
Blind Justice: Fairness with Encrypted Sensitive Attributes

A. Details of the MPC Protocols
Secret sharing. A secret sharing scheme allows one to
split a value x (the secret) among two parties, so that no
party has unilateral access to x. In our setting, a user Alice
will secret share a sensitive value, for example her race,
among a modeler M and a regulator REG. Several secret
sharing schemes exist, including Shamir secret sharing, xor
sharing, Yao sharing, or arithmetic multiplicative/additive
sharing. In this work we alternate between Yao sharing and
additive sharing for efficiency. In the latter, the value x is
represented in a finite domain Zq with, for example q = 232.
To share her race, Alice samples a value r from Zq uniformly
at random, and sends x−r to M and r to REG. We call each
of x − r and r a share, and denote them as 〈x〉1 and 〈x〉2.
Now M and REG can recover x by adding their shares, but
each share on its own does not reveal anything about the
value of x (other than that it is smaller than q). Note that the
case where q = 2 corresponds to xor sharing.

Function evaluation. MPC can be classified in two
groups depending on how f is represented: either as a
Boolean or arithmetic circuit. All protocols proceed by
having the parties jointly evaluate the circuit, processing it
gate by gate. For each gate g for which the value for the
input wires x, y is shared among the parties, the parties run
a subprotocol to produce the value z = g(x, y) of the output
wire, again shared, without revealing any information in
the process. In the setting where we use arithmetic additive
sharing, the two parties M and REG hold shares, 〈x〉1,〈y〉1
and 〈x〉2,〈y〉2, respectively. In this case, f is represented as
an arithmetic circuit, and hence each gate g in the circuit is
either an addition or a multiplication. Note that if g is an
addition gate, then a sharing of z = g(x, y) can be obtained
by having each party simply compute locally, i.e., without
any interaction, 〈z〉i = 〈x〉i + 〈y〉i, for i ∈ {1, 2}. If g is
a multiplication, the subprotocol to compute shares of z is
much more costly. Fortunately, it can be divided into an
offline and an online phase.

The preprocessing model in MPC. In this model, two
parties P1, P2 engage in an offline phase, which is data
independent, and compute (and store) shared multiplication
triples of the form (a, b, c), with c = ab. Here, a, b ∈ Fq are
drawn uniformly at random, and each value a, b, c is shared
among the parties as explained above. In the online phase, a
multiplication gate z = mul(x, y) on shared values x, y can
be evaluated as follows: (1) each Pi sets 〈e〉i = 〈x〉i − 〈a〉i
and 〈f〉i = 〈y〉i−〈b〉i, (2) the parties exchange their shares
of e and f and reconstruct these values locally, and (3)
each Pi computes 〈z〉i = (i − 1)ef + f〈a〉i + e〈b〉i +
〈c〉i. The correctness of this protocol can be easily checked.
Privacy relies on the uniform randomness of a, b, and hence
〈e〉i and 〈f〉i completely mask the values of 〈x〉i and 〈y〉i,

respectively. For a formal proof see (Demmler et al., 2015b).

Hence, for each multiplication in the function to be eval-
uated, the parties need to jointly generate a multiplication
triple in advance. For computations with many multiplica-
tions (like in our case) this can be a costly process. However,
this constraint is easy to accommodate in our architecture
for private fair model training, as M and REG can run the of-
fline phase once “overnight”. Arithmetic multiplication via
precomputed triples is a common technique, used in several
popular MPC frameworks (Demmler et al., 2015b; Damgård
et al., 2012). In this setting, several protocols for triple gen-
eration (which we did not describe) are available (Keller
et al., 2018), and under continuous improvement. These
protocols are often based on either Oblivious Transfer or
Homomorphic Encryption.

The two-server model for multi-party learning. Due to
a sequence of theoretical and engineering breakthroughs, in
the last three decades MPC has gone from being a mathe-
matical curiosity to a technology of practical interest with
commercial applications. Several generic protocols for
MPC exists, such as the ones based on arithmetic shar-
ing (Damgård et al., 2012), garbled circuits (Yao, 1986), or
GMW (Goldreich et al., 1987), with several available imple-
mentations (Demmler et al., 2015b; Zahur & Evans, 2015b).
These protocols have different trade-offs in terms of the
number of parties they support, network requirements, and
scalability for different kinds of computations. In our work,
we focus on the 2-party case, as the MPC computation is
done by M and REG. The idea of privately outsourcing com-
putation to two non-colluding parties in this way is recurrent
in MPC, and often referred to as the two-server model (Mo-
hassel & Zhang, 2017; Gascón et al., 2017; Nikolaenko
et al., 2013b; Al-Rubaie et al., 2017).

