2,542 research outputs found

    Certified Computation from Unreliable Datasets

    Full text link
    A wide range of learning tasks require human input in labeling massive data. The collected data though are usually low quality and contain inaccuracies and errors. As a result, modern science and business face the problem of learning from unreliable data sets. In this work, we provide a generic approach that is based on \textit{verification} of only few records of the data set to guarantee high quality learning outcomes for various optimization objectives. Our method, identifies small sets of critical records and verifies their validity. We show that many problems only need poly(1/ε)\text{poly}(1/\varepsilon) verifications, to ensure that the output of the computation is at most a factor of (1±ε)(1 \pm \varepsilon) away from the truth. For any given instance, we provide an \textit{instance optimal} solution that verifies the minimum possible number of records to approximately certify correctness. Then using this instance optimal formulation of the problem we prove our main result: "every function that satisfies some Lipschitz continuity condition can be certified with a small number of verifications". We show that the required Lipschitz continuity condition is satisfied even by some NP-complete problems, which illustrates the generality and importance of this theorem. In case this certification step fails, an invalid record will be identified. Removing these records and repeating until success, guarantees that the result will be accurate and will depend only on the verified records. Surprisingly, as we show, for several computation tasks more efficient methods are possible. These methods always guarantee that the produced result is not affected by the invalid records, since any invalid record that affects the output will be detected and verified

    The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race

    Full text link
    Recent studies in social media spam and automation provide anecdotal argumentation of the rise of a new generation of spambots, so-called social spambots. Here, for the first time, we extensively study this novel phenomenon on Twitter and we provide quantitative evidence that a paradigm-shift exists in spambot design. First, we measure current Twitter's capabilities of detecting the new social spambots. Later, we assess the human performance in discriminating between genuine accounts, social spambots, and traditional spambots. Then, we benchmark several state-of-the-art techniques proposed by the academic literature. Results show that neither Twitter, nor humans, nor cutting-edge applications are currently capable of accurately detecting the new social spambots. Our results call for new approaches capable of turning the tide in the fight against this raising phenomenon. We conclude by reviewing the latest literature on spambots detection and we highlight an emerging common research trend based on the analysis of collective behaviors. Insights derived from both our extensive experimental campaign and survey shed light on the most promising directions of research and lay the foundations for the arms race against the novel social spambots. Finally, to foster research on this novel phenomenon, we make publicly available to the scientific community all the datasets used in this study.Comment: To appear in Proc. 26th WWW, 2017, Companion Volume (Web Science Track, Perth, Australia, 3-7 April, 2017

    Are You Tampering With My Data?

    Full text link
    We propose a novel approach towards adversarial attacks on neural networks (NN), focusing on tampering the data used for training instead of generating attacks on trained models. Our network-agnostic method creates a backdoor during training which can be exploited at test time to force a neural network to exhibit abnormal behaviour. We demonstrate on two widely used datasets (CIFAR-10 and SVHN) that a universal modification of just one pixel per image for all the images of a class in the training set is enough to corrupt the training procedure of several state-of-the-art deep neural networks causing the networks to misclassify any images to which the modification is applied. Our aim is to bring to the attention of the machine learning community, the possibility that even learning-based methods that are personally trained on public datasets can be subject to attacks by a skillful adversary.Comment: 18 page

    Tailored for Real-World: A Whole Slide Image Classification System Validated on Uncurated Multi-Site Data Emulating the Prospective Pathology Workload.

    Get PDF
    Standard of care diagnostic procedure for suspected skin cancer is microscopic examination of hematoxylin & eosin stained tissue by a pathologist. Areas of high inter-pathologist discordance and rising biopsy rates necessitate higher efficiency and diagnostic reproducibility. We present and validate a deep learning system which classifies digitized dermatopathology slides into 4 categories. The system is developed using 5,070 images from a single lab, and tested on an uncurated set of 13,537 images from 3 test labs, using whole slide scanners manufactured by 3 different vendors. The system\u27s use of deep-learning-based confidence scoring as a criterion to consider the result as accurate yields an accuracy of up to 98%, and makes it adoptable in a real-world setting. Without confidence scoring, the system achieved an accuracy of 78%. We anticipate that our deep learning system will serve as a foundation enabling faster diagnosis of skin cancer, identification of cases for specialist review, and targeted diagnostic classifications

