cannot be detected in bulk RNAseq experiments. Here, the identification of cell 

subpopulations in each cell line was attempted by investigating similarities and differences in 

their expression profiles through a clustering approach. ICGS clustering method (Olsson et al. 

2016), which is an unbiased clustering method, was used to select for a set of most informative 

genes across all cells that facilitates clustering. The set of most informative genes contains 

2029 genes, which was then used for clustering the cells by using hierarchical clustering 

(Figure 4.18 & Figure 4.19). In Figure 4.18, it can be seen that EpiSCs and iPSCs were located 

in distinct clusters, Cluster 7 and 4 respectively. This suggests that EpiSCs and iPSCs were 

very different from the intermediate cells.  

 

Among the intermediate cells driven by the three transgenes, they were separated into six 

clusters, where cluster 1 contains iEsrrb early cells, cluster 2 contains iKlf2 early cells, cluster 

3 contains GY118F early cells, cluster 5 contains iKlf2 early cells, cluster 6 contains iEsrrb and 

GY118F late cells, and cluster 8 contains iKlf2 late cells (Figure 4.19). In general, GY118F and 

iEsrrb cells were more similar to one another than iKlf2 cells. This can be seen in cluster 6, 

where GY118F and iEsrrb cells were located in the same cluster. In contrast, iKlf2 cells 

occupied three almost exclusive clusters, which are cluster 2, 5 and 8, where only cluster 5 

includes 2 GY118F cells. The similarities and differences exhibited by the cell lines and clusters 

were also clearly observed in dimensionality reduction analyses such as PCA, DM and tSNE 

(Figure 4.20). In particular, GY118F and iEsrrb cells can be seen to overlap more extensively 

with one another compared to iKlf2 cells. 

 

Interestingly, the single-cell RNAseq results showed that iKlf2 cells are more similar with 

EpiSCs and iPSCs, while the bulk RNAseq results showed that iEsrrb cells are more similar 

with EpiSCs and iPSCs (Figure 4.5 & Figure 4.18). It is likely that there are subpopulations of 

cells within each cell line with different behaviours that influenced the single-cell results. As 

bulk RNAseq averages the expression of all cells in a pool, the differences among 

subpopulations can only be observed with single-cell RNAseq. 
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Figure 4.18   Heatmap based on most informative genes selected by ICGS.  

 
Figure 4.19   Number of cells for each cell type per cluster. 
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Figure 4.20   Dimensionality reduction analyses on all cells.  
(A) PCA labelled by experimental time, (B) PCA labelled by clusters, (C) DM labelled by 
experimental time, (D) DM labelled by clusters, (E) tSNE labelled by experimental time, (F) 
tSNE labelled by clusters. The clusters identified were the same clusters from Figure 4.18. 
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The identified clusters offered an opportunity to dissect the expression and functional 

differences among the clusters of cells, particularly on cell subpopulations within the same cell 

line. To achieve this, differential expression gene analysis followed by Gene Ontology (GO) 

analysis were performed to investigate the genes and the biological processes that are unique 

to the intermediate reprogramming cells. This was done by comparing each cluster with 

respect to both EpiSCs and iPSCs combined.  

 

Among the three cell lines, iKlf2 cell line showed the most difference within a cell line. iKlf2 cell 

line has three distinct clusters (i.e. cluster 2, 5, and 8), with iKlf2 cells in cluster 2 being the 

most different (1937 differentially expressed genes). It is likely that these iKlf2 clusters 

represent subpopulations of cells that were not successfully reprogrammed, or cells that 

underwent different reprogramming routes. For example, iKlf2 cells in cluster 2 showed 

upregulation of cell-cell adhesion and downregulation of division and cell migration, while iKlf2 

cells in cluster 5 showed upregulation of apoptosis (Table 4.3 & Table 4.4). These results 

suggest that cells in cluster 2 were differentiating and cells in cluster 5 were dying. As for iKlf2 

cells in cluster 8, which had progressed later in development, the cells were upregulating 

neuron and epithelial differentiation-related processes, while downregulating apoptosis and 

cell adhesion.  

 

In summary, each transgene drove reprogramming via different mechanisms, and the gene 

expression profile of iKlf2 cell line was very different from GY118F and iEsrrb cell lines. Besides 

the differences among cell lines, there are also interesting differences within each cell line as 

illustrated by the subpopulations within iKlf2 cell line. The single-cell RNAseq results showed 

that the reprogramming of EpiSCs is a dynamic process within a cell line, which involves 

changing gene expression profiles along reprogramming and the presence of subpopulations 

within this reprogramming process. 
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Biological Process Num. of 

Annotated 

Genes 

Num. of 

Observed 

Genes 

Adjusted 

P-values 

iKlf2 cluster 2 (Total: 1154 upregulated genes) 

Cell-cell adhesion 917 100 9.20E-13 

Arp2/3 complex-mediated actin nucleation 31 11 6.20E-07 

Small GTPase mediated signal transduction 477 70 6.80E-07 

Negative regulation of cell migration 208 30 1.10E-06 

Cytokinesis 116 16 8.30E-06 

Membrane budding 42 11 1.70E-05 

Actin filament capping 30 9 3.10E-05 

Regulation of cell migration 682 84 3.70E-05 

Establishment or maintenance of cell polarity 165 26 3.90E-05 

Protein localization to vacuole 46 11 0.00017 

 

iKlf2 cluster 5 (Total: 685 upregulated genes) 

Extrinsic apoptotic signaling pathway in absence of ligand 70 8 2.00E-06 

Regulation of transcription regulatory region DNA binding 39 8 4.60E-06 

Angiogenesis 410 25 6.30E-05 

Negative regulation of regulated secretory pathway 22 5 0.00018 

Blood vessel remodeling 50 7 0.00024 

Negative regulation of cell proliferation 585 29 0.00026 

Membrane assembly 24 5 0.00028 

Lysosomal transport 65 7 0.00041 

Negative regulation of cell migration 208 13 0.00041 

Positive regulation of cell cycle process 183 14 0.00056 

 

iKlf2 cluster 8 (Total: 473 upregulated genes) 

Regulation of neuron differentiation 632 15 2.70E-05 

Negative regulation of extrinsic apoptotic signaling pathway 

in absence of ligand 

31 4 0.00019 

Negative regulation of cell adhesion 222 8 0.00039 

Negative regulation of DNA binding 42 4 0.00061 

Negative regulation of apoptotic process 798 21 0.00092 

Inositol phosphate biosynthetic process 24 3 0.00138 

Regulation of gene expression 3615 41 0.00153 

Rhythmic process 286 9 0.00164 

Oxidation-reduction process 850 16 0.00195 

Regulation of odontogenesis 27 3 0.00196 

Table 4.3   Top 10 upregulated biological processes in iKlf2 cell line based on Gene 
Ontology (GO) analysis. 
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Biological Process Num. of 
Annotated 
Genes 

Num. of 
Observed 
Genes 

Adjusted 
P-values 

iKlf2 cluster 2 (Total: 908 downregulated genes) 

Cell division 520 94 4.00E-27 

Mitotic nuclear division 399 81 8.30E-16 

DNA replication initiation 31 15 4.60E-13 

Chromosome segregation 281 84 5.50E-12 

Mitotic sister chromatid segregation 123 37 1.30E-11 

Protein localization to chromosome 59 17 5.50E-11 

Attachment of spindle microtubules to kinetochore 25 11 2.30E-09 

DNA replication 245 55 4.80E-09 

Mitotic spindle assembly checkpoint 26 10 5.90E-08 

Male meiosis 42 12 1.30E-07 

 

iKlf2 cluster 5 (Total: 624 downregulated genes) 

Multicellular organism development 4492 158 0.00043 

Spermatogenesis 427 26 0.00069 

Biosynthetic process 5025 152 0.00075 

Cellular amino acid biosynthetic process 46 6 0.00104 

Regulation of meiotic nuclear division 32 5 0.00119 

Fatty acid beta-oxidation 68 7 0.0013 

Regulation of long-term neuronal synaptic plasticity 33 5 0.00138 

Synaptonemal complex assembly 20 4 0.00145 

Aspartate family amino acid biosynthetic process 20 4 0.00145 

Organic cyclic compound catabolic process 282 12 0.00162 

 

iKlf2 cluster 8 (Total: 1413 downregulated genes) 

Tube formation 156 22 4.90E-05 

Regulation of cell shape 129 19 6.50E-05 

Podosome assembly 21 7 7.90E-05 

Positive regulation of cell migration 403 43 9.60E-05 

Response to reactive oxygen species 159 20 0.00012 

Negative regulation of microtubule depolymerization 23 7 0.00015 

Peptidyl-proline modification 31 6 0.00016 

Cell differentiation involved in embryonic placenta 
development 

31 8 0.00018 

Neurotrophin TRK receptor signaling pathway 24 7 0.0002 

Anion transmembrane transport 92 13 0.00028 

Table 4.4   Top 10 downregulated biological processes in iKlf2 cell line based on Gene 
Ontology (GO) analysis. 
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4.4.3 Pseudotime trajectory reveals dynamic differences in gene 

expression and biological processes between the cell lines during 

reprogramming 

 

Another interesting aspect of single-cell RNAseq is that it can capture heterogeneity or 

asynchronicity in developmental progression, in which each cell is at a slightly different stage 

of reprogramming despite each cell being collected at the same experimental time. The cells 

in this single-cell RNAseq data were collected across five experimental time points (0, 48, 72, 

96 and 168 hours), but the time gaps between the experimental time points are quite big. Since 

this data possesses single-cell resolution, pseudotime inference algorithms can be used to 

infer the reprogramming time of each cell, thereby using it to smooth out the cells and offer 

increased time resolution along the reprogramming trajectory. 

 

Here, the DM-DPT pseudotime inference algorithm as described in Chapter 3 was used to 

infer pseudotime for the single-cell RNAseq along the reprogramming trajectory. DM-DPT 

pseudotime algorithm is suitable for this dataset, because the reprogramming trajectory can 

be resolved well in DM, and the cell lines are assumed to always have a single starting point 

and a single ending point (Figure 4.21). The first component of DM (DC1) corresponds to the 

reprogramming time, while the second component of DM (DC2) corresponds to the differences 

in the reprogramming states. Note that DC2 was able to capture the fact that the starting 

EpiSCs and the ending iPSCs share more homogeneous gene expression profiles relative to 

the intermediate reprogramming cells. As reprogramming state (DC2) is a function of time 

(DC1), this justifies the suitability of using DC1 to explain DC2 in DM-DPT pseudotime 

inference algorithm. Monocle2 and Wanderlust were also tested on the dataset, but the results 

were not ideal as Monocle2 gave a high number of branches, while Wanderlust failed to run 

due to the low number of cells. 

 

It is likely that in reality, there are multiple intermediate points, which represent different 

reprogramming pathways within a cell line, and multiple ending points, which represent the 

final states achieved by reprogramming and non-reprogramming cells. However, with the 

relatively low number of cells available in this single-cell RNAseq and large time gaps between 

experimental time points, it is not possible to confidently resolve any such differences. 

Therefore, it is assumed that there is a single main reprogramming trajectory for each cell line, 

and the aim is to investigate the differences among the trajectories. 
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Figure 4.21   Diffusion maps with fitted pseudotime trajectory for each cell line.  
(A) DM of iEsrrb cell line, (B) DM of GY118F cell line, (C) DM of iKlf2 cell line. The fitted line 
is a polynomial line that represents the pseudotime trajectory of each cell line. 

 

With pseudotime inferred for each cell in each cell line, it is then possible to investigate 

changes in gene expression values as a function of time along the reprogramming trajectory. 

In order to detect genes that were differentially expressed as a function of pseudotime, 

likelihood ratio tests on negative binomial models, as implemented in Monocle2 R package 

(Trapnell et al. 2014), were performed. With an adjusted p-value threshold of 0.01, there were 

7115 genes identified as differentially expressed in iEsrrb cell line, 7100 differentially 

expressed genes in GY118F cell line, and 6319 differentially expressed genes in iKlf2 cell line. 

As these are large numbers of genes, and there is no straightforward way to calculate a fold 

change equivalent for pseudotime-based differential expression analyses, only the top 1000 

A B 

C 
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differentially expressed genes in terms of p-values were chosen for further investigations. The 

differentially expressed genes  can then be used to locate groups of genes which show similar 

expression profiles along the pseudotime by using hierarchical clustering with Spearman 

correlation distance measure (Figure 4.22). Four clusters of genes were obtained in each cell 

line, in which each cluster represents a different expression profile as described in Table 4.5.  

 

Categories Expression changes 
across pseudotime 

Corresponding gene clusters 

iEsrrb GY118F iKlf2 

Cat 1 Low  High  2 2 1 

Cat 2 High  Low 3 3 2 

Cat 3 Low  High  Low 4 4 4 

Cat 4 High  Low  High 1 1 3 

Table 4.5   Categories of expression profiles.  
The gene cluster number is the same as indicated in the heatmaps. 

 

GO analysis was then performed on these different expression profiles for each cell line. Out 

of the four categories, it is expected that the genes in Cat 1 represent naïve pluripotency state 

in iPSCs, while the genes in Cat 2 represent primed pluripotency state in EpiSCs. These genes 

should also be highly similar across cell lines as shown in Figure 4.23A. 44.2% and 25.7% of 

the differentially expressed genes in Cat 1 and 2 respectively were the same across all three 

cell lines. In contrast, only 3.7% and 4.9% of the differentially expressed genes were the same 

in Cat 3 and 4. The same was observed in terms of GO terms, where Cat 1 and 2 share 17.7% 

and 5.8% of GO terms across all cell lines, while no GO terms were shared across cell lines in 

Cat 3 and 4.  
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Figure 4.22   Heatmaps of top 1000 differentially expressed genes in each cell line.  
(A) iEsrrb cell line, (B) GY118F cell line, (C) iKlf2 cell line. The cluster number is indicated by 
the colour scale on the top right of each plot. 

