1,086 research outputs found

    Learning from Crickets: Artificial Hair-Sensor Array Developments

    Get PDF
    We have successfully developed biomimetic flowsensitive hair-sensor arrays taking inspiration from mechanosensory hairs of crickets. Our current generation of sensors achieves sub mm/s threshold air-flow sensitivity for single hairs operating in a bandwidth of a few hundred Hz and is the result of a few iterations in which the natural system (i.e. crickets filiform hair based mechano-sensors) have shown ample guidance to optimization. Important clues with respect to mechanical design, aerodynamics, viscous coupling effects and canopy based signal processing have been used during the course of our research. It is only by consideration of all these effects that we now may start thinking of systems performing a “flow-camera” function as found in nature in a variety of species

    Transcriptional control of behaviour: engrailed knockout changes cockroach escape trajectories

    Get PDF
    The cerci of the cockroach are covered with identified sensory hairs that detect air movements. The sensory neurons that innervate these hairs synapse with giant interneurons in the terminal ganglion that in turn synapse with interneurons and leg motor neurons in thoracic ganglia. This neural circuit mediates the animal's escape behavior. The transcription factor Engrailed (En) is expressed only in the medially born sensory neurons, which suggested that it could work as a positional determinant of sensory neuron identity. Previously, we used double-stranded RNA interference to abolish En expression and found that the axonal arborization and synaptic outputs of an identified En-positive sensory neuron changed so that it came to resemble a nearby En-negative cell, which was itself unaffected. We thus demonstrated directly that En controls synaptic choice, as well as axon projections. Is escape behavior affected as a result of this miswiring? We showed recently that adult cockroaches keep each escape unpredictable by running along one of a set of preferred escape trajectories (ETs) at fixed angles from the direction of the threatening stimulus. The probability of selecting a particular ET is influenced by wind direction. In this present study, we show that early instar juvenile cockroaches also use those same ETs. En knock-out significantly perturbs the animals' perception of posterior wind, altering the choice of ETs to one more appropriate for anterior wind. This is the first time that it has been shown that knock-out of a transcription factor controlling synaptic connectivity can alter the perception of a directional stimulus

    Auto-spermatophore extrusion in male crickets

    Get PDF
    The reproductive cycle of the male cricket consists of the mating stage and the sexually refractory stage. The latter is further divided into the first refractory stage (RS1) from spermatophore extrusion in copulation to spermatophore preparation after copulation, and the second refractory stage (RS2) from spermatophore preparation to recommencement of a calling song. RS2 is time-fixed and unaffected by the female or by stress, hence RS2 is assumed to be controlled by the reproductive timer. Previously, we suggested that the timer is located in the terminal abdominal ganglion (TAG), because functional inactivation of the TAG by local cooling lengthened RS2 in proportion to cooling time. To obtain further evidence of timer localization and to examine the operation of the timer in dissected animals, we investigated the characteristics of auto-spermatophore extrusion, a phenomenon in which males eject the mature spermatophore themselves without any prior courtship. The occurrence of auto-spermatophore extrusion was 100% in dissected males with the TAG separated, compared to 1.7% in intact males. The time interval (SPaSE) between spermatophore preparation and autospermatophore extrusion was comparable to RS2 measured by the calling song. Spike recording from a genital motor neurone in the separated TAG indicated that burst discharge associated with auto-spermatophore extrusion occurred with a SPaSE comparable to RS2. Other efferent neurones, some of which were identified as dorsal unpaired median (DUM) neurones, showed a timedependent spike frequency increase during SPaSE. These results strengthen our previous conclusion that the reproductive timer is located within the TAG, and demonstrate that the timer functions normally even when the TAG is separated from the central nervous system.</p

    Optimization of Cricket-inspired, Biomimetic Artificial Hair Sensors for Flow Sensing

    Get PDF
    High density arrays of artificial hair sensors, biomimicking the extremely sensitive mechanoreceptive filiform hairs found on cerci of crickets have been fabricated successfully. We assess the sensitivity of these artificial sensors and present a scheme for further optimization addressing the deteriorating effects of stress in the structures. We show that, by removing a portion of chromium electrodes close to the torsional beams, the upward lift at the edges of the membrane due to the stress, will decrease hence increase the sensitivity.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket.

    Get PDF
    Crickets carry wind-sensitive mechanoreceptors on their cerci, which, in response to the airflow produced by approaching predators, triggers escape reactions via ascending giant interneurons (GIs). Males also activate their cercal system by air currents generated due to the wing movements underlying sound production. Singing males still respond to external wind stimulation, but are not startled by the self-generated airflow. To investigate how the nervous system discriminates sensory responses to self-generated and external airflow, we intracellularly recorded wind-sensitive afferents and ventral GIs of the cercal escape pathway in fictively singing crickets, a situation lacking any self-stimulation. GI spiking was reduced whenever cercal wind stimulation coincided with singing motor activity. The axonal terminals of cercal afferents showed no indication of presynaptic inhibition during singing. In two ventral GIs, however, a corollary discharge inhibition occurred strictly in phase with the singing motor pattern. Paired intracellular recordings revealed that this inhibition was not mediated by the activity of the previously identified corollary discharge interneuron (CDI) that rhythmically inhibits the auditory pathway during singing. Cercal wind stimulation, however, reduced the spike activity of this CDI by postsynaptic inhibition. Our study reveals how precisely timed corollary discharge inhibition of ventral GIs can prevent self-generated airflow from triggering inadvertent escape responses in singing crickets. The results indicate that the responsiveness of the auditory and wind-sensitive pathway is modulated by distinct CDIs in singing crickets and that the corollary discharge inhibition in the auditory pathway can be attenuated by cercal wind stimulation.This study was supported by the Biotechnology and Biological Science Research Council (Grant BB/F008783/1) and The Isaac Newton Trust (Trinity College, Cambridge, UK).This is the final published version. It first appeared at http://jn.physiology.org/content/113/1/390