While generic protocols exist, these do not yet scale to input
sizes typically encountered in machine learning applica-
tions like ours. To circumvent this limitation, techniques
tailored to specific applications have been proposed. Our
protocols fall in this category, extending the SGD protocol
from (Mohassel & Zhang, 2017), in which the following
useful accelerating techniques are presented.

• Efficient rescaling: As our arithmetic shares repre-
sent fixed-point numbers, we need to rescale by the
precision p after every multiplication. This involves
dividing by 2p, an expensive operation to do in MPC,
and in particular in arithmetic sharing. Mohassel et al.
show an elegant solution to this problem: the parties
can rescale locally by dropping p bits of their shares.
It is not hard to see that this might produce the wrong
result. However, the parameters of the arithmetic secret
sharing scheme can be set such that with a tunable ar-
bitrarily large probability the error is at most ±1. This

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/158357628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Blind Justice: Fairness with Encrypted Sensitive Attributes

trick can be used for any division by a power of two.

• Alternating sharing types: As already pointed out in
previous work (Demmler et al., 2015b), alternating be-
tween secret sharing schemes can provide significant
acceleration for some applications. Intuitively, arith-
metic operations are fast in arithmetic shares, while
comparisons are fast in schemes that represent func-
tions as Boolean circuits. Examples of the latter are
the GMW protocol and Yao’s garbled circuits. In our
implementation, we follow this recipe and implement
matrix-vector multiplication using arithmetic sharing,
while for evaluating our variant of sigmoid, we rely on
the protocol from (Mohassel & Zhang, 2017) imple-
mented with garbled circuits using the Obliv-C frame-
work (Zahur & Evans, 2015b).

• Matrix multiplication triples: Another observation
made by Mohassel et al. is that the idea described
above for preprocessing multiplications over arithmetic
shares can be reinterpreted at the level of matrices. This
results in a faster online and offline phase (see (Mohas-
sel & Zhang, 2017) for details).

How to prove that a protocol is secure. We did not pro-
vide a formal definition of security in this paper, and instead
referred the reader to (Mohassel & Zhang, 2017). In MPC,
privacy in the case of semi-honest adversaries is argued
in the simulation paradigm (see (Goldreich, 2004) or (Lin-
dell, 2016) for formal definitions and detailed proofs). Intu-
itively, in this paradigm one proves that every inference that
a party—in our case either REG or M—could draw from
observing the execution trace of the protocol could also be
drawn from the output of the execution and the party’s input.
This is done by proving the existence of a simulator that can
produce an execution trace that is indistinguishable from
the actual execution trace of the protocol. A crucial point is
that the simulator only has access to the input and output of
the party being simulated.

B. Details of Fair Model Training
B.1. The Fair Training Algorithm

Algorithm 1 describes the computations M and REG have
to perform for fair model training using the Lagrangian mul-
tiplier technique and the p%-rule from eq. (9). In the next
subsection we describe the parameter values. We implicitly
assume all computations are performed jointly on additively
shared secrets by M and REG as described in Section 3.
This means that M and REG each receive a secret share of
the protected attributes Z. Following the protocols outlined
in Section 3, they can then jointly evaluate the steps in Algo-
rithm 1. This allows them to operate on the sensitive values
within the MPC computation, while preventing unilateral

access to them by M and REG. The result of these computa-
tions is the same as evaluating the algorithm as described
with data in the clear.

BLOCKEDMULTSHIFTAVG stands for the blocked matrix
multiplication to avoid overflow for fixed-point numbers
described towards the end of Section 4. Note that it already
contains the division by n. The averaging within the blocked
matrix multiplications as well as over the results thereof are
done by fast bit shifts instead of slow MPC division circuits.
This is possible, because we chose all parameters such that
divisions are always by powers of two.