 

A B 

C 
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Figure 4.23   Venn diagrams of differentially expressed genes and Gene Ontology 
biological processes.  
Each category is as indicated in Table 4.5. *, p-value = 0.01; **, p-value = 0.001. 
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Cat1 – Total genes: 530 Cat2 – Total genes: 591 

Cat3 – Total genes: 296 Cat4 – Total genes: 346 

Cat1 – Total GO: 62 Cat2 – Total GO: 138 

Cat3 – Total GO: 69 Cat4 – Total GO: 128 
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The commonly enriched GO terms for genes in Cat 1 for all three cell lines contain 

spermatogenesis and other gametogenesis related biological processes (Table 4.6). Note that 

all cells analysed in this study are males. The result may suggest that the iPSCs identified here 

may contain some germline stem cells, which are pluripotent and have been shown to 

contribute to all germ layers under certain conditions (Donovan & de Miguel 2003). An 

alternative interpretation of the result is that the enrichment of gametogenesis terms may be 

suggesting that the iPSCs are similar to germline stem cells. Similarities are known to exist 

between ESCs and embryonic germ, which led to the suggestion that ESCs may be derived 

from primordial germ cells (Zwaka & Thomson 2004). Resolving ESCs and early germline stem 

cells is difficult because they share very similar expression profiles (Sharova et al. 2007).  

 

As for the genes in Cat 2, the commonly enriched GO terms for all three cell lines are apoptotic 

process for epithelial cells and cell adhesion-related biological process (Table 4.7). The 

presence of apoptosis may suggest that some EpiSCs were dying before the initiation of 

reprogramming. Cell adhesion and other epithelial cells related processes are expected to be 

upregulated in EpiSCs with respect to ESCs or iPSCs, as EpiSCs form flat colonies and require 

associations among cells to survive (Li & Ding 2013).  

 

The genes in Cat 3 and 4 correspond to genes that are uniquely perturbed during the 

reprogramming (Table 4.8 & Table 4.9). The GO results mostly agree with the observations 

obtained from bulk RNAseq as discussed in Section 4.2. For iEsrrb cell line, GO results 

indicated that the regulation of transcription was perturbed, the cells obtained morphology of 

ESCs and the inhibition of differentiation processes. For GY118F cell line, GO results indicated 

that gastrulation development was upregulated, cell adhesion and neural development were 

downregulated. For iKlf2 cell line, GO results indicated that the downregulation of immune cell 

development and other differentiation processes. 

 

In summary, these results suggest that while there is a group of shared biological processes 

during reprogramming as seen in Cat 1 and 2, the intermediate biological processes during 

reprogramming are different among cell lines. Each transgene was driving reprogramming via 

a different route as indicated by the GO biological processes enriched in Cat 3 and 4. 
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Biological Process Num. of 

Annotated 

Genes 

Num. of 

Observed 

Genes 

Adjusted 

P-values 

iEsrrb (Total: 208 differentially expressed genes) 

Spermatogenesis 427 26 2.90E-06 

Male meiosis 42 7 9.90E-06 

Synaptonemal complex assembly 20 5 2.40E-05 

Sister chromatid cohesion 49 6 6.20E-05 

Fertilization 144 10 8.90E-05 

Platelet-derived growth factor receptor signaling pathway 48 5 0.0018 

Regulation of T cell migration 27 3 0.0019 

Organic cyclic compound catabolic process 282 8 0.0022 

Regulation of meiotic nuclear division 32 4 0.0026 

Female meiotic division 33 4 0.0029 

 

GY118F (Total: 337 differentially expressed genes) 

Positive regulation of interferon-gamma production 62 7 0.00018 

Organic cyclic compound catabolic process 282 11 0.00037 

Neural crest cell migration 53 6 0.00051 

Negative regulation of reproductive process 55 6 0.00063 

Spermatogenesis 427 23 0.00082 

Fertilization 144 7 0.00107 

Osteoblast differentiation 203 9 0.00108 

Male meiosis 42 5 0.0012 

Mitotic spindle assembly checkpoint 26 4 0.00143 

Lens fiber cell differentiation 28 4 0.0019 

 

iKlf2 (Total: 212 differentially expressed genes) 

Spermatogenesis 427 24 1.70E-06 

Positive regulation of leukocyte migration 106 6 0.00043 

Fertilization 144 6 0.00046 

Male meiosis 42 5 0.00051 

Multicellular organism development 4492 96 0.00053 

Negative regulation of nuclear division 54 5 0.00077 

Cell differentiation 3541 79 0.00082 

Somitogenesis 74 6 0.00112 

Organic cyclic compound catabolic process 282 8 0.00115 

Regulation of meiotic nuclear division 32 4 0.00156 

Table 4.6   Top 10 enriched biological processes for Cat 1 expression profile in all cell 
lines based on Gene Ontology (GO) analysis. 
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Biological Process Num. of 

Annotated 

Genes 

Num. of 

Observed 

Genes 

Adjusted 

P-values 

iEsrrb (Total: 383 differentially expressed genes) 

Cholesterol biosynthetic process 41 9 1.00E-08 

Negative regulation of cell migration 208 12 0.00015 

Negative regulation of angiogenesis 78 7 0.00021 

Heterotypic cell-cell adhesion 38 5 0.00029 

Positive regulation of stress fiber assembly 39 5 0.00032 

Positive regulation of epithelial cell apoptotic process 25 4 0.00055 

Isoprenoid biosynthetic process 26 4 0.00065 

Outflow tract morphogenesis 70 6 0.00075 

Actin filament capping 30 4 0.00113 

Embryonic digestive tract development 32 4 0.00144 

 

GY118F (Total: 472 differentially expressed genes) 

Heterotypic cell-cell adhesion 38 5 0.00016 

Positive regulation of MAPK cascade 416 16 0.00017 

Positive regulation of stress fiber assembly 39 5 0.00019 

Cholesterol biosynthetic process 41 5 0.00024 

Membrane assembly 24 4 0.0003 

Positive regulation of epithelial cell apoptotic process 25 4 0.00035 

Cell-cell adhesion 917 29 0.00045 

Response to tumor necrosis factor 112 7 0.00122 

Cell chemotaxis 205 8 0.00127 

Bicellular tight junction assembly 36 4 0.00145 

 

iKlf2 (Total: 399 differentially expressed genes) 

Outflow tract morphogenesis 70 11 1.20E-06 

Heterotypic cell-cell adhesion 38 8 3.50E-06 

Anion transmembrane transport 92 10 6.40E-06 

Positive regulation of extrinsic apoptotic signaling pathway 58 9 1.20E-05 

Myelination 115 13 2.00E-05 

Cell adhesion 1379 82 9.50E-05 

Regulation of extrinsic apoptotic signaling pathway via death 

domain receptors 

46 7 0.00014 

Positive regulation of osteoblast differentiation 66 8 0.00023 

Ventral spinal cord development 46 5 0.00023 

Plasma membrane organization 261 22 0.00025 

Table 4.7   Top 10 enriched biological processes for Cat 2 expression profile in all cell 
lines based on Gene Ontology (GO) analysis. 
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Biological Process Num. of 

Annotated 

Genes 

Num. of 

Observed 

Genes 

Adjusted 

P-values 

iEsrrb (Total: 294 differentially expressed genes) 

Response to fluid shear stress 20 3 0.0002 

Negative regulation of transcription from RNA polymerase II 

promoter 

717 13 0.00025 

Cell morphogenesis 1122 12 0.0003 

Positive regulation of transcription from RNA polymerase II 

promoter 

998 16 0.00044 

Negative regulation of cell adhesion 222 7 0.00125 

Stem cell population maintenance 156 6 0.00128 

Developmental process involved in reproduction 644 10 0.00345 

Single organismal cell-cell adhesion 651 9 0.00654 

Respiratory system development 231 6 0.00671 

Regulation of cellular component size 342 5 0.00692 

 

GY118F (Total: 64 differentially expressed genes) 

Negative regulation of myoblast differentiation 24 4 2.10E-05 

Outflow tract morphogenesis 70 5 0.00012 

Regulation of epidermal cell differentiation 46 4 0.00028 

Cell development 1966 22 0.00069 

Positive regulation of epidermis development 30 3 0.00115 

Lung epithelial cell differentiation 32 3 0.00139 

Cell fate commitment involved in formation of primary germ 

layer 

32 3 0.00139 

Gastrulation with mouth forming second 35 3 0.00181 

Positive regulation of nitric oxide biosynthetic process 38 3 0.00229 

Ossification 359 6 0.00413 

 

iKlf2 (Total: 259 differentially expressed genes) 

Regulation of membrane depolarization 40 4 0.00015 

Negative regulation of cell killing 20 3 0.00031 

Regulation of cell migration 682 13 0.00119 

Negative regulation of dendrite development 32 3 0.00127 

Negative regulation of lymphocyte mediated immunity 33 3 0.00139 

Regulation of natural killer cell mediated cytotoxicity 35 3 0.00165 

Positive regulation of Notch signaling pathway 36 3 0.00179 

Phospholipase C-activating G-protein coupled receptor 

signaling pathway 

79 4 0.00196 

Negative regulation of innate immune response 38 3 0.00209 

Regulation of transcription regulatory region DNA binding 39 3 0.00226 

Table 4.8   Top 10 enriched biological processes for Cat 3 expression profile in all cell 
lines based on Gene Ontology (GO) analysis. 
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Biological Process Num. of 

Annotated 

Genes 

Num. of 

Observed 

Genes 

Adjusted 

P-values 

iEsrrb (Total: 115 differentially expressed genes) 

Negative regulation of transcription from RNA polymerase II 

promoter 

717 22 1.20E-05 

Regulation of morphogenesis of a branching structure 57 6 2.30E-05 

Motor neuron axon guidance 32 5 2.30E-05 

Neuroepithelial cell differentiation 61 5 5.70E-05 

Glial cell differentiation 194 14 7.20E-05 

Ventral spinal cord development 46 4 0.00033 

Regulation of astrocyte differentiation 31 4 0.00034 

Prostate gland epithelium morphogenesis 32 4 0.00039 

Negative regulation of epithelial cell differentiation 37 4 0.00068 

Neuron maturation 42 4 0.0011 

 

GY118F (Total: 127 differentially expressed genes) 

Synapse organization 229 10 5.60E-05 

Negative regulation of embryonic development 28 4 0.00025 

Negative regulation of gliogenesis 45 4 0.00044 

Wnt signaling pathway, planar cell polarity pathway 35 4 0.00059 

Axon guidance 194 11 0.0006 

Cell adhesion 1379 30 0.00086 

Anion transmembrane transport 92 5 0.00108 

Cholesterol biosynthetic process 41 4 0.00108 

Limb morphogenesis 162 7 0.00111 

Neuron maturation 42 4 0.00119 

 

iKlf2 (Total: 130 differentially expressed genes) 

Labyrinthine layer morphogenesis 25 4 1.40E-06 

Odontogenesis of dentin-containing tooth 76 4 0.00012 

Patterning of blood vessels 44 3 0.00043 

Neural crest cell migration 53 3 0.00075 

Hippocampus development 58 3 0.00097 

Hormone secretion 306 4 0.00141 

Diencephalon development 67 3 0.00148 

Regulation of epidermal cell differentiation 46 3 0.00177 

Morphogenesis of a branching epithelium 211 9 0.00215 

Positive regulation of heart rate 21 2 0.00223 

Table 4.9   Top 10 enriched biological processes for Cat 4 expression profile in all cell 
lines based on Gene Ontology (GO) analysis. 
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4.5 Conclusions 

 

Here, we have shown that the iEsrrb, iKlf2 and GY118F transgene cell lines drive EpiSC 

reprogramming via different mechanisms. This is firstly shown through investigating cell line 

differences using bulk RNAseq data. The upregulation of Esrrb drives reprogramming by 

modulating transcriptional regulation responsible for establishing naïve ESC identity, the 

upregulation of Klf2 drives reprogramming by regulating cell proliferation and differentiation, 

while the upregulation of pSTAT3 in GY118F cell line drives reprogramming by regaining 

trophectoderm potential and downregulating BMP/SMAD pathway.  

 

The follow up analysis using single-cell RNAseq allows the investigation of subpopulations 

within the cell lines and the gene expression dynamics along the pseudotime trajectory. iKlf2 

cell line is shown to possess multiple subpopulations with different biological properties that 

may affect their reprogramming successes. The inferred pseudotime along the reprogramming 

trajectory shows different gene expression dynamics in the three cell lines, particularly in the 

genes whose expressions are only perturbed during the intermediate reprogramming state.  

 

Taken together, these observations enable a better understanding of the molecular 

mechanisms underlying each individual pathway as driven by upregulated Esrrb, Klf2 and 

pSTAT3 in the context of EpiSC reprogramming. In addition, these three transgenes are 

downstream of the molecular pathways regulated by the conventional 2i+LIF ESC culture 

condition. The results in this study will offer further insights into the downstream mechanisms 

regulated by each individual component from 2i+LIF. 
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4.6 Materials and methods 

 

4.6.1 Cell lines 

 

The cell lines used in this study were generated by Hannah Stuart and Tim Lohoff from Jose 

Silva’s lab. The cell lines were generated by introducing Doxycycline-inducible PiggyBac 

expression plasmids, which contain the transgenes, the reverse tetracycline-controlled 

transactivator, and a monoallelic Rex1-destablised GFP reporter, into EpiSC lines. 

Successfully reprogrammed cells (i.e. iPSCs) were assessed via colony formation assays by 

selecting for blasticidin resistance and the formation of dome-shaped colonies, and chimera 

formations by checking for the presence of GFP-labelled cells in embryos and the coat colour 

of F1 offspring. 