    Noise-enhanced computation in a model of a cortical column

    Get PDF
    Varied sensory systems use noise in order to enhance detection of weak signals. It has been conjectured in the literature that this effect, known as stochastic resonance, may take place in central cognitive processes such as the memory retrieval of arithmetical multiplication. We show in a simplified model of cortical tissue, that complex arithmetical calculations can be carried out and are enhanced in the presence of a stochastic background. The performance is shown to be positively correlated to the susceptibility of the network, defined as its sensitivity to a variation of the mean of its inputs. For nontrivial arithmetic tasks such as multiplication, stochastic resonance is an emergent property of the microcircuitry of the model network

    Quantitative Characterization of the Filiform Mechanosensory Hair Array on the Cricket Cercus

    Get PDF
    Crickets and other orthopteran insects sense air currents with a pair of abdominal appendages resembling antennae, called cerci. Each cercus in the common house cricket Acheta domesticus is approximately 1 cm long, and is covered with 500 to 750 filiform mechanosensory hairs. The distribution of the hairs on the cerci, as well as the global patterns of their movement vectors, have been characterized semi-quantitatively in studies over the last 40 years, and have been shown to be very stereotypical across different animals in this species. Although the cercal sensory system has been the focus of many studies in the areas of neuroethology, development, biomechanics, sensory function and neural coding, there has not yet been a quantitative study of the functional morphology of the receptor array of this important model system.We present a quantitative characterization of the structural characteristics and functional morphology of the cercal filiform hair array. We demonstrate that the excitatory direction along each hair's movement plane can be identified by features of its socket that are visible at the light-microscopic level, and that the length of the hair associated with each socket can also be estimated accurately from a structural parameter of the socket. We characterize the length and directionality of all hairs on the basal half of a sample of three cerci, and present statistical analyses of the distributions.The inter-animal variation of several global organizational features is low, consistent with constraints imposed by functional effectiveness and/or developmental processes. Contrary to previous reports, however, we show that the filiform hairs are not re-identifiable in the strict sense

    Neural Circuit Recording from an Intact Cockroach Nervous System

    Get PDF
    The cockroach ventral nerve cord preparation is a tractable system for neuroethology experiments, neural network modeling, and testing the physiological effects of insecticides. This article describes the scope of cockroach sensory modalities that can be used to assay how an insect nervous system responds to environmental perturbations. Emphasis here is on the escape behavior mediated by cerci to giant fiber transmission in Periplaneta americana. This in situ preparation requires only moderate dissecting skill and electrophysiological expertise to generate reproducible recordings of neuronal activity. Peptides or other chemical reagents can then be applied directly to the nervous system in solution with the physiological saline. Insecticides could also be administered prior to dissection and the escape circuit can serve as a proxy for the excitable state of the central nervous system. In this context the assays described herein would also be useful to researchers interested in limb regeneration and the evolution of nervous system development for which P. americana is an established model organism

    The Cercal Organ May Provide Singing Tettigoniids a Backup Sensory System for the Detection of Eavesdropping Bats

    Get PDF
    Conspicuous signals, such as the calling songs of tettigoniids, are intended to attract mates but may also unintentionally attract predators. Among them bats that listen to prey-generated sounds constitute a predation pressure for many acoustically communicating insects as well as frogs. As an adaptation to protect against bat predation many insect species evolved auditory sensitivity to bat-emitted echolocation signals. Recently, the European mouse-eared bat species Myotis myotis and M. blythii oxygnathus were found to eavesdrop on calling songs of the tettigoniid Tettigonia cantans. These gleaning bats emit rather faint echolocation signals when approaching prey and singing insects may have difficulty detecting acoustic predator-related signals. The aim of this study was to determine (1) if loud self-generated sound produced by European tettigoniids impairs the detection of pulsed ultrasound and (2) if wind-sensors on the cercal organ function as a sensory backup system for bat detection in tettigoniids. We addressed these questions by combining a behavioral approach to study the response of two European tettigoniid species to pulsed ultrasound, together with an electrophysiological approach to record the activity of wind-sensitive interneurons during real attacks of the European mouse-eared bat species Myotis myotis. Results showed that singing T. cantans males did not respond to sequences of ultrasound pulses, whereas singing T. viridissima did respond with predominantly brief song pauses when ultrasound pulses fell into silent intervals or were coincident with the production of soft hemi-syllables. This result, however, strongly depended on ambient temperature with a lower probability for song interruption observable at 21°C compared to 28°C. Using extracellular recordings, dorsal giant interneurons of tettigoniids were shown to fire regular bursts in response to attacking bats. Between the first response of wind-sensitive interneurons and contact, a mean time lag of 860 ms was found. This time interval corresponds to a bat-to-prey distance of ca. 72 cm. This result demonstrates the efficiency of the cercal system of tettigoniids in detecting attacking bats and suggests this sensory system to be particularly valuable for singing insects that are targeted by eavesdropping bats
    corecore