Varied sensory systems use noise in order to enhance detection of weak
signals. It has been conjectured in the literature that this effect, known as
stochastic resonance, may take place in central cognitive processes such as the
memory retrieval of arithmetical multiplication. We show in a simplified model
of cortical tissue, that complex arithmetical calculations can be carried out
and are enhanced in the presence of a stochastic background. The performance is
shown to be positively correlated to the susceptibility of the network, defined
as its sensitivity to a variation of the mean of its inputs. For nontrivial
arithmetic tasks such as multiplication, stochastic resonance is an emergent
property of the microcircuitry of the model network