 

4.6.2 Processing of bulk and single-cell RNAseq data 

 

The bulk RNAseq data consist of 92 samples, while the single-cell RNAseq data consist of 360 

cells. Both RNAseq data contain samples/cells from the three cell lines with transgenes (i.e. 

iEssrb, iPStat3, iKlf2), and an empty vector control cell line. The single-cell RNAseq data also 

contain ESC cells. Both RNAseq data were generated using the same SmartSeq2 library 

preparation protocol, and sequenced on the Illumina HiSeq 4000 machine. However, the bulk 

and the single-cell RNAseq data differ in two technical aspects. Firstly, the bulk RNAseq data 

contain samples that were gated and enriched for different reprogramming success rates, 

while the single-cell RNAseq data contain only samples that were gated and enriched for cells 

with high reprogramming success rates. Secondly, the bulk RNAseq data has paired ends, 

while the single-cell RNAseq data has single end.  

 

All RNAseq data were aligned using GSNAP version 2015-09-29 (Wu & Nacu 2010). Aligned 

reads were counted using HTSeq-count (Anders et al. 2015). Ensembl genome index and 

gene annotations release version 77 were used. 

 

4.6.3 ICGS clustering and heatmaps 
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ICGS clustering (Olsson et al. 2016), which is implemented as part of the AltAnalyze software 

package version 2.0 (Emig et al. 2010), was used for selecting the most informative genes with 

default ICGS settings. The gene expression profiles based on the most informative genes were 

then used to hierarchical cluster all cells with Spearman correlation distance measure. The 

clusters were identified by cutree function in R with specified number of clusters. Heatmaps 

were plotted using gplots (Warnes et al. 2015) and pheatmap (Kolde n.d.) R packages. 

 

4.6.4 Cell cycle analysis 

 

Cell cycles were identified based on known gene expression profiles for each cell cycle stage 

as implemented by the cyclone function (Scialdone et al. 2015) in the scran package (Lun et 

al. 2016). This is done by assigning each cell a separate score for G0/1 and G2/M phases. 

Cells with G0/1 score of more than 0.5 were assigned with G0/1 phase, while cells with a G2/M 

score of more than 0.5 were assigned with G2/M phase. Cells with G0/1 score of less than 0.5 

and G2/M score of less than 0.5 were assigned with S phase. All other cells were assigned 

with an unknown cell cycle phase. 

 

4.6.5 Assessing differential gene expression analyses 

 

The synthetic expression data used here was generated by using a Beta-Poisson model with 

three parameters, α, β, and γ (Wills et al. 2013; Vu et al. 2016). The model is a mixture of 

Poisson distributions, in which a Poisson distribution is obtained by first sampling a random 

value 𝑘 from a beta distribution with parameters (𝛼, 𝛽), then multiplied by 𝑘 by 𝛾 to get a 

Poisson distribution with parameter (𝑘𝛾). The equations that describe mean and variance of a 

Beta-Poisson model are given below. 

𝜇 =
𝛼𝛾

(𝛼 + 𝛽)
 

𝜎2 =
𝛼𝛽𝛾2

(𝛼 + 𝛽 + 1)(𝛼 + 𝛽)2
 

Custom R script was used to generate these synthetic expression data, each with 10000 genes 

and 200 cells, where 𝛼~𝑁(−1, 0.52), 𝛽~𝑁(0, 0.52), 𝛾~𝑁(3, 0.52). The distributions of α, β, and 

γ were selected empirically to give expression distributions that match observed real single-

cell expression data. For each synthetic expression dataset, it contains cells separated into 



163 
 

two sample groups, each with 100 cells. It is important to simulate the fact that the cells in the 

two sample groups should share similar but slightly different distributions of expression values. 

Therefore, for each gene, only one of out of the three parameters was multiplied by a constant 

in the second sample, while keeping the rest of the two parameters the same.  

 

8 different methods were tested here, which include DESeq2, edgeR, Wilcoxon rank sum test, 

Kolmogorov-Smirnov test, SCDE, M3Drop, MAST, and Brennecke highly variable genes test. 

DESeq2 (Love et al. 2014), edgeR (Robinson et al. 2010), SCDE (Kharchenko et al. 2014), 

M3Drop (Andrews 2016) and MAST (Finak et al. 2015) were implemented by their authors as 

R packages; Brennecke highly variable genes test was implemented by their authors as an R 

script (Brennecke et al. 2013); while Wilcoxon rank sum and Kolmogorov-Smirnov tests were 

standard statistical tests implemented in base R (Team 2013). 

 

4.6.6 Differential expression and Gene Ontology analyses 

 

Differential expression analysis was performed using the DESeq2 R package (Love et al. 2014) 

with default parameters. Differentially expressed genes are defined by genes with more than 

log2 fold change of 1 and FDR-corrected p-value of less than 0.01. Gene Ontology (GO) 

analysis was performed using the topGO R package (Alexa & Rahnenfuhrer 2016). topGO 

implements gene set enrichment test for GO slightly differently from other GO R packages 

such as limma. It considers the hierarchical structure of GO when performing tests, and it 

places heavier emphasis on the more specific biological functions annotation over the broader 

annotations. Adjusted p-values corrected for multiple testing were computed using the 

Benjamini & Hochberg method. 

 

4.6.7 Significance test for overlaps in Venn diagrams 

 

The significance test for overlaps in Venn diagrams was calculated by estimating the 

underlying distribution of the number of overlaps among sets (i.e. a permutation test). This is 

done by performing 10000 iterations of randomly sampling genes for each set to see how many 

of these genes are common, therefore overlap, among sets. The p-value is then obtained by 

comparing the actual number of overlaps with the estimated distribution. 
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5 FLT3-ITD and IDH1-R132H mutations potentially 

act synergistically in acute myeloid leukaemia  

 

RNAseq data used were generated by Konstantinos Tzelepis from George Vassiliou’s lab as 

a collaboration. 

 

5.1 Background 

 

Cancer is a multistep process, which involves a succession of genetic, epigenetic and 

environmental events that drives the transformation of normal cells into malignant derivatives 

(Hanahan & Weinberg 2000; Hanahan & Weinberg 2011). Among different cancer types, this 

chapter focuses on the study of leukaemia, specifically the acute myeloid leukaemia. 

Leukaemia is the cancer of the blood or bone marrow which is usually characterised by a 

decrease in erythrocytes and platelets as well as an increase in leukocytes. Leukaemia is 

further broken down into four major categories that account for 85% of all leukaemia (Siegel 

et al. 2011), which include acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML), 

acute lymphocytic leukaemia (ALL) and chronic lymphocytic leukaemia (CLL). AML involves 

the proliferation of myeloid cells and an arrest in their maturation, which often results in 

insufficient erythrocytes, platelets or granulocytes from being produced (Lowenberg et al. 

1999). AML has a low overall 5-year survival rate of 30-40% (Dohner et al. 2010) and accounts 

for 42% of all leukaemia deaths (Siegel et al. 2011).  

 

Similar to other cancers, the development of AML is a multistep process that requires the 

acquisition of multiple genetic mutations. Gilliland and Griffin proposed a model suggesting 

that at least two classes of mutations are required for a full-blown leukaemia, which is known 

as the two-hit model (Gilliland & Griffin 2002). The model consists of two classes of mutations, 

which are traditionally known as the class I and II mutations. Class I mutations are defined as 

mutations that affect signalling pathways and lead to enhanced cell proliferation, while class II 

mutations are defined as mutations that affect transcription factor regulations and lead to 

impaired cell differentiation (Takahashi 2011a; Grafone et al. 2012). Some examples of class 

I mutations include FLT3-ITD, FLT3-TKD and Kit, while some examples of class II mutations 

include Runx1, C/EBPA and MLL rearrangement. 
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However, recent studies discover new mutations in Dnmt3a, Npm1 and Idh1/2 that co-occur 

with both class I and II mutations, as well as possessing biological functions that do not fall 

into the definitions of class I and II mutations (Ley et al. 2010; Colombo et al. 2011; Paschka 

et al. 2010). Therefore, these observations suggest that AML is more complex and does not 

develop in just two stages with two classes of mutations as described in the simple two-hit 

model.  

 

Among the mutated genes found in AML, the study in this chapter focuses on Flt3 and Idh1 

genes, particularly on FLT3-ITD and IDH1-R132H mutations. Flt3, fms-related tyrosine kinase 

3, encodes a membrane receptor which is a member of the class III receptor tyrosine kinase 

family. The activation of FLT3 protein by binding to the FL ligand leads to the activation of the 

PI3K/Akt and RAS/ERK pathways, which in turn help in regulating a wide range of biological 

processes, ranging from metabolism to proliferation (Grafone et al. 2012). The roles of Flt3 in 

AML are very widely studied, because the Flt3 mutations are one of the most frequently 

identified mutations in AML with approximately one-third of AML patients having mutations in 

this gene (Takahashi 2011b). In particular FLT3-ITD mutation is the most common Flt3 

mutation. FLT3-ITD contains an in-frame tandem duplication in the juxtamembrane domain of 

the gene, which results in the constitutive activation of FLT3. The presence of FLT3-ITD not 

only results in perturbed activation of signalling pathways regulated by wild-type FLT3, it also 

leads to potent activation of STAT5 signalling pathway and the inhibition of myeloid 

transcription factors (Takahashi 2011b) (Figure 5.1). These perturbations in turn lead to the 

inhibition of apoptosis and differentiation, as well as the activation of proliferation. 

 

In contrast, Idh1 is only discovered recently to play a role in AML and therefore is less well 

characterised (Mardis et al. 2009). Idh1 codes for isocitrate dehydrogenase that catalyses the 

oxidative decarboxylation of isocitrate to produce α-ketoglutarate, which is important for the 

degradation of hypoxia-inducing factor (HIF). Besides playing an important role in cellular 

defence of oxidative damage, Idh1 is also important for lipid metabolism and oxidative 

respiration (Reitman & Yan 2010). In AML, the IDH1 protein is usually mutated at R132 

residue, which is evolutionary conserved and is located in the subtrate binding site of IDH1 

protein (Bleeker et al. 2009). IDH1-R132 mutation results in more than 80% reduction in the 

production rate of α-ketoglutarate compared to the wild-type IDH1 protein (Zhao et al. 2009) 

(Figure 5.1). Interestingly, Idh1 mutation tends to be heterozygous in tumours, which suggests 

that besides the loss of function, Idh1 mutation may lead to a gain of function. This is supported 



166 
 

by studies that show mutated IDH1 protein being capable of catalysing the conversion of α-

ketoglutarate into 2-hydroxyglutarate (Dang et al. 2009; Ward et al. 2010). 2-hydroxyglutarate 

has been shown to interfere with the methylation process, which results in hypermethylation in 

AML patients (Zhao et al. 2009; Figueroa et al. 2010). Among different IDH1-R132 mutations, 

IDH1-R132H is the most common in glioma (90%) (Cui et al. 2016), but its frequency in AML 

is difficult to quantify due to the low frequency of occurrence (4.4% - 13.5%) (Byers et al. 2012). 

 

 

Figure 5.1   Pathways affected by FLT3-ITD and IDH1-R132 mutations. 

 

Among the different mutations in AML, some of the mutations are found to co-occur very often, 

while the other mutations are mutually exclusive (Takahashi 2011a). The mutations that co-

occur are assumed to have synergistic effects which confer growth and survival advantage 

due to gene interactions. One such example is FLT3-ITD and Npm1 mutations which are 

strongly associated with one another (Thiede et al. 2006). In contrast, mutations that are 

mutually exclusive or co-occur at a low frequency are assumed to participate in the same 

biological processes, therefore are functionally redundant for the AML development. One such 

example is Idh1/2 and Tet2 mutations which are mutually exclusive (Metzeler et al. 2011). 
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Interestingly, studies have shown that FLT3-ITD and IDH1-R132 mutations co-occur at a low 

frequency that does not exceed the random expectation (Boissel et al. 2010; Schnittger et al. 

2010; Andersson et al. 2011). The non-co-occurrence between FLT3-ITD and IDH1-R132 

mutations suggest that they may affect the same biological process. Both FLT3-ITD and IDH1-

R132 mutations were shown to upregulate HIF-1α (Jin et al. 2009; Zhao et al. 2009). HIF-1, 

which consists of α and β subunits, is important for cancer cell hypoxia adaptation, and is 

known to be overexpressed in many cancers including AML (Zhong et al. 2002). Therefore 

based on evidence from previous studies, it is unlikely that FLT3-ITD and IDH1-R132 

mutations will interact with one another to confer increased leukaemia tendency given their 

non-co-occurrence and functional redundancy. However, the results presented in this chapter 

suggest that although both mutations may affect similar biological processes, the presence of 

both mutations will lead to perturbed expression profile that is very different from the 

expression profiles of just having each mutation individually. 

 

Single-cell RNAseq was generated from mice haematopoietic stem cells (HSCs) and 

lymphoid-primed multipotential progenitors (LMPPs) with FLT3-ITD and IDH1-R132H 

mutations (Figure 5.2). By studying the single-cell RNAseq data, this chapter aims to 

investigate the expression profiles of FLT3-ITD and IDH1-R132, and whether these two 

mutations predispose some cells for developing AML. In addition, it would also be interesting 

to investigate if the two mutations have synergistic effects when both of them are present in 

the same cells. Section 5.2 firstly describes the quality control and pre-processing of RNAseq 

data to reduce technical bias for downstream analyses. Section 5.3 uses single-cell RNAseq 

to investigate the expression profiles and AML predisposition of FLT3-ITD and IDH1-R132 

cells. The chapter then ends with conclusions in Section 5.4, and materials and methods in 

Section 5.5. 

 

Note that in the rest of the chapter, cells with FLT3-ITD mutation are simply referred to as FLT3 

cells, cells with IDH1-R132 mutation are referred to as IDH1 cells, while cells with both 

mutations are referred to as FLT3-IDH1 cells. 
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Figure 5.2   Overview of haematopoiesis.  
The brackets indicate samples used for single-cell RNA sequencing. [Figure adapted from 
(Moignard et al. 2013)] 
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5.2 Pre-processing of RNAseq data 

 

5.2.1 Performing quality control 

 

As in Section 4.3.1, quality controls were performed on the RNAseq data on the raw 

sequencing reads, on the aligned reads, and on the counted reads. The quality of the raw 

sequencing reads as shown by the FastQC program (Andrews S 2010) is illustrated by using 

a pool of all 96 wild type HSCs (Figure 5.3). Using a pool of cells overcomes the potential pitfall 

of picking random single cells that may exhibit extreme properties by chance, and speeds up 

the computation process of quality control. Only a pool of cells is shown here for illustration 

purpose, as all other pools of cells by samples showed very similar technical properties. 