We found the piecewise linear approximation of the sigmoid
function introduced in (Mohassel & Zhang, 2017)

SIGMOIDAPPROX(x) :=

0 if x ≤ − 1
2 ,

x+ 1
2 if − 1

2 < x < 1
2 ,

1 if x ≥ 1
2 .

to work best, see Figure 4.

Algorithm 1 Fair model training with private sensitive val-
ues using Lagrangian multipliers for F(θ) = 1/n|Z>X|− c.
Parties: M, REG.
Input: (M) 〈Z〉1 ∈ Zn×p

q

Input: (REG) X ∈ Zn×d
q , y ∈ Zn

q , 〈Z〉2 ∈ Zn×p
q

Input: (Public) Learning rates ηθ, ηλ, number of training
examples n, minibatch size 2s, constraints c ∈ Zp

q , number
of epochs Ne.

1: θ ← 0, λ← 0
2: A← BLOCKEDMULTSHIFTAVG(Z>,X)
3: for all j from 1 to Ne do
4: for all i from 1 to n/2s do
5: (Xi,yi)← SAMPLEMINIBATCH(X,y)
6: F← |Aθ| − c
7: ∇λ ← max{F,0}
8: σ ← SIGMOIDAPPROX(Xiθ)
9: ∇BCE

θ ← SHIFTDIVIDE(X>i (σ − yi), 2
s)

10: ∇CON
θ ←

A>λ, if A > 0 ∧ F > 0

−A>λ, if A < 0 ∧ F > 0

0, if F ≤ 0

11: θ ← θ − ηθ(ξBCE
j ∇BCE

θ + ξCON
j ∇CON

θ)
12: λ← max{λ + ηλ∇λ,0}
13: end for
14: end for
Output: Parameters θ

B.2. Description of Training Parameters

All our experiments use a batch size of 64, a fixed number
of epochs scaling inversely with dataset size n (such that
we always perform roughly 15 000 gradient updates), fixed
learning rates of ηθ = 10−4, ηλ = 0.05, and an annealing

Blind Justice: Fairness with Encrypted Sensitive Attributes

−6 −4 −2 2 4 6

0.5

1

Figure 4. Piecewise linear approximations for the non-linear sig-
moid function (in black) from Mohassel & Zhang (2017) in blue
and from Faiedh et al. (2001) in orange.

schedule for 1/t in the interior point logarithmic barrier
method as described by Boyd & Vandenberghe (2004). The
weights for the gradients of the regular binary cross entropy
loss (BCE) and the loss from the constraint terms (CON)
follow the schedules

ξBCE
j =

Ne

Ne + j
, ξCON

j =
Ne + 10j

Ne
.

Weight decay, adaptive learning rate schedules. and momen-
tum neither consistently improved nor impaired training.
Therefore, all reported numbers were achieved with vanilla
SGD, for fixed learning rates, and without any regulariza-
tion. After extensive testing on all datasets, we converged
to a fixed-point representation with 16 bits for the integer
and fractional part respectively. The smaller the number
of bits, the faster the MPC implementation and the higher
the risk of loss of precision or over- and underflows. We
found 16 bits to be the minimally needed precision for all
our experiments to work.

C. Additional Experimental Results
C.1. Results on Remaining Datasets

Analogously to Figures 2 and Figure 3 we report the results
on test accuracy as well as the mitigation of disparate impact
for the Lagrangian multiplier method in Figure 5. In the
Adult dataset we are able to mitigate disparate impact with
slightly worse accuracy as compared to the baseline. Note
that the German dataset contains only 512 training and 200
test examples, which explains the discrete jumps in accuracy
in minimal steps of 1/200 = 0.005. Hence, even though the
Lagrangian multiplier technique here consistently removes
disparate impact to a similar extent as the baseline, interpre-
tations of results on such small datasets require great care.
For the much larger stop, question and frisk dataset we again
observe the curious initial increase in accuracy similar to
our observations for the Bank dataset. In this dataset about
93% of all samples have positive labels, which explains the
near optimal accuracy when collapsing to always predict 1,

which happens for the baseline as well for our method at a
similar rate as c decreases.

C.2. Disadvantages of Other Optimization Methods

In Section 5 we suggest the Lagrangian multiplier technique
for fair model training using fixed-point numbers. Here we
substantiate this suggestion with further empirical evidence.
Figure 6 shows analogous results to Figure 3 and the second
row of Figure 5. These plots reveal the shortcomings of the
interior point logarithmic barrier and the projected gradient
methods.

