539 research outputs found

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Uncertainty decoding with SPLICE for noise robust speech recognition

    Full text link

    Classification of Javanese Script Hanacara Voice Using Mel Frequency Cepstral Coefficient MFCC and Selection of Dominant Weight Features

    Get PDF
    This study investigates the sound of Hanacaraka in Javanese to select the best frame feature in checking the reading sound. Selection of the right frame feature is needed in speech recognition because certain frames have accuracy at their dominant weight, so it is necessary to match frames with the best accuracy. Common and widely used feature extraction models include the Mel Frequency Cepstral Coefficient (MFCC). The MFCC method has an accuracy of 50% to 60%. This research uses MFCC and the selection of Dominant Weight features for the Javanese language script sound Hanacaraka which produces a frame and cepstral coefficient as feature extraction. The use of the cepstral coefficient ranges from 0 to 23 or as many as 24 cepstral coefficients. In comparison, the captured frame consists of 0 to 10 frames or consists of eleven frames. A sound sampling of 300 recorded voice sampling was tested on 300 voice recordings of both male and female voice recordings. The frequency used is 44,100 kHz 16-bit stereo. The accuracy results show that the MFCC method with the ninth frame selection has a higher accuracy rate of 86% than other frames.This study investigates the sound of Hanacaraka in Javanese to select the best frame feature in checking the reading sound. Selection of the right frame feature is needed in speech recognition because certain frames have accuracy at their dominant weight, so it is necessary to match frames with the best accuracy. Common and widely used feature extraction models include the Mel Frequency Cepstral Coefficient (MFCC). The MFCC method has an accuracy of 50% to 60%. This research uses MFCC and the selection of Dominant Weight features for the Javanese language script sound Hanacaraka which produces a frame and cepstral coefficient as feature extraction. The use of the cepstral coefficient ranges from 0 to 23 or as many as 24 cepstral coefficients. In comparison, the captured frame consists of 0 to 10 frames or consists of eleven frames. A sound sampling of 300 recorded voice sampling was tested on 300 voice recordings of both male and female voice recordings. The frequency used is 44,100 kHz 16-bit stereo. The accuracy results show that the MFCC method with the ninth frame selection has a higher accuracy rate of 86% than other frames

    Robust Speech Recognition for Adverse Environments

    Get PDF

    A TAXONOMY-ORIENTED OVERVIEW OF NOISE COMPENSATION TECHNIQUES FOR SPEECH RECOGNITION

    Get PDF
    ABSTRACT Designing a machine that is capable for understanding human speech and responds properly to speech utterance or spoken language has intrigued speech research community for centuries. Among others, one of the fundamental problems to building speech recognition system is acoustic noise. The performance of speech recognition system significantly degrades in the presence of ambient noise. Background noise not only causes high level mismatch between training and testing conditions due to unseen environment but also decreases the discriminating ability of the acoustic model between speech utterances by increasing the associated uncertainty of speech. This paper presents a brief survey on different approaches to robust speech recognition. The objective of this review paper is to analyze the effect of noise on speech recognition, provide quantitative analysis of well-known noise compensation techniques used in the various approaches to robust speech recognition and present a taxonomy-oriented overview of noise compensation techniques
    • …
    corecore