 

The quality control in Figure 5.3 suggests that there is no fundamental technical problem with 

the single-cell RNAseq data. For detailed explanations of the meaning of each sub-figure, 

please refer to Section 4.3.1 and Figure 4.6. The results in Figure 5.3 agreed with the results 

in Figure 4.6, with the main differences due to slightly different protocols and the pooling of 

cells. The library construction protocol and sequencing machine used were the same for the 

single-cell RNAseq data in Chapter 4 and in this chapter. This single-cell RNAseq data has 

100 base pairs and has paired ends, while the previous single-cell RNAseq data in Chapter 4 

has 50 base pairs and has single ends. 

 

Quality control was performed on the aligned reads using the same pool of all 96 wild type 

HSCs by RSeQC program (Wang et al. 2012) (Figure 5.4). For detailed explanations of the 

meaning of each sub-figure, please refer to Section 4.3.1 and Figure 4.7. The quality of the 

aligned reads indicates that there is no fundamental technical problem, and the results in 

Figure 5.4 are similar with the results in Figure 4.7. The main differences are in the results of 

gene body coverage and mutation profile, which are smoother in Figure 5.4 due to the pooling 

of cells. The extra analysis available here is the distribution of the mRNA insert size (Figure 

5.4B) due to the use of paired ends in this data. The result indicates that the mRNA insert size 

is small for most reads (mean = 6.8 bp) with a lot of the paired end reads overlapping, which 

is indicated by the negative insert size values. 
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Lastly quality control was performed on the counted reads, which was used to remove outlier 

cells that exhibit unusual technical properties (Figure 5.5). For detailed explanations of the 

meaning of each sub-figure, please refer to Section 4.3.1 and Figure 4.8. Similar to before, 

filtering thresholds were set on five technical properties in Figure 5.5. 149 cells were removed 

from downstream analysis based on the total reads (less than 0.5 million reads per cell), 

fraction of mapped reads (less than 50% mapped reads per cell), fraction of spike-in reads 

(more than 25% spike-in reads per cell), fraction of mitochondrial reads (more than 10% 

mitochondrial reads per cell) and number of genes with more than 10 reads per million (less 

than 1000 genes per cell). Note that for plate 3, which contains all FLT3-IDH1 HSCs, was 

known to possess 41 empty wells that do not contain a cell due to the low number of HSCs 

available in FLT3-IDH1 mice. These 41 empty wells were detected as outlier cells within the 

quality control in Figure 5.5 and were removed. The presence of empty wells also lead to the 

greater sequencing depth experienced by FLT3-IDH1 HSCs relative to the other cells, which 

will be corrected by normalisation. 
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Figure 5.3   FastQC results on the quality of raw sequencing reads of a pool of 96 WT 
HSCs single-cell RNAseq.  
(A) Per base sequence quality, (B) Per sequence quality scores, (C) Per base sequence 
content, (D) Per sequence GC content, (E) Sequence duplication levels, (F) Adapter content. 
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Figure 5.4   RSeQC results on the quality of aligned reads of a pool of 96 WT HSCs 
single-cell RNAseq.  
(A) Gene body coverage, (B) mRNA insert size, (C) Insertion profile, (D) Deletion profile, (E) 
Clipping profile, (F) Mismatch profile. 
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Figure 5.5   Quality control of counted reads in all cells.  
Each dot in the plot corresponds to a cell. Each cell always has the same index in the x-axis 
across the plots. The red dashed line indicates the threshold used where a cell is labelled as 
an outlier. 
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5.2.2 Quantifying wild type and mutant reads 

 

Since the cells in this experiment are heterozygous for the two genes, Flt3 and Idh1, the 

RNAseq reads for the two genes consist of a mix of wild type and mutant reads. It would be 

interesting to verify that the mutant alleles were indeed expressed in the mutant cells, where 

the expression of both the wild type and mutant alleles for each gene should be at a similar 

level. The number of wild type and mutant reads were obtained by aligning all RNAseq reads 

against a custom-built genome index that contains both the wild type and mutant sequence 

versions of both genes. Despite careful considerations when generating the custom genomic 

index, it is possible that the sequence aligner software used may not be able to accurately 

quantify the number of wild type and mutant reads, due to the high degree of similarity between 

wild type and mutant sequences. In terms of the mutant sequences, FLT3-ITD contains 

repeated short sequences that are also present in wild type Flt3 sequence. As for IDH1-R132H, 

it contains mostly single nucleotide polymorphisms, with the rest of the sequence being 

identical to the wild type Idh1 sequence. 

 

Despite expecting similar expression levels for both wild type and mutant alleles, the actual 

reads detected for each allele are different as shown in Figure 5.6. Generally, HSCs showed 

lower expression of both genes relative to LMPPs, and mutant reads were only detected in 

mutant cells except in LMPPs, where Flt3 mutant reads were detected in wild type LMPPs and 

IDH1 LMPPs. It is likely that these represent technical errors, where a proportion of wild type 

reads was wrongly recognised as mutant reads by the sequence aligner, due to the high level 

of Flt3 expression observed in LMPPs and the similarity in sequences between the wild type 

and mutant alleles. The index switching issue in the Illumina HiSeq 4000 sequencing machine 

as reported by (Sinha et al. 2017) is not the cause here as each sample with different mutations 

is sequenced in a separate lane. In summary, the result confirmed that mutant alleles were 

indeed expressed in the mutant cells, and were not silenced epigenetically by the cells. 
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Figure 5.6   Wild type of mutant reads for Flt3 and Idh1 genes in all cell types.  
Note that FTIX represents FLT3-IDH1 double mutant. 

 

5.2.3 Selecting the most suitable normalisation method 

 

Three normalisation methods were evaluated on this data, namely counts per million (CPM), 

DESeq (Anders & Huber 2010) and scran (L. Lun et al. 2016) normalisation methods. DESeq 

normalisation method was tested with two configurations, in which the location estimator used 

is different, namely the default median and the shorth estimator. Scran normalisation method 

was tested with two configurations, in which the clustering method used is different, namely 

the default Spearman correlation-based hierarchical clustering, and by considering all the cells 

as a single cluster. Please refer to Section 4.3.2 for more detailed discussions on each of the 

methods. 

 

Figure 5.7 shows that in general, scran normalisation gave more similar library sizes among 

the different samples, when compared to DESeq normalisation. Note that CPM normalisation 

always restricts all samples to the same library size. However, instability of results occurred 

with both scran and DESeq normalisation methods, where a few cells are highly amplified in 

terms of the number of reads after normalisation. The same highly amplified cells did not 

possess high number of reads before normalisation. 
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The performance of the normalisation methods was further assessed by checking the results 

of the principal component analysis (PCA) (Figure 5.8) and cell-wise relative log expression 

(RLE) (Figure 5.9). The ideal normalisation method should provide clear separation among 

samples in the PCA and give reduced spread in the RLE relative to the separation and the 

spread of the raw reads. Interestingly, the use of different normalisation methods had very little 

effects on the spatial layout of cells on the PCA. This suggests that PCA results are not very 

informative on selecting the most suitable normalisation method. In terms of the RLE results, 

the normalisation methods similarly did not have a large impact on reducing the spread of 

normalised RLE values relative to the raw RLE values. Out of all normalisation methods, CPM 

gave the largest reduction of spread in RLE values, and relatively little outlier cells. Lastly, the 

relationship between read counts and gene lengths was also investigated (Figure 5.10). There 

was no obvious relationship between read counts and gene lengths, which suggests that there 

is no need to correct for gene lengths. The lack of relationship is likely to be due to the use of 

sequencing library generation protocol that favours capturing the 3’ end of a transcript. 

 

Taken together, the results suggest that there is no one normalisation method that is distinctly 

better than the others. CPM was chosen for normalising the data for downstream analyses, 

because it is the most conservative normalisation method with the fewest assumptions and it 

does not generate highly amplified outlier cells that are present in other methods. 
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Figure 5.7   Raw and normalised reads using different normalisation methods.  
Y-axis scale is fixed to allow for comparisons among different methods. CPM, counts per 
million; scran_auto, Scran with default clustering; scran_single, Scran with a single cluster; 
deseq_ori, DESeq with default median; deseq_shorth, DESeq with shorth estimator. 
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Figure 5.8   Principal component analysis of raw and reads normalised with different 
normalisation methods.  
CPM, counts per million; scran_auto, Scran with default clustering; scran_sample, Scran with 
cells clustered by samples (i.e. cell type and genotype); scran_single, Scran with a single 
cluster; deseq_ori, DESeq with default median; deseq_shorth, DESeq with shorth estimator. 
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Figure 5.9   Cell-wise relative log expression of raw and reads normalised with 
different normalisation methods.  
CPM, counts per million; scran_auto, Scran with default clustering; scran_sample, Scran with 
cells clustered by samples (i.e. cell type and genotype); scran_single, Scran with a single 
cluster; deseq_ori, DESeq with default median; deseq_shorth, DESeq with shorth estimator. 

 

 
Figure 5.10   Relationship between log10 read counts and gene lengths. 
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5.2.4 Investigating potential batch effects 

 

After correcting for library sizes through normalisation, it would be important to account for 

other types of technical noises or confounding biological effects, such as the sequencing plates 

and the cell cycle phases. Differences in plates and cell cycle phases are known to cause 

variations in the gene expression profile of each cell, which may lead to the detection of 

spurious or non-interesting subpopulations of cells. There is a total of eight plates in this 

experiment, with each plate containing 96 cells from a single sample, which corresponds to a 

unique pair of cell type (i.e. HSC and LMPP) and genotype (i.e. wild type, FLT3, IDH1, FLT3-

IDH1) (Figure 5.2). In terms of the batch effect caused by the plates, this experiment was 

unfortunately designed to have all cells from each unique pair of cell type and genotype to 

locate on a separate plate. This caused each plate to differ from all other plates by both the 

biological variables of interest as well as the confounding plate effect, therefore making it very 

difficult to detect or correct for the confounding plate effect without adversely interfering with 

the effects of interest exerted by the cell type and the genotype. In order to prevent biasing the 

results due to the reason discussed above, any potential effect caused by the plates was not 

corrected in this single-cell RNAseq dataset. 
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5.3 Exploration of single-cell RNAseq data 

 

5.3.1 FLT3-ITD has a more proliferative cell cycle profile compared to 

IDH1-R132H 

 

Before performing other downstream analyses, it is important to firstly investigate and account 

for any potential cell cycle effect in the single-cell RNAseq data. Interestingly, cell cycle effect 

can be a biological variable of interest or a confounding biological variable depending on the 

aim of the experiment. Since the system studied here is a model system of cancer for the acute 

myeloid leukaemia, cell cycle effect is of biological interest. In addition, it is also important to 

account for its effect as it is likely to contribute to subpopulation of cells which may be detected 

in downstream analyses. In order to account for the cell cycle effects, the cell cycle phase of 

each cell was inferred and assigned to either G0/1, G2/M, S or unknown phase as described 

in Section 4.6.4.  

 

The proportion of cells assigned to each cell cycle phase is illustrated in Figure 5.11. There 

seems to be a higher proportion of G0/1 phase cells in HSCs compared to LMPPs. It is likely 

that the HSCs are mostly dormant as their role is to act as a reserve of potent stem cells, while 

LMPPs are more actively dividing to generate more differentiated blood cells. The presence of 

FLT3-ITD mutation seemed to increase the number of proliferating cells, while IDH1-R132H 

mutation exerted less pronounced effect on the cell cycle phases of the cells. Interestingly, 

HSCs proliferate a lot less than ESCs and iPSCs investigated in Chapter 4 (Figure 4.16). This 

may be due to technical differences between the experiments, or it may reflect the functional 

differences of embryonic development-related and adult maintenance-related stem cells. Stem 

cells in embryonic development should proliferate quickly to contribute to the rapid 

developmental process with less emphasis on maintaining a pool of potent cells, while 

maintaining a pool of static potent cells is more important for adult maintenance-related stem 

cells. 
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Figure 5.11   Number of cells per cell cycle stage.  
Cell cycles were identified based on known gene expression profiles for each cell cycle 
stage. FTIX refers to FLT3-IDH1. 

 

Next it is important to verify if the cell cycle phases contribute to the formation of subpopulation 

of cells, which can be detected and visualised with dimensionality reduction analyses (Figure 

5.12). PCA can detect very distinct subpopulations, while tSNE is more sensitive than PCA in 

terms of detecting subpopulations. Firstly by just examining the PCA and tSNE results labelled 

by samples, it can be seen that HSCs and LMPPs were well separated in general. In HSCs, it 

is possible to see a gradual separation of single mutant cells leading up to the double mutant 

cells. Similar separation was not observed in LMPPs. The separation of cells in LMPPs is 

better visualised with tSNE, where IDH1 LMPPs were similar with wild type LMPPs, followed 

by FLT3-IDH1 mutant LMPPs and FLT3 LMPPs which are the most different. This suggests 

that in LMPPs, IDH1-R132H mutation had relatively little effect on the expression profiles 

compared to IDH1-R132H mutation in HSCs. 

 

In terms of cell cycle phase difference, the results in Figure 5.12B and D indicate that both 

PCA and tSNE were separating the cells by cell cycle phase difference in the first dimension 

for PCA and the second dimension for tSNE. However, it should also be noted that the most 

of the HSCs were assigned to G0/1 phase, while LMPPs have a higher proportion of cells 

assigned to G2/M and S phase. This indicates that the cell cycle phase difference may be 

partially confounded with cell type difference. In addition, the presence of subpopulations 

within each sample seems to be driven by differences in cell cycle phases. This can be seen 
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in wild type and IDH1 LMPPs, where both samples were separated into two clusters due to 

differences in cell cycle phases.  