Interior Point Logarithmic Barrier method. While the
interior point logarithmic barrier method does balance the
fractions of people being assigned positive outcomes be-
tween the two different demographic groups when the con-
straint is tightened, it soon breaks down entirely due to
overflow and underflow errors. The number of failed runs
was substantially higher than for the Lagrangian multiplier
technique. As explained in (Boyd & Vandenberghe, 2004),
when we increase the parameter t of the interior point loga-
rithmic barrier method during training, the barrier becomes
steeper, approaching the function

I−(x) =

{
0 for x ≤ 0 ,

∞ for x > 0 .

From this it becomes obvious that when facing tight con-
straints, the gradients might change from almost zero to
extremely large values within a single update of the pa-
rameters θ. Moreover, iplb requires careful tuning and
scheduling of t. Hence, the interior point logarithmic barrier
method, while achieving good results over some domains,
is not well suited for MPC.

Projected gradient method. In Figure 6, we observe that
the projected gradient method seems to fail in most cases,
since it does not actually balance the fractions of positive
outcomes across the sensitive groups. There is a simple
explanation why it can satisfy the constraint F(θ) ≤ 0 for
the p%-rule even with small c and still retain near optimal
accuracy. Note that the accuracy only depends on the direc-
tion of θ, i.e., it is invariant to arbitrary rescaling of θ. Since
the constraint F(θ) = |Aθ| − c ≤ 0 is always satisfied for
θ = 0, dividing any θ by a large enough factor will result
in a classifier that achieves equal accuracy and satisfies the
constraint (by continuity). However, minimizing the loss
in the original logistic regression optimization problem (or
equivalently maximizing the likelihood), which is not in-
variant under rescaling of θ, counteracts shrinking θ as it
enforces high confidence of decisions, i.e., large θ. The
projection method produces high accuracy classifiers with
small weights that formally fulfill the fairness constraint,
but do not properly mitigate disparate impact as measured

Blind Justice: Fairness with Encrypted Sensitive Attributes

0.8

0.82

0.84

ac
cu

ra
cy

Adult

0.68

0.7

0.72

0.74

0.76

German

0.93

0.94

0.95

0.96

SQF

10−4 10−2 100

0.1

0.2

0.3

0.4

0.5

constraint c

%
w

ith
ŷ

=
1

10−4 10−2 100

0.7

0.8

0.9

constraint c
10−4 10−2 100

0.85

0.9

0.95

1

constraint c

Figure 5. First row: The color code is blue: iplb, orange: projected, green: Lagrange with continuous lines for no approximation and
dashed lines for piecewise linear approximation. The gray dotted line is the baseline and the dashed black line marks unconstrained
logistic regression. Second row: Continuous/dotted lines correspond to z = 0 and dashed/dash-dotted lines to z = 1. The color code is
(red: no approx. + float, purple: no approx. + fixed, yellow: pw linear + float, turquoise: pw linear + fixed, gray: baseline).

ip
lb

Synthetic COMPAS Bank Adult German SQF

10−3 10−1

constraint c

pr
oj

ec
te

d

10−3 10−1

constraint c
10−3 10−1

constraint c
10−3 10−1

constraint c
10−3 10−1

constraint c
10−3 10−1

constraint c

Figure 6. We plot the fraction of people with z = 0 (continuous/dotted) and with z = 1 (dashed/dash-dotted) who get assigned positive
outcomes over the constraint c for 5 different datasets. The different colors correspond to (red: no approximation + floats, purple: no
approximation + fixed-point, yellow: piecewise linear + floats, turquoise: piecewise linear + fixed-point, gray: baseline).

Blind Justice: Fairness with Encrypted Sensitive Attributes

by the true p%-rule instead of the computational proxy. It
also often fails for small constraint values, as the projec-
tion matrix in eq. (10) turns out to become near singular
producing over- and underflow errors.

D. Clarification of Privacy or Secrecy
In this work, privacy or secrecy constraints are separate
from other theorized, setup-dependent attacks, e.g., model
extraction (Tramèr et al., 2016) or inversion (Fredrikson
et al., 2015). If relevant, modelers may need to consider
these separately.