    On the Numerical Accuracy of Spreadsheets

    Get PDF
    This paper discusses the numerical precision of five spreadsheets (Calc, Excel, Gnumeric, NeoOffice and Oleo) running on two hardware platforms (i386 and amd64) and on three operating systems (Windows Vista, Ubuntu Intrepid and Mac OS Leopard). The methodology consists of checking the number of correct significant digits returned by each spreadsheet when computing the sample mean, standard deviation, first-order autocorrelation, F statistic in ANOVA tests, linear and nonlinear regression and distribution functions. A discussion about the algorithms for pseudorandom number generation provided by these platforms is also conducted. We conclude that there is no safe choice among the spreadsheets here assessed: they all fail in nonlinear regression and they are not suited for Monte Carlo experiments.

    Blind Justice: Fairness with Encrypted Sensitive Attributes

    Get PDF
    Recent work has explored how to train machine learning models which do not discriminate against any subgroup of the population as determined by sensitive attributes such as gender or race. To avoid disparate treatment, sensitive attributes should not be considered. On the other hand, in order to avoid disparate impact, sensitive attributes must be examined, e.g., in order to learn a fair model, or to check if a given model is fair. We introduce methods from secure multi-party computation which allow us to avoid both. By encrypting sensitive attributes, we show how an outcome-based fair model may be learned, checked, or have its outputs verified and held to account, without users revealing their sensitive attributes.Comment: published at ICML 201

    On the Numerical Accuracy of Spreadsheets

    Get PDF
    This paper discusses the numerical precision of five spreadsheets (Calc, Excel, Gnumeric, NeoOffice and Oleo) running on two hardware platforms (i386 and amd64) and on three operating systems (Windows Vista, Ubuntu Intrepid and Mac OS Leopard). The methodology consists of checking the number of correct significant digits returned by each spreadsheet when computing the sample mean, standard deviation, first-order autocorrelation, F statistic in ANOVA tests, linear and nonlinear regression and distribution functions. A discussion about the algorithms for pseudorandom number generation provided by these platforms is also conducted. We conclude that there is no safe choice among the spreadsheets here assessed: they all fail in nonlinear regression and they are not suited for Monte Carlo experiments

    DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems

    Full text link
    Deep learning (DL) defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data. We have seen wide adoption of DL in many safety-critical scenarios. However, a plethora of studies have shown that the state-of-the-art DL systems suffer from various vulnerabilities which can lead to severe consequences when applied to real-world applications. Currently, the testing adequacy of a DL system is usually measured by the accuracy of test data. Considering the limitation of accessible high quality test data, good accuracy performance on test data can hardly provide confidence to the testing adequacy and generality of DL systems. Unlike traditional software systems that have clear and controllable logic and functionality, the lack of interpretability in a DL system makes system analysis and defect detection difficult, which could potentially hinder its real-world deployment. In this paper, we propose DeepGauge, a set of multi-granularity testing criteria for DL systems, which aims at rendering a multi-faceted portrayal of the testbed. The in-depth evaluation of our proposed testing criteria is demonstrated on two well-known datasets, five DL systems, and with four state-of-the-art adversarial attack techniques against DL. The potential usefulness of DeepGauge sheds light on the construction of more generic and robust DL systems.Comment: The 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2018

    Learning Robust Kernel Ensembles with Kernel Average Pooling

    Full text link
    Model ensembles have long been used in machine learning to reduce the variance in individual model predictions, making them more robust to input perturbations. Pseudo-ensemble methods like dropout have also been commonly used in deep learning models to improve generalization. However, the application of these techniques to improve neural networks' robustness against input perturbations remains underexplored. We introduce Kernel Average Pooling (KAP), a neural network building block that applies the mean filter along the kernel dimension of the layer activation tensor. We show that ensembles of kernels with similar functionality naturally emerge in convolutional neural networks equipped with KAP and trained with backpropagation. Moreover, we show that when trained on inputs perturbed with additive Gaussian noise, KAP models are remarkably robust against various forms of adversarial attacks. Empirical evaluations on CIFAR10, CIFAR100, TinyImagenet, and Imagenet datasets show substantial improvements in robustness against strong adversarial attacks such as AutoAttack without training on any adversarial examples
    corecore