 

 

 

Figure 5.12   Dimensionality reduction analyses with cell cycle phase information.  
(A) PCA with cell type and genotype labels, (B) PCA with cell cycle phase labels, (C) tSNE 
with cell type and genotype labels, (D) tSNE with cell cycle phase labels. 

 

As the differences in samples cannot be resolved clearly when both HSCs and LMPPs were 

combined, tSNE was employed to analyse the HSCs and LMPPs separately (Figure 5.13). 

Similar to observations made before, the results of tSNE suggest that most of the potential 

subpopulations of cells are separated by differences in cell cycle phases, which is particularly 

obvious for FLT3-IDH1 HSCs and FLT3 LMPPs. The separation of wild type, single and double 
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mutants was also as observed before, where the most distinct samples in HSCs and LMPPs 

are the FLT3-IDH1 HSCs and the FLT3 LMPPs respectively. 

 

 

 

Figure 5.13   tSNE with cell cycle phase information.  
(A) HSCs with cell type and genotype labels, (B) HSCs with cell cycle phase labels, (C) 
LMPPs with cell type and genotype labels, (D) LMPPs with cell cycle phase labels. 

 

The results discussed above suggest that cell cycle phase difference is likely to be an important 

variable to consider when interpreting results from downstream analyses. The cell cycle 

difference can either be corrected or accounted for when performing downstream analyses. In 

terms of correcting for cell cycle effects, there are many methods, such as removing all cell 

cycle genes from downstream analyses or using model-based methods to regress out the cell 
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cycle effects. The result of removing all cell cycle genes was investigated through PCA and 

tSNE (results not shown). The results indicate that removing cell cycle genes does not exert 

much effect on the PCA and tSNE analyses. It is likely that the variations in cell cycle genes 

were also associated with variations in other genes closely related to cell cycle, such as DNA 

replication or translation machinery related genes. Therefore, removing cell cycle genes alone 

is not enough to remove the effects exerted by differences in cell cycles. 

 

There are a few algorithms for correcting cell cycle effect with model-based methods, such as 

sva (Leek et al. 2012) and scLVM (Buettner et al. 2015). sva, which is designed for microarray 

and RNAseq, uses a regression model to regress out the cell cycle effect; while scLVM, which 

is designed for single-cell RNAseq, uses a Bayesian latent variable model to locate the latent 

variable that represents cell cycle effect, which can then be accounted for. The method 

implemented in sva was tested on this dataset, and led to distortion in the expression values 

possibly due to sva not being designed for single-cell RNAseq data. The method implemented 

in scLVM is able to detect and remove latent variables, but a recent study has shown that it 

may be difficult to attribute the latent variables detected to be the cell cycle effect (McDavid et 

al. 2016). The use of model-based methods to correct for cell cycle may introduce unintended 

bias into the expression values, as the cell cycle phases in this dataset were not evenly 

distributed, with a high proportion of non-G0/G1 phase cells in FLT3-IDH1 HSCs and FLT3 

LMPPs. In addition to the reasons discussed above, differences in cell cycles may be of 

biological interests in this experiment, as the system models acute myeloid leukaemia, which 

possesses perturbed proliferation and differentiation potentials.  

 

In summary, HSCs were shown to be less actively dividing than LMPPs. FLT3-ITD mutation 

results in more active cell proliferation compared to both wild type and IDH1-R132H mutation. 

In addition, this single-cell RNAseq data was not corrected for cell cycle effect by transforming 

the expression values given the reasons discussed above. However, the cell cycle phases 

were instead accounted for when performing differential gene expression analysis to identify 

non-cell cycle related genes that may be differentially regulated by the mutations. 
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5.3.2 FLT3-ITD and IDH1-R132H act synergistically to promote 

perturbed immune cell differentiation 

 

Before attempting to locate subpopulations in the single-cell RNAseq, it is important to 

understand the effects exerted by FLT3-ITD and IDH1-R132H mutations at the population level 

by considering all single cells from each sample. This is especially true for the IDH1-R132H 

mutation, which is less well studied compared to the FLT3-ITD mutation. Differential gene 

expression analysis was performed by comparing each mutant sample to the wild type sample, 

while accounting for the cell cycle phases and the potential interactions between FLT3-ITD 

and IDH1-R132H mutations (Figure 5.14 & Section 5.5.2). The differential gene expression 

analysis identified 303 and 421 upregulated genes in HSCs and LMPPs respectively, as well 

as 949 and 449 downregulated genes in HSCs and LMPPs respectively, across all pairs of 

comparison. The result indicates that most of the differentially expressed genes were uniquely 

differentially expressed between FLT3 and IDH1 single mutants. In addition, many genes were 

only differentially expressed in FLT3-IDH1 double mutants, suggesting that the interactions 

between FLT3-ITD and IDH1-R132H mutations led to unique perturbed gene expression 

profile. Note that for FLT3-IDH1 double mutants, the differential expression analysis was setup 

such that only genes that are differentially expressed in FLT3-IDH1 double mutants relative to 

both single mutants were considered. The result supports the hypothesis that FLT3-ITD and 

IDH1-R132H mutations may have a synergistic effect in the development of AML. 

 

Gene Ontology (GO) analysis was then performed on the differentially expressed genes to 

infer enriched biological processes (Table 5.1-Table 5.4 & Figure 5.15). GO analysis offers a 

more comprehensive view than differential expression analysis in terms of illustrating sample 

differences, as GO analysis considers sets of genes rather than each gene separately. Figure 

5.15 offers an overview of the similarities among upregulated and downregulated biological 

processes in all samples. In general, all mutant samples did not share overlapping perturbed 

biological processes, except between FLT3 and IDH1 samples. This suggests that FLT3-ITD 

and IDH1-R132H mutations are affecting a subset of similar biological processes, in which the 

largest proportion of overlapping upregulated biological processes is in HSCs. The shared 

upregulated biological processes between FLT3-ITD and IDH1-R132H mutations in HSCs 

were mostly related to myeloid development and immunological processes, which suggests 

that FLT3-ITD and IDH1-R132H mutations by themselves may be increasing the myeloid 

potential of HSCs and LMPPs.  
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Besides myeloid potential-related processes, FLT3-ITD and IDH1-R132H mutations affect 

other interesting biological processes as well. In HSCs, FLT3 HSCs downregulated protein 

processing and membrane transport-related functions (Table 5.2). Aberrant expression profiles 

for membrane transport-related genes have been observed in multiple studies on AML 

patients, which are associated with poor clinical outcomes (Chigaev 2015). Changes in 

membrane transport may relate to changes in energy consumption and pH regulation, which 

are known to be important for cancer. This is because tumour growth tends to require a large 

amount of energy which produces an acidic environment through increased anaerobic 

respiration (Diaz-Ruiz et al. 2011; Parks et al. 2013). As for IDH1 HSCs, they downregulated 

cell cycle and immune cells related functions (Table 5.2). The cell cycle-related functions were 

present despite accounting for cell cycle phase differences when performing differential 

expression analysis. This suggests that IDH1 HSCs possess perturbed expression profiles and 

cell cycle stages that cannot be recognised correctly by the cyclone cell cycle classifier. Note 

that cell cycle-related functions were only enriched in IDH1 HSCs compared to all other 

samples. In FLT3-IDH1 HSCs, immune system related functions were perturbed, with the 

upregulation of immune surface proteins and the downregulation of lymphoid lineage related 

processes, particularly on T cell development (Table 5.2). This suggests that the presence of 

both FLT3-ITD and IDH1-R132H mutations perturbed normal lymphoid development. 

 

It was interesting to see if the same mutations exert similar or different effects in LMPPs, when 

compared to HSCs. Similar to HSCs, FLT3 LMPPs show perturbed myeloid development and 

immunological functions (Table 5.3 & Table 5.4). The effect of FLT3-ITD mutation is stronger 

in LMPPs than in HSCs based on the higher number of differentially expressed genes in 

LMPPs. Interestingly, IDH1 LMPPs do not share perturbed biological processes with FLT3 

LMPPs (Figure 5.15). Instead, IDH1 LMPPs upregulated metabolism-related processes, as 

well as downregulated cell migration and differentiation (Table 5.3 & Table 5.4). The wide 

categories of biological processes affected are consistent with the understanding that IDH1-

R132H mutation led to perturbed chromatin modifications. This is also supported by the GO 

terms associated with chromatin modifications such as meiotic division and genetic imprinting 

(Table 5.4). In FLT3-IDH1 double mutant LMPPs, cell motility and Notch signalling pathway 

were upregulated, while apoptosis was downregulated. Notch has been shown to have a 

tumour suppressive role in AML (Kannan et al. 2013; Lobry et al. 2013; Kato et al. 2015). 
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There are several observations that can be taken from these results. Firstly, the same 

mutations exert slightly different effects in HSCs and LMPPs. Secondly, when considering the 

single mutants, FLT3-ITD mutation was shown to possess increased myeloid potential with 

perturbed differentiation, while IDH1-R132H mutation was shown to cause perturbed 

chromatin modifications which lead to a wide range of perturbed developmental processes. 

Lastly, FLT3-ITD and IDH1-R132H mutations were shown to potentially interact and act 

synergistically to promote perturbed immune cell differentiation. 

 

 

 

Figure 5.14   Venn diagrams of differentially expressed genes.  
(A) Upregulated genes in HSCs and LMPPs, (B) Downregulated genes in HSCs and LMPPs. 
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Figure 5.15   Venn diagrams of Gene Ontology analysis.  
(A) Upregulated biological processes in HSCs and LMPPs, (B) Downregulated biological 
processes in HSCs and LMPPs. 
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Biological Process Num. of 
Annotated 
Genes 

Num. of 
Observed 
Genes 

Adjusted 
P-values 

FLT3 (Total: 138 upregulated genes) 

Monocyte chemotaxis 37 5 2.00E-05 

Inflammatory response 517 21 2.00E-05 

Leukocyte mediated cytotoxicity 84 6 5.60E-05 

Negative regulation of growth 225 7 5.80E-05 

Regulation of symbiosis, encompassing mutualism through 
parasitism 

299 6 7.20E-05 

Cellular extravasation 47 6 8.00E-05 

Regulation of cell shape 126 7 0.00015 

Chemokine-mediated signaling pathway 35 4 0.00027 

Neutrophil chemotaxis 66 5 0.00033 

Positive regulation of axon extension 42 4 0.00056 

 

IDH1 (Total: 165 upregulated genes) 

Interleukin-8 secretion 20 3 0.00037 

Negative regulation of growth 225 6 0.00062 

Regulation of symbiosis, encompassing mutualism through 
parasitism 

299 6 0.00071 

Myeloid dendritic cell activation 29 3 0.00113 

Erythrocyte development 30 3 0.00125 

Apoptotic cell clearance 31 3 0.00138 

Regulation of cell shape 126 5 0.0021 

Phagocytosis, engulfment 36 3 0.00214 

Regulation of alternative mRNA splicing, via spliceosome 36 3 0.00214 

Cellular extravasation 47 3 0.00217 

 

FLT3-IDH1 (Total: 101 upregulated genes) 

Immune response-regulating cell surface receptor 
signaling pathway 

129 3 0.00085 

Morphogenesis of a polarized epithelium 60 3 0.00181 

Antigen processing and presentation of peptide or 
polysaccharide antigen via MHC class II 

20 2 0.00438 

Cellular response to extracellular stimulus 148 3 0.00479 

Post-anal tail morphogenesis 21 2 0.00483 

Cellular response to gamma radiation 21 2 0.00483 

Negative regulation of cysteine-type endopeptidase activity 
involved in apoptotic process 

73 3 0.00575 

cGMP biosynthetic process 27 2 0.00792 

Table 5.1   Top 10 upregulated biological processes in each genotype in HSCs based 
on Gene Ontology (GO) analysis.  
Note that FLT3-IDH1 genotype has less than 10 significant results. 
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Biological Process Num. of 

Annotated 

Genes 

Num. of 

Observed 

Genes 

Adjusted 

P-values 

FLT3 (Total: 75 downregulated genes) 

Regulation of protein complex assembly 326 7 8.20E-06 

Protein stabilization 117 5 9.50E-05 

Regulation of synaptic vesicle exocytosis 23 3 9.60E-05 

Cation transmembrane transport 432 4 0.0017 

Negative regulation of cysteine-type endopeptidase activity 
involved in apoptotic process 

73 3 0.0029 

Glomerulus vasculature development 21 2 0.003 

Response to vitamin 21 2 0.003 

Post-anal tail morphogenesis 21 2 0.003 

Regulation of lamellipodium assembly 27 2 0.005 

Osteoclast differentiation 84 4 0.0051 

 

IDH1 (Total: 186 downregulated genes) 

G2/M transition of mitotic cell cycle 84 6 0.00013 

Regulation of cell cycle checkpoint 32 4 0.00027 

Positive regulation of immune system process 670 18 0.00028 

Regulation of antigen processing and presentation 21 3 0.00113 

Cellular response to gamma radiation 21 3 0.00113 

Synaptonemal complex organization 22 3 0.0013 

Positive regulation of DNA recombination 23 3 0.00148 

Positive regulation of amine transport 25 3 0.00189 

Antigen processing and presentation of peptide antigen 59 4 0.00197 

Mitotic spindle assembly checkpoint 26 3 0.00213 

 

FLT3-IDH1 (Total: 28 downregulated genes) 

Regulation of alpha-beta T cell proliferation 26 7 6.70E-05 

Response to oxidative stress 321 24 0.00023 

Negative regulation of leukocyte apoptotic process 59 7 0.00065 

Receptor metabolic process 146 10 0.00066 

Establishment of spindle orientation 28 4 0.00066 

Apoptotic cell clearance 31 6 0.00149 

Alpha-beta T cell differentiation 91 8 0.00153 

Positive regulation of alpha-beta T cell activation 55 6 0.00154 

Vascular endothelial growth factor production 30 4 0.00171 

Positive regulation of natural killer cell activation 22 5 0.00175 

Table 5.2   Top 10 downregulated biological processes in each genotype in HSCs 
based on Gene Ontology (GO) analysis.  
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Biological Process Num. of 

