465 research outputs found

    Full Information Product Pricing: An Information Strategy for Harnessing Consumer Choice to Create a More Sustainable World

    Get PDF
    Research and practice in the information systems (IS) field have been evolving over time, nourishing and promoting the development of applications that transform the relationships of individuals, corporations, and governments. Building on this evolution, we push forward a vision of the potential influence of the IS field into one of the most important problems of our times, an increasingly unsustainable world, which is traditionally considered the product of imperfect markets or market externalities. We describe our work in Full Information Product Pricing (FIPP) and our vision of a FIPP global socio-technical system, I-Choose, as a way to connect consumer choice and values with environmental, social, and economic effects of production and distribution practices. FIPP and I-Choose represent a vision about how information systems research can contribute to interdisciplinary research in supply chains, governance, and market economies to provide consumers with information packages that help them better understand how, where, and by whom the products they buy are produced. We believe that such a system will have important implications for international trade and agreements, for public policy, and for making a more sustainable world

    Named Graphs as a Mechanism for Reasoning About Provenance

    Full text link
    Named Graphs is a simple, compatible extension to the RDF abstract syntax that enables statements to be made about RDF graphs. This approach is in contrast to earlier attempts such as RDF reification, or knowledge-base specific extensions including quads and contexts. In this paper we demonstrate the use of Named Graphs and our experiences developing new kinds of semantic web application that build on Named Graphs for digital signatures, provenance, and semantic reasoning. We present a working example based on the Named Graphs for Jena (NG4J) API, from which we developed a semantic version control system for Software Engineering capable of reasoning about Named Graph-based provenance. We go on to discuss the implications of Named Graphs for Description Logics and semantic inference strategies

    Towards an interoperability certification method for semantic federated experimental IoT testbeds

    Get PDF
    IoT deployments and then related experiments tend to be highly heterogeneous leading to fragmented and non-interoperable silo solutions. Yet there is a growing need to interconnect such experiments to create rich infrastructures that will underpin the next generation of cross sector IoT applications in particular as using massive number of data. While research have been carried out for IoT test beds and interoperability for some infrastructures less has been done on the data. In this paper, we present the first step of the FIESTA certification method for federated semantic IoT test bed, which provides stakeholders with the means of assessing the interoperability of a given IoT testbed and how it can be federated with other ones to create large facility for experimenter. Focus is given on data and semantic context of the test beds and how they can interoperate together for larger experiments with data

    1st INCF Workshop on Sustainability of Neuroscience Databases

    Get PDF
    The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability

    AMBIT RESTful web services: an implementation of the OpenTox application programming interface

    Get PDF
    The AMBIT web services package is one of the several existing independent implementations of the OpenTox Application Programming Interface and is built according to the principles of the Representational State Transfer (REST) architecture. The Open Source Predictive Toxicology Framework, developed by the partners in the EC FP7 OpenTox project, aims at providing a unified access to toxicity data and predictive models, as well as validation procedures. This is achieved by i) an information model, based on a common OWL-DL ontology ii) links to related ontologies; iii) data and algorithms, available through a standardized REST web services interface, where every compound, data set or predictive method has a unique web address, used to retrieve its Resource Description Framework (RDF) representation, or initiate the associated calculations

    Knowledge society arguments revisited in the semantic technologies era

    No full text
    In the light of high profile governmental and international efforts to realise the knowledge society, I review the arguments made for and against it from a technology standpoint. I focus on advanced knowledge technologies with applications on a large scale and in open- ended environments like the World Wide Web and its ambitious extension, the Semantic Web. I argue for a greater role of social networks in a knowledge society and I explore the recent developments in mechanised trust, knowledge certification, and speculate on their blending with traditional societal institutions. These form the basis of a sketched roadmap for enabling technologies for a knowledge society

    An Interoperable Access Control System based on Self-Sovereign Identities

    Get PDF
    The extreme growth of the World Wide Web in the last decade together with recent scandals related to theft or abusive use of personal information have left users unsatisfied withtheir digital identity providers and concerned about their online privacy. Self-SovereignIdentity (SSI) is a new identity management paradigm which gives back control over personal information to its rightful owner - the individual. However, adoption of SSI on theWeb is complicated by the high overhead costs for the service providers due to the lackinginteroperability of the various emerging SSI solutions. In this work, we propose an AccessControl System based on Self-Sovereign Identities with a semantically modelled AccessControl Logic. Our system relies on the Web Access Control authorization rules usedin the Solid project and extends them to additionally express requirements on VerifiableCredentials, i.e., digital credentials adhering to a standardized data model. Moreover,the system achieves interoperability across multiple DID Methods and types of VerifiableCredentials allowing for incremental extensibility of the supported SSI technologies bydesign. A Proof-of-Concept prototype is implemented and its performance as well as multiple system design choices are evaluated: The End-to-End latency of the authorizationprocess takes between 2-5 seconds depending on the used DID Methods and can theoretically be further optimized to 1.5-3 seconds. Evaluating the potential interoperabilityachieved by the system shows that multiple DID Methods and different types of VerifiableCredentials can be supported. Lastly, multiple approaches for modelling required Verifiable Credentials are compared and the suitability of the SHACL language for describingthe RDF graphs represented by the required Linked Data credentials is shown
    • 

    corecore