Annotated 

Genes 

Num. of 

Observed 

Genes 

Adjusted 

P-values 

FLT3 (Total: 217 upregulated genes) 

Leukocyte mediated cytotoxicity 84 8 1.40E-06 

Acute inflammatory response to antigenic stimulus 22 5 2.90E-06 

Neutrophil mediated immunity 24 5 4.70E-06 

Defense response to bacterium 163 10 6.50E-06 

Negative regulation of growth 225 8 0.00011 

Regulation of symbiosis, encompassing mutualism through 
parasitism 

299 11 0.00012 

Positive regulation of cell proliferation 737 17 0.00081 

Phagocytosis 147 9 0.00094 

Negative regulation of multi-organism process 133 7 0.00107 

Granulocyte activation 23 3 0.0018 

 

IDH1 (Total: 152 upregulated genes) 

Negative regulation of cell migration 198 8 5.80E-05 

Cholesterol biosynthetic process 39 3 0.0023 

Lysosome organization 53 3 0.0054 

Negative regulation of neurogenesis 260 4 0.0064 

Membrane lipid metabolic process 155 3 0.0067 

Cellular protein complex disassembly 110 4 0.007 

Negative regulation of oxidoreductase activity 20 2 0.0079 

'De novo' posttranslational protein folding 20 2 0.0079 

Positive regulation of angiogenesis 121 4 0.009 

Monosaccharide catabolic process 22 2 0.0095 

 

FLT3-IDH1 (Total: 190 upregulated genes) 

Positive regulation of cell motility 410 6 0.00017 

Notch signaling pathway 147 6 0.00094 

B cell activation involved in immune response 64 4 0.00106 

Mature B cell differentiation 22 3 0.00107 

Positive regulation of osteoclast differentiation 23 3 0.00122 

Membrane assembly 24 3 0.00139 

Negative regulation of endothelial cell proliferation 29 3 0.00242 

Positive regulation of interleukin-12 production 30 3 0.00267 

Genetic imprinting 35 3 0.00416 

Regulation of alternative mRNA splicing, via spliceosome 36 3 0.00451 

Table 5.3   Top 10 upregulated biological processes in each genotype in LMPPs based 
on Gene Ontology (GO) analysis.  
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Biological Process Num. of 

Annotated 

Genes 

Num. of 

Observed 

Genes 

Adjusted 

P-values 

FLT3 (Total: 156 downregulated genes) 

Antigen processing and presentation of peptide antigen via 
MHC class I 

40 6 4.30E-07 

Myeloid leukocyte cytokine production 21 3 0.00046 

Negative regulation of protein import into nucleus 57 4 0.0006 

Ovarian follicle development 60 4 0.00097 

Positive regulation of interleukin-12 production 30 3 0.00134 

Erythrocyte development 30 3 0.00134 

Negative regulation of cell adhesion 207 6 0.00171 

Cell surface receptor signaling pathway 1948 29 0.0029 

Positive regulation of myeloid cell differentiation 81 6 0.00316 

Gene expression 4296 40 0.00723 

 

IDH1 (Total: 187 downregulated genes) 

Female meiotic division 34 4 0.00023 

Positive regulation of osteoclast differentiation 23 3 0.00107 

Regulation of endothelial cell differentiation 28 3 0.00192 

Insulin secretion involved in cellular response to glucose 
stimulus 

63 3 0.00211 

Erythrocyte development 30 3 0.00235 

Regulation of bone resorption 32 3 0.00283 

Positive regulation of cysteine-type endopeptidase activity 102 3 0.00337 

Negative regulation of epithelial cell differentiation 35 3 0.00367 

Genetic imprinting 35 3 0.00367 

T-helper 1 type immune response 36 3 0.00397 

 

FLT3-IDH1 (Total: 165 downregulated genes) 

Regulation of myeloid cell apoptotic process 27 3 0.0015 

Positive regulation of angiogenesis 121 5 0.0036 

Blood coagulation 164 7 0.004 

Cholesterol biosynthetic process 39 3 0.0043 

Positive regulation of axon extension 42 3 0.0053 

Chaperone-mediated protein folding 45 3 0.0064 

Negative regulation of axonogenesis 56 4 0.0077 

Negative regulation of leukocyte apoptotic process 59 3 0.0098 

Table 5.4   Top 10 downregulated biological processes in each genotype in LMPPs 
based on Gene Ontology (GO) analysis. 
Note that FLT3-IDH1 genotype has less than 10 significant results. 
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In order to investigate the cell type differences between FLT3-ITD and IDH1-R132H mutations, 

it was interesting to investigate the overlaps in enriched GO biological processes between the 

HSCs and the LMPPs (Figure 5.16). The overlaps in enriched GO biological processes were 

shown instead of the overlaps in differentially expressed genes, as enriched GO biological 

processes offer more robust results due to the use of sets of genes instead of considering 

single genes. The result in Figure 5.16 suggests in general FLT3-ITD and IDH1-R132H 

mutations exerted very different effects on expression profiles depending on the cell types. 

Note that both HSCs and LMPPs for the same genotypes were collected from the same mice, 

so the differences between HSCs and LMPPs are unlikely to be differences due to individual 

mice. However as each sample was sequenced separately, there is a chance that some of the 

variabilities may be due to random chance.  

 

 

 

 

Figure 5.16   Venn diagrams of common differentially expressed genes between HSCs 
and LMPPs.  
(A) Upregulated genes, (B) Downregulated genes. *, p-value = 0.01; **, p-value = 0.001. 
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5.3.3 Cell subpopulations are present in FLT3-ITD and IDH1-R132H 

HSCs and LMPPs 

 

In order to locate any potential subpopulations of cells, different clustering and data 

preprocessing steps were tested. The tested data preprocessing steps include correcting for 

cell cycle phase difference and using only the highly variable genes that are above the 

technical noise threshold. The data preprocessed in different ways as described above were 

then used for clustering by using hierarchical and ICGS clustering. However, no meaningful 

clusters were obtained due to the presence of high biological and technical noise in the data. 

The biological noise is likely to be present due to the cells in this experiment being collected 

from mice, which represent an in vivo system that is usually noisier than an in vitro system. 

The technical noise present includes any unidentified batch effect and the cell cycle 

differences. 

 

After evaluating many methods, the method that offered the best indication of cell 

subpopulations is by using differentially expressed genes for clustering cells via hierarchical 

clustering (Figure 5.17 & Table 5.5). There are eight samples in this dataset with different 

genotypes and cell types, therefore the number of clusters was set to eight by cutting the 

hierarchical cluster dendrogram into eight most distinct groups. The null hypothesis is that 

given there are originally eight samples present, the eight clusters determined should each 

have only cells that come from a single sample, with each cluster corresponding to a unique 

sample. If the result deviates from the expectation, this suggests that the differences within 

samples are stronger than the differences among samples, which indicate the presence of cell 

subpopulations. 

 

Figure 5.17 shows that the total set of differentially expressed genes taken across all pairs of 

comparison is able to offer reasonable clusters of cells, where cells that come from the same 

sample were mostly clustered together. Similar results were not obtained by using other 

methods as described previously, where other methods cluster cells from the same sample 

randomly across multiple clusters. This is mostly due to the difficulty in selecting the set of 

most informative genes for clustering purpose. Note that although the cell cycle phase 

difference was accounted for during differential expression analysis, non-G0/G1 cell cycle 

phases can still be seen to be associated with several clusters (i.e. cluster 2, 3, 4 and 6). It is 
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also worth noting that as discussed before, non-G0/G1 cell cycle phases were also more 

associated with LMPPs than HSCs. 

 

In order to allow easier visualisation of cells being assigned to each cluster, a table containing 

the number and the type of cells assigned to each cluster was prepared (Table 5.5). In general, 

the HSCs and the LMPPs were clustered separately. In terms of HSCs, IDH1 and FLT3 HSCs 

were clustered together with wild type HSCs in cluster 1. This suggests that most IDH1 and 

FLT3 HSCs were very similar to wild type HSCs, with only a small proportion of cells that were 

assigned to other clusters. FLT3-IDH1 HSCs were very different from other HSCs, and were 

assigned to two clusters (i.e. cluster 4 and 7). As for LMPPs, the cells exhibited more variability 

than HSCs by occupying a higher number of clusters. Among the mutants, IDH1 LMPPs were 

the most strongly associated and therefore most similar with wild type LMPPs, which were split 

into two clusters (i.e. cluster 2 and 5). As for FLT3 and FLT3-IDH1 LMPPs, they were both 

distinct from one another, as well as being different from other LMPPs. Interestingly, FLT3-

IDH1 LMPPs seem to be separated into two groups in cluster 3 and 8, which one of the groups 

shared similar properties to a subgroup of FLT3 LMPPs. 

 

Taken together, the results offer several observations. Firstly, HSCs were more homogeneous 

than LMPPs as expected. Secondly, single mutation of either FLT3 or IDH1 in HSCs and 

LMPPs exerted smaller effects on expression profiles than FLT3-IDH1 double mutations. This 

holds true except for FLT3 LMPPs, which were very distinct from other LMPPs. The results 

suggest that FLT3-ITD and IDH1-R132H mutations may interact to produce a more perturbed 

expression profiles. Lastly, while cell subpopulations seem to be present among the cells, it is 

worth noting that these cell subpopulations may be detected due to the differences in cell cycle 

phase. Therefore, the cell subpopulations were not analysed further individually, as this 

RNAseq data has high biological and technical noise as discussed above that cannot be 

corrected for easily. In this chapter, interpretations were mostly drawn from all cells in a 

sample, which offer more robust conclusions due to the higher number of cell replicates, rather 

than interpreting cell subpopulations. 
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Figure 5.17   Heatmap of differentially expressed genes across all samples.  
Note that the cell cycle phase difference was accounted for during differential expression 
analysis. FTIX refers to FLT3-IDH1. 

 

Samples Clusters 

1 2 3 4 5 6 7 8 

WT HSC 91 1 0 0 0 0 0 0 

FLT3 HSC 78 2 1 4 2 2 0 0 

IDH1 HSC 71 1 1 2 1 0 0 0 

FLT3-IDH1 HSC 0 0 0 11 0 0 32 1 

WT LMPP 0 23 1 0 46 0 0 0 

FLT3 LMPP 0 3 41 0 1 45 0 0 

IDH1 LMPP 3 12 1 0 59 0 0 0 

FLT3-IDH1 LMPP 0 9 16 0 1 3 0 54 

Table 5.5   Number of cells belonging to each cluster. 
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5.3.4 Increased myeloid potential in FTL3-ITD cells as identified via 

projections onto a diffusion map and clustering with a neural 

network 

 

In a study by (Nestorowa et al. 2016), the authors profiled the single-cell expression profiles of 

more than 1600 haematopoietic stem and progenitor cells and constructed a map of blood 

cells development on a diffusion map. With the use of index sorting and broad sorting gates, 

they restrospectively identified and labelled a total of 12 types of commonly sorted blood cells 

on the diffusion map. In the 3-dimensional diffusion map, four extreme regions can be observed 

in the top, bottom, left and right corners (Figure 5.18). The top region corresponds to HSCs 

(green), while the three remaining regions, left, bottom and right corners correspond to 

lymphoid (orange), myeloid (blue) and erythroid (red) lineages. Only a subset of blood cell 

types relevant to this study were used for downstream analysis, which are illustrated by the 

diffusion maps below (Figure 5.19). In total six cell types were considered, including long term 

HSCs (LTHSCs), short term HSCs (STHSCs), lymphoid multipotent progenitors (LMPPs), 

megakaryocyte-erythrocyte progenitors (MEPs), common myeloid progenitors (CMPs), and 

granulocyte-monocyte progenitors (GMPs). For easier referencing, these diffusion maps will 

be referred to as the Nestorowa blood cells atlas. 

 

 

Figure 5.18   Nestorowa blood cells atlas. 
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Figure 5.19   Different blood cells present in the Nestorowa blood cells atlas. 

 

In Figure 5.20, the cells from this study were projected onto the Nestorowa blood cells atlas 

using the same parameters for diffusion maps as in the original paper (Nestorowa et al. 2016). 

Both wild type HSCs and LMPPs were projected onto the expected regions where the original 

wild type HSCs and LMPPs lied. This indicates that the projected coordinates of cells from this 

study may offer additional insights into the properties of FLT3 and IDH1 mutant cells. For any 

mutant cells, the presence of mutations tends to move cells out of the original regions occupied 

by wild type HSCs and LMPPs, and into the myeloid lineage region. The result suggests that 

both FLT3-ITD and IDH1-R132H mutations may be encouraging the mutant cells to acquire 

increased myeloid identity. The potential increase in myeloid identity was the most significant 

in FLT3 LMPPs, FLT3-IDH1 LMPPs and FLT3-IDH1 HSCs. As the 3-dimensional diffusion 

maps are difficult to visualised on a 2-dimensional surface, clustering algorithms were 

employed to estimate the cell identities of the projected cells. The clustering algorithms work 

by soft clustering the cells into different categories based on the relative distance between the 

coordinates of the projected cells and the coordinates of the underlying cells in the Nestorowa 

blood cells atlas. 
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Figure 5.20   Wild type, Flt3 and Idh1 mutant cells projected onto the Nestorowa blood 
cells atlas.  

FTIX refers to FLT3-IDH1. 
 

Three different clustering algorithms were evaluated based on their accuracy of correctly 

classifying the six known cell types in the Nestorowa blood cells atlas. The three clustering 

algorithms are Naïve Bayes, random forest and neural network classifiers, which are all 

supervised learning methods based on different frameworks. Naïve Bayes classifier is based 

on Bayes’ theorem from the Bayesian statistics framework and assumes independence among 

the variables (Hand & Yu 2001). Random forest classifier uses an ensemble of decision trees, 

which iteratively identify the most significant variable and its corresponding value that can give 

rise to the best homogeneous split of populations (Breiman 2001). Lastly, neural network is 
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inspired by the architecture of biological neurons, which learns the unknown function that maps 

independent to dependent variables from the data (LeCun et al. 2015). It can also be viewed 

as a generalised form of the non-parametric regression model (Insua & Müller 1998).  

 

Both Naïve Bayes and random forest classifiers were run with default settings, while neural 

network classifier requires the specifications of a few hyperparameters. The neural network 

classifier used here contains 3 input nodes, 10 hidden nodes, and 6 output nodes, which are 

arranged in 3 fully connected feedforward layers (Figure 5.21). The activation function is a 

softplus function, which acts an approximation to the rectified linear unit (ReLu) activation 

function. The softplus function was used here as it has a derivative that can be recognised by 

the neuralnet R package, while the non-standard derivative of ReLu function is not recognised. 

ReLu activation function offers several advantages over other activation functions, such as 

speeding up the training time and leading to better solutions (Nair & Hinton 2010). The error 

function used here is the standard sum of squared error, while the optimisation algorithm used 

here is a faster variant of the standard backpropagation algorithm, which is called the resilient 

backpropagation (Riedmiller & Braun 1993). 

 

The results of the performance of the three clustering methods can be seen in Table 5.6. Naïve 

Bayes and random forest classifiers had similar accuracies with very fast computation time. 

Neural network requires substantial computation time in exchange for higher accuracies. Note 

that the computation time for neural network can be shortened with the use of more efficient 

optimisation methods and parallel processing. Based on the results of the classification, neural 

network classifier was used for classifying the cells projected onto the Nestorowa blood cells 

atlas diffusion map. 

 

Methods Accuracy Computation 

time taken (sec) Training Validation 

Naïve Bayes 0.72 0.71 0.005 

Random forest 0.77 0.71 0.214 

Neural network 0.83 0.78 80.998 

Table 5.6   Performance of clustering methods.  
Data available were split into training data (80% of data) and validation data (20% of data) 
randomly. All values are the average of 3 runs. All computation was performed on a single 
processing core. 
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Figure 5.21   Neural network structure used.  
There are three layers, corresponding to an input layer, a hidden layer and an output layer. 
Each circle corresponds to a node, with blue nodes representing the bias terms. Each line 
indicates a connection, with the associated numbers being the weights. DC1-3 refer to the 
first three diffusion components obtained from a diffusion map. The value of each output 
node corresponds to a similarity measure of the input cell with known cell types.  

 

In Figure 5.22, each cell was assigned six probabilities of belonging to six of the cell types, 

which can also be interpreted as each cell having a cell identity that is defined by a set of six 

cell type identity measures. Consistent with results of previous analyses, wild type, IDH1 and 

FLT3 HSCs are very similar to one another, and possess strong LTHSC identity. However, 

FLT3-IDH1 HSCs possess weaker LTHSC identity and acquire myeloid identity, as indicated 

by CMP and GMP identities. 

 

Due to the overlaps in diffusion map regions with LMPPs, CMPs and GMPs, it is more difficult 

to classify LMPPs cleanly into one category. Wild type and IDH1 LMPPs have similar cell 

identity profiles. As expected, FLT3 and FLT3-IDH1 LMPPs have very strong myeloid 
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identities, although FLT3-IDH1 LMPPs have a weaker myeloid identity than FLT3 LMPPs. In 

summary, projections of cells onto the Nestorowa blood cells atlas followed by clustering are 

able to offer an independent method to visualise and categorise the data. The results point to 

increased myeloid potential caused by the acquisition of FLT3-ITD and IDH1-R132H 

mutations. However, it should be noted that the lymphoid lineage has a low resolution, as it is 

only represented by the LMPPs which are less differentiated, hence may not resolve the 

lymphoid potential of FLT3 and IDH1 mutant cells well. It is possible that FLT3-ITD mutation 

may also perturb lymphoid development, as FLT3-ITD mutation have been shown to be 

important in lymphoid leukaemia (Wellmann et al. 2005) and FLT3 is known to be important 

for early B cell development (Mackarehtschian et al. 1995). 

 

 

Figure 5.22   Inferred cell type identities on wild type blood cells.  
Note that each cell is not hard clustered into a specific cell type, and each cell contains six 
probabilities of belonging to the six group of cells. This also means that each individual violin 
plot has the same number of cells. 
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5.4 Conclusions 

 

In this chapter, we have explored the effects of FLT3-ITD and IDH1-R132H mutations on the 

expression profiles of HSCs and LMPPs. While FLT3-ITD and IDH1-R132H mutations share 

a small subset of perturbed biological processes in increasing the myeloid potential of the 

mutant cells, most perturbed biological processes are distinct both between the mutations 

FLT3-ITD and IDH1-R132H, as well as between the cell types HSC and LMPP. In addition, 

FLT3-ITD and IDH1-R132H have been shown to potentially have a synergistic effect in 

predisposing cells towards the myeloid lineage. This observation suggests that while FLT3-

ITD and IDH1-R132H co-occur at a low frequency in AML patients, the two mutations are not 

mutually exclusive. 
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5.5 Materials and methods 

 

5.5.1 Processing of single-cell RNAseq data 

 

The single-cell RNAseq data consist of 768 cells in eight sample types, which include HSCs 

and LMPPs with four genotypes, namely wild type, IDH1, FLT3 and FLT3-IDH1. The RNAseq 

data were generated using SmartSeq2 library preparation protocol, and sequenced on the 

Illumina HiSeq 4000 machine. The data has paired ends, with 100 base pair read length. 

 

All RNAseq data were aligned using GSNAP version 2015-09-29 (Wu & Nacu 2010). Aligned 

reads were counted using HTSeq-count (Anders et al. 2015). Ensembl genome index and 

gene annotations release version 77 were used. 

 

5.5.2 Single-cell RNAseq analyses 

 

ICGS clustering, heatmaps, cell cycle analysis, differential expression analysis, Gene Ontology 

analysis and significance of Venn diagram overlaps were performed as discussed in Section 

4.6. The projection of cells onto the diffusion map was done using the destiny R package 

(Haghverdi et al. 2015). Differential gene expression analysis was performed with the DESeq2 

R package (Love et al. 2014), with a design matrix that consider the effects exerted individually 

by FLT3-ITD and IDH1-R132H mutations, as well as the effect exerted by interaction between 

FLT3-ITD and IDH1-R132H mutations. Adjusted p-values corrected for multiple testing were 

computed using the Benjamini & Hochberg method. 

 

5.5.3 Supervised clustering of cell projections onto diffusion maps 

 

The three clustering methods used for supervised clustering of cell projections onto diffusion 

maps are Naïve Bayes, random forest and neural network classifiers. They are all implemented 

as R packages in e1071 (Meyer et al. 2017), randomForest (Liaw & Wiener 2002) and 

neuralnet (Fritsch & Guenther 2016) respectively.  
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6 Discussion 

 

The direct interpretations of the results have been elaborated alongside the results within 

Chapter 2-5. Therefore, the focus in this chapter is on discussing the scientific contributions, 

the limitations, and the future directions related to the results. 

 

6.1 Network inference with the Boolean model framework 

– BTR 

 

A Boolean formalism-based network inference algorithm, BTR, has been described in Chapter 

2. BTR uses a scoring function to evaluate how well the predictions made by a Boolean model 

match with single-cell expression data supplied to the algorithm. By using this score, BTR 

iteratively modifies the Boolean model so as to yield a final Boolean model whose simulated 

predictions are very close to the observed single-cell expression data. The performance of 

BTR was evaluated with synthetic expression data, and was shown to be performing well when 

BTR was supplied with a partial Boolean model that encodes some initial information. 

 

Two recent studies reported algorithms for inferring Boolean models from single-cell 

expression data (Chen et al. 2014; Moignard et al. 2015). Chen et. al. developed SingCellNet, 

which uses a genetic algorithm to construct probabilistic Boolean models from expected 

trajectories through cell states (Chen et al. 2014). However, SingCellNet only determines the 

network structure and transition probabilities from single-cell expression data, while the 

Boolean rules are constructed via manual curation from the literature. In contrast, BTR 

automates the process of learning Boolean rules from the expression data. In another study, 

SCNS was developed by Moignard et. al. to infer an asynchronous Boolean model by 

analysing trajectories through a state transition graph (Moignard et al. 2015). In order to infer 

a Boolean model using SCNS, a connected state transition graph is required, which can be 

difficult to obtain from single-cell expression data. This is because the higher the number of 

genes to be included in SCNS, the more cells will be required to build a connected state 

transition graph. In addition, SCNS can only infer network structure by using discretised 

expression data, which not only leads to the loss of information, but also makes SCNS 

sensitive to the discretisation method used. In contrast, BTR does not assume a connected 

state transition graph is captured in the expression data and BTR is able to use continuous 
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expression data without the need of discretising the values. In summary, BTR complements 

these existing algorithms by offering an algorithm that is capable of improving existing Boolean 

models by using information obtained from new single-cell expression data. 

 

However, BTR suffers from several limitations. Firstly, BTR does not guarantee the 

identification of global optima within the score landscape as specified by the scoring function. 

It is likely that BTR may be trapped in local optima due to the greedy nature of the optimisation 

algorithm. However, this will not be a problem if BTR is supplied with an initial Boolean model 

which has some edges that are known to be true based on external information, such as 

information curated from the literature. This is because the initial Boolean model with some 

true edges should be relatively close to the global optima, therefore reducing the chance that 

BTR will get stuck in local optima. Secondly, the properties of the scoring function of BTR 

require further investigations and improvements. The scoring function of BTR typically gives 

rise to a score landscape that consists of multiple extended flat surfaces with intermittent steps. 

This is due to both the discrete nature of Boolean models from the use of only binary values, 

as well as the unknown relationship between the Boolean model and its associated 

asynchronously simulated state space. The use of only binary values restricts the range of 

scores that can be outputted by the scoring function, unlike continuous values that are more 

likely to give rise to non-flat score landscape. The use of only binary values is a trade-off that 

comes with using Boolean models which offer simpler specification, and it is something that 

cannot be improved on without generalising the Boolean models. However, the unknown 

relationship between the Boolean model and its associated asynchronously simulated state 

space can potentially be elucidated with further studies.  

 

It is widely known that a Boolean model can be reconstructed exactly via logical inference with 

a synchronously simulated state space (e.g. by using a Karnaugh map (Karnaugh 1953)). This 

is not straightforward for an asynchronously simulated state space as not all Boolean variables 

are updated at each time step. It is likely that by studying the properties of an asynchronously 

simulated state space, it is possible to observe helpful relationships that can be encoded into 

the scoring function, which can ultimately lead to faster and more accurate results. One such 

relationship was described in Chapter 2 and encoded into the scoring function in the form of 

the penalty term 𝜀1, which penalises the proportions of 0s and 1s. It was observed that the 

more densely connected the nodes in a Boolean model are, the more similar the proportions 

of 0s and 1s in the asynchronously simulated state space. This relationship helps the derivation 

of the penalty term 𝜀1 in penalising Boolean models that are too densely connected. 
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Lastly in terms of practicalities, BTR suffers from a very slow computation speed. The slow 

computation speed is mostly due to the need of calculating all pairwise distances between 

each row of the simulated Boolean state space and each row of the observed single-cell 

expression state, and partly due to the inefficient greedy branching optimisation algorithm. The 

computation speed can potentially be sped up greatly by using a simpler distance function to 

approximate the distance between the entire Boolean state space and the entire observed 

single-cell expression state space. In addition, a more efficient optimisation algorithm based 

on techniques such as simulated annealing or genetic algorithm is likely to offer better 

computation speed and results. However, these optimisation algorithms require additional 

tuning parameters, therefore will require a better understanding of the score landscape. 

 

6.2 Network inference with the pseudotime-ordered 

autoregression framework – SPVAR with DM-DPT 

 

The two key components of the network inference framework based on pseudotime-ordered 

autoregression are the DM-DPT algorithm which is used for pseudotime inference, and the 

SPVAR algorithm which is used for network inference. DM-DPT is an extension of DPT 

pseudotime algorithm by combining the cell ordering inferred through orthogonal projection 

onto a polynomial curve in diffusion map (DM) space, with the pseudotime distance inferred 

by DPT. SPVAR is an autoregression-based algorithm that incorporates Elastic Net 

penalisation and uses stability selection for obtaining robust results. Both DM-DPT and SPVAR 

were verified by synthetic expression data and benchmarked with other algorithms. DM-DPT 

was shown to be the best performing pseudotime inference algorithm, while SPVAR was 

shown to be one of the most conservative network inference algorithm with reasonable 

performance. 

 

Previous studies have developed autoregression with regularisation for gene network 

inference mostly using simulated or microarray data (Fujita et al. 2007; Shimamura et al. 2009; 

Haury et al. 2012). The method by Fujita et al. uses Lasso (i.e. L1-norm) for regularisation, 

while Shimamura et al. uses Elastic net (i.e. L1L2-norm) for regularisation. In (Haury et al. 

2012), they coupled Lasso regularisation with stability selection into an algorithm called 

TIGRESS to further improve upon the network inference results. SPVAR is similar to TIGRESS 

as both are based on penalised regression and utilise stability selection. The main differences 
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between the two algorithms are the optimisation methods used and the implementation of 

stability selection. TIGRESS uses the least angle regression technique (LARS) with L1-norm 

regularisation (i.e. Lasso) for fitting the regression model, while SPVAR uses the cyclical 

coordinate descent technique with L1L2-norm regularisation (i.e. Elastic net). In terms of 

stability selection, at each subsampling iteration, TIGRESS splits all samples into two sets 

randomly, in which each set is fitted separately to obtain the first five variables that were 

selected by LARS. The resulting weighted adjacency matrix from TIGRESS is then obtained 

by taking the proportions of variables that were selected by LARS out of all subsampling 

iterations. For each subsampling iteration in SPVAR, 90% of the samples are used for fitting 

regression, and all non-zero variables were recorded. The resulting proportions of non-zero 

variables in all subsampling iterations were then used to obtain a set of selected variables by 

keeping all variables above a threshold of more than 0.6. These sets of selected variables 

were then refitted with cross validation to obtain a set of coefficients that gives rise to the 

weighted adjacency matrix from SPVAR. The use of L1L2 norm regularisation in SPVAR offers 

advantage over L1 norm regularisation in TIGRESS, as the introduction of L2 norm 

regularisation can reduce the likelihood of selecting a set of correlated variables. In addition, 

the implementation of stability selection in SPVAR offers more robust results as it is not bound 

by a maximum number of selected variables per iteration, unlike TIGRESS that selects a 

maximum of 10 variables per iteration. In summary, SPVAR is an alternative implementation 

of stably selected regularised regression algorithm that does not require manual specification 

of thresholds and is able to offer conservative predictions of gene interactions. 

 

In terms of DM-DPT, its performance relies on a few important assumptions. Firstly, DM-DPT 

requires the manual selection of diffusion components of the diffusion map that best capture 

both the time progression as well as the changes in gene expression due to time progression. 

DM-DPT was implemented for use with two diffusion components by fitting a curve, but it can 

be extended to more than two diffusion components by fitting a more complex surface. 

Secondly, DM-DPT assumes there is no branching point in the single-cell expression data, 

which may not be the case. This can be partially overcome by identifying the branches using 

independent methods, and run DM-DPT separately on each of the branches. The results can 

then be combined later to yield a branching trajectory. For future improvements, one of the key 

improvements is to replace the parametric polynomial curve fitting with a non-parametric 

approach such as spline. This is because currently the polynomial curve was fitted by 

minimising the residuals in only one of the two diffusion components, while the orthogonal 

projection of cells onto a single trajectory uses both diffusion components. A non-parametric 
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approach that minimises the residuals in both diffusion components when fitting the polynomial 

curve should give a better fit and result for the orthogonal projection of cells. 

 

As for SPVAR, it relies on a few key assumptions that may limit its performance. Firstly, SPVAR 

assumes linear relationships for gene interactions. While this offers simpler computation, gene 

interactions are most likely to possess non-linear property in real biological systems. This 

problem can be overcome by extending SPVAR from a linear model into a non-linear model 

such as generalised additive models with spline functions. Secondly, SPVAR assumes all gene 

interactions to possess the same rate of interactions that can be captured by a time lag of 1 

unit. This assumes that when the expression of a gene changes, the expression of its 

downstream target gene changes in response at the next time step. However in real biological 

systems, it is likely that different transcription factors activate downstream genes with different 

rates, due to various reasons such as the need to form a protein complex or the need to be 

post-translationally modified. This issue can be easily overcome by also examining time lags 

of more than 1 unit, however this will lead to increased computational complexity. 

 

6.3 Performance of network inference algorithms 

 

In general, network inference algorithms do not perform at a level that is significantly different 

from the results obtained by generating random values (Figure 3.10). This observation is also 

supported by two independent studies (Marbach et al. 2012; Qi & Michoel 2012), which also 

uses a similar set of algorithms and synthetic data. Both papers show that when the underlying 

network is complex and sparse (as in the gene network of the yeast Saccharomyces 

cerevisiae), most network inference algorithms perform poorly and at a level that is similar to 

randomly generated results.  

 

There are a few explanations for the apparent poor performance of network inference 

algorithms. Firstly, it is likely that the expression data used for network inference contains an 

imbalanced number of informative and non-informative data points, where there are 

significantly more non-informative data points. These non-informative data points may be a 

result of both biological and technical noises in real expression data. Data points are only 

informative if they contain fluctuations in values due to perturbations exerted by upstream 

interacting genes in previous time points. Inference of gene interaction is difficult if the 
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occurrence of perturbations is random and cannot be controlled directly or identified easily, 

which is the kind of perturbations typically observed in single-cell RNAseq data.  

 

Secondly, inferring gene networks from a large number of genes suffers from a combinatorial 

problem, in which the expression value of a downstream target gene can be explained by 

multiple combinations of upstream genes which are equally plausible according to their 

respective expression values. This problem can be overcome by using independent data 

sources, such as transcription factor binding sites, to constraint the total number of plausible 

gene combinations. Lastly, interconnections of gene interactions, which include feedback 

loops, result in complex patterns in the expression values. The presence of loops makes the 

identification of direct gene interactions difficult, but this problem is unlikely to be solvable 

without additional information on the gene connectivity and the rate of gene activity 

propagation along the network. 

 

In order to bypass the problems described above and achieve an accurate dissection of the 

underlying gene regulatory network, an ideal experimental system is required. This system 

should allow the control of individual expression perturbations and live measurements of 

potential downstream genes. This can potentially be achieved by imaging fluorescence-tagged 

mRNA molecules in live cells (Lubeck et al. 2014) incubated in a microfluidic device with 

chemical perturbations (Roman et al. 2006). Besides the idealised experimental system which 

is costly and laborious, another way to improve the network inference performance is to 

incorporate multiple sources of independent but complementary information. For example, an 

accurate gene regulatory network is more likely to be inferred by combining multiple types of 

information, such as from transcriptomics, proteomics, transcription factor binding sites and 

experimental results from the literature (Wang et al. 2015; Zarayeneh et al. 2016). 

 

6.4 Benchmark of differential expression analysis 

algorithms 

 

Differential expression analysis represents one of the key analyses that is performed across 

almost all experiments with high-throughput expression data from microarray to RNAseq. This 

is because differential expression analysis is able to identify uniquely expressed genes that 

are specific to certain samples in the high-throughput expression data. In Section 4.3.4, 
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differential expression analysis algorithms that are developed for bulk and single-cell 

expression data were benchmarked by using synthetic expression data. The results suggest 

that the best performing differential expression analysis algorithms for single-cell RNAseq are 

SCDE, DESeq2 and edgeR.  

 

It should be noted that while the conventional differential expression analysis algorithms are 

very good in detecting differences in the measure of central tendency (i.e. mean and median), 

they are not designed for detecting differences in the measure of variability (i.e. variance). An 

example of an algorithm that is capable of detecting variability among single cells is the 

BASiCS algorithm (Vallejos et al. 2015), which breaks down variability into technical and 

biological components by using the spike-in reads. Comparing differences in the variability 

across samples have been made possible by single-cell expression data, and represent an 

important feature to explore in the different samples. However, experimentally recreating such 

variability in the expression of a gene under a controlled system is much more difficult than 

recreating differences in the central tendency of the expression values. 

 

Lastly, it should be noted that as single-cell expression data offer an increasingly higher 

number of samples, traditional standard statistical tools, such as Kolmogorov-Smirnov (KS) 

and Wilcoxon rank sum (WC) tests, become increasingly powerful for differential expression 

analysis. Algorithms such as DESeq and edgeR were developed for bulk expression data with 

very few number of samples. As can be seen in Figure 4.14, while DESeq and edgeR perform 

better than KS and WC tests for detecting sample differences in central tendency, but KS and 

WC tests were able to detect sample differences in both central tendency and variability. In 

addition, KS and WC tests are non-parametric, unlike DESeq and edgeR, therefore are 

especially suitable for expression data with uncharacterised properties, such as expression 

data generated by a new protocol. 

 

6.5 Epiblast stem cells reprogramming system 

 

Chapter 4 describes the insights obtained from studying single-cell RNAseq data collected 

from three epiblast stem cell (EpiSC) lines that were each reprogrammed by a separate 

transgene (i.e. Esrrb, Klf2, GY118F) into induced pluripotent stem cells (iPSCs). The results 

suggest that while all transgene-driven cell lines are able to reprogramme successfully, each 

cell line underwent a different reprogramming route by activating and inhibiting different 
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biological processes. The EpiSC reprogramming system was studied using multiple data 

sources including both bulk and single-cell RNAseq data, as well as multiple analysis 

techniques including clustering, pseudotime inference and network inference. When taken 

together, the results support the hypothesis by showing reprogramming differences among the 

cell lines. The upregulation of Esrrb drives reprogramming by modulating transcriptional 

regulation important for establishing naïve identity, the upregulation of Klf2 drives 

reprogramming by regulating cell proliferation and differentiation, while the upregulation of 

pStat3 in GY118F cell line drives reprogramming by regaining trophectoderm potential and 

downregulating BMP/SMAD pathway. These new biological insights help understand the key 

pathways that facilitate the reprogramming transition from the EpiSC primed pluripotency state 

into the ESC naïve pluripotency state. 

 

This study can be improved further in various aspects. Firstly, the expression of the transgene 

may change drastically after the induction, but the earliest time point used in the analysis is 1 

hour after the induction of transgene. A higher time resolution during this initial stage of 

transgene induction will be beneficial for the identification of genes that are directly 

downstream of the transgene. In addition, the 1 hour time point is only available for bulk 

RNAseq but not single-cell RNAseq, where the earliest time point is 2 days after induction. 

Secondly, the induction of transgene may result in an expression level that cannot be observed 

under normal physiological condition. This may lead to unintended side effects and make the 

inference of gene interactions difficult, as a highly expressed gene may interact with more 

partners than under a normal expression level observed under physiological condition. Lastly, 

while most analyses on this dataset are likely to offer reliable results, care should be taken 

when interpreting the results of inferred gene networks in Section Error! Reference source 

not found.. This is due to the reasons as discussed above, relating to the performance of both 

SPVAR and network inference algorithms in general. The inferred networks can be made more 

robust by integrating additional information obtained from other data sources such as verified 

transcription factor binding sites. 

 

6.6 Acute myeloid leukaemia pre-leukaemic system 

 

The last result chapter, Chapter 5, describes the insights obtained from studying single-cell 

RNAseq data collected from cells with FLT3-ITD and IDH1-R132H mutations. The aim of this 

study is to investigate the effects of these two mutations on establishing pre-leukaemia 
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identities and the possibility of synergistic interactions between the two mutations that co-occur 

rarely in acute myeloid leukaemia (AML) patients. The results suggest that while both 

mutations exert changes on expression profiles, FLT3-ITD has a stronger effect on perturbing 

expression profiles and increasing myeloid potential than IDH1-R132H. Previous clinical 

genomic studies have shown that mutations in genes that destabilise the genome, such as 

Idh1, typically arise early in AML before leukaemogenic events, while mutations in genes that 

contribute to leukaemogenic events directly, such as Flt3, arise later (Shlush et al. 2014; 

Corces-Zimmerman et al. 2014). However, no previous study has investigated the effects of 

the co-occurrence of both Idh1 and Flt3 mutations in blood cells. In this study, we have shown 

that FLT3-ITD and IDH1-R132H interact synergistically which lead to perturbed immune cell 

differentiation. 

 

This study can be improved further in various aspects. Firstly, the observed synergistic 

interactions between the two mutations may be due to a dosage compensation effect, as both 

mutations were heterozygous in this study and are shown to co-occur rarely in AML patients. 

It may also be due to differences in individual mice, as only one mice for each mutation is 

explored here. This experiment should ideally be repeated with more mice to see if the same 

observations occurred in multiple mice. Secondly, the choice of LMPPs for studying AML may 

not be ideal, as LMPPs are primed for the lymphoid lineage while AML is a defect in the myeloid 

lineage. In addition, both FLT3-ITD and IDH1-R132H may also play a role in lymphoblastic 

leukaemia (Wellmann et al. 2005; Zhang et al. 2012). However, both mutations are still more 

common in AML than in lymphoblastic leukaemic patients. Interestingly, perturbed lymphoid 

cells development was indeed observed in the FLT3-IDH1 double mutant cells (Table 5.2 & 

Table 5.3). This problem can be solved in future experiments by including a less lymphoid 

primed haematopoietic progenitor such as multi-potent progenitors (MPPs), or by using a 

myeloid lineage progenitor such as common myeloid progenitors (CMPs).  

 

Lastly, the use of Nestorowa blood cells atlas (Figure 5.18), which is in the form of a diffusion 

map, for cell type identification by projecting independent expression data onto the atlas may 

be subjected to a certain degree of bias. The bias comes mainly from the constrained space 

of diffusion map for cell projections. The diffusion map space present in the atlas that is 

available for cell projection is actually more limited than visually observed. This is due to the 

folding manifold as introduced by the kernel used in diffusion map, which means that it is very 

unlikely to have any projected cell that falls outside of the space originally occupied by the cells 

in the atlas. This issue can be partially overcome by only projecting blood cells that are known 
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to share similar expression profiles to the cells used in the atlas, and to increase the types of 

cells available in the atlas. 

 

6.7 Concluding remarks 

 

The overall contributions of this thesis can be separated into two domains, namely the technical 

and the biological domains. In terms of technical domain, this thesis has outlined both the 

development of new algorithms, i.e. new network inference algorithms BTR and SPVAR; as 

well as the verification and the benchmarking of existing algorithms, i.e. pseudotime inference, 

network inference and differential expression algorithms. These findings will hopefully help 

other researchers in selecting the most suitable algorithms for their specific use cases, and 

also encourage other researchers to actively benchmark their own algorithms using synthetic 

data with known properties before using them on real biological data.  

 

As for the biological domain, this thesis has outlined new biological insights obtained from two 

analyses performed on single-cell RNAseq collected from EpiSC reprogramming system and 

AML pre-leukaemic system respectively. It is hoped that these studies produce findings that 

help researchers in identifying interesting biological insights that can then be verified 

experimentally. Despite the increased technical noise present in single-cell RNAseq compared 

to bulk RNAseq, single-cell RNAseq has been shown to offer a much higher data resolution 

that is very helpful in studying biological processes with a system-wide approach. Provided 

that the increased technical noise is carefully accounted for, single-cell RNAseq is expected 

to continue dominate the field of transcriptomics study, especially with the advent of new 

sequencing library construction protocols such as DropSeq (Macosko et al. 2015). 
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