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ABSTRACT 

Designing a machine that is capable for understanding human speech and responds properly to speech utterance or 
spoken language has intrigued speech research community for centuries. Among others, one of the fundamental problems 
to building speech recognition system is acoustic noise. The performance of speech recognition system significantly 
degrades in the presence of ambient noise. Background noise not only causes high level mismatch between training and 
testing conditions due to unseen environment but also decreases the discriminating ability of the acoustic model between 
speech utterances by increasing the associated uncertainty of speech. This paper presents a brief survey on different 
approaches to robust speech recognition. The objective of this review paper is to analyze the effect of noise on speech 
recognition, provide quantitative analysis of well-known noise compensation techniques used in the various approaches to 
robust speech recognition and present a taxonomy-oriented overview of noise compensation techniques. 
 
Keywords: noise compensation techniques, speech recognition, noise robustness.  
 
1. INTRODUCTION 

In most practical applications of automatic speech 
recognition, the input speech is contaminated by 
background noise. This strongly degrades the performance 
of speech recognizers [1]. Noise is unpredictable, time-
varying and has temporal characteristics in nature. One of 
the significant issue in robust speech recognition is to 
develop an accurate noise model, whereas noise estimation 
itself a difficult problem. The non-linear interaction 
between noise and clean speech in producing noise 
corrupted speech generate high degree of imperfection and 
complexity in decoding speech. To become an integral 
part of real world applications, speech recognition system 
maintain a significant level of recognition accuracy in 
difficult and time varying acoustic environment. Different 
approaches have been applied in reducing the effects of 
noise on the acoustic speech signal captured through 
microphone, outcomes of several studies have established 
that the speaker independent speech recognition system 
performance degrades dramatically, when training 
condition differ from the testing environment [2-4]. 
Application of speech recognition in different 
environments such as telephonic conversation, automobile, 
industries, cocktail party, or in office setup needs higher 
degree of environmental robustness. This paper presents 

an overview of the commonly used noise compensation 
techniques in the various approaches to robust speech 
recognition and identifies some research issues that need 
to be addressed. Rest of the paper is organized as follows. 
The subsequent section briefly review model of 
environmental distortion including the additive noise. This 
is followed by a brief discussion of noise effect on speech 
recognition. Section 3 then summarize the well-known 
noise compensation techniques used in the various 
approaches to robust speech recognition in qualitative 
manner. Section 4 discusses taxonomy-oriented overview 
of noise compensation techniques using two different axes 
and some research activities in the field of robust speech 
recognition. 
 
2. A MODEL OF THE ENVIRONMENT 

One major concern in the design of the speech 
recognition systems is its performance in real 
environment. In such conditions, different sources could 
generally be classified as additive noise and channel 
distortion. Noise is inherently unpredictable. Fortunately, 
noise may be approximately characterized by an 
environmental acoustic model. This is summarized in a 
model form [5] shown in Figure-1. 
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Figure-1. Sources of noise and distortion. 
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In the model given in Figure-1, a major source of 
corrupted noise is the additive, ambient environment 
noise, nt, present when the user is speaking. The combined 
noise and speech signal is then captured and filtered by 
microphone impulse response, ht, (mic) which can be another 
large source of distortion. Transmission may also add 
noise, represented by T1 and ht (trans), although it is 
expected to be small. Noise at the receiver side T2is also 
expected to be minimal. Figure-1 may be simplified by 
combining the various additive and convolute noise 
sources into a single ambient noise, nt, and linear channel 
noise, ht, variables. A simplified oft-used model [6, 7, 8] 
of the noisy acoustic environment in the time domain is 
shown in Figure-2. A speech signal xt in the time domain is 
contaminated by ambient noise nt and a stationary 
convolution channel impulse response ht to give noisy 
signal Yt, the resulting noisy signal will become: 
 
Yt= xt*ht + nt                                                                      (1) 
 

Figure-2. Model of the noisy acoustic environment. 
 

The effect of noise on the input signal can be 
represented in the form of log-spectral or cepstral domain. 
In the log-spectral or cepstral domain Eq. (1) leads us to 
the following relationship between speech, noise and noisy 
speech. 
 
Yt = xt + h + C log (1 + exp (C-1 (nt–xt – h))                      (2) 
 
Yt = xt + f (xt, nt, h), 
 
Where f (xt, nt, h) is referred to as environment function, 
log and exponential functions indicate element-wise 
operations that yield a vector of the same dimensionality 
as he input vector. Eq. (2) indicates that the noisy speech 
is a composite non-linear function of the channel noise, 
additive noise and speech. There are following advantages 
to performing noise compensation in log-spectral or 
cepstral domain are smaller numbers of parameters need to 
be estimated, log-spectral or cesptral based features are 
used in existing speech recognition system, statistical 
models are more accurate and easily developed in the 
cepstral or log-spectral domain. 
 
2.1 Effects of noise on speech 

There are number of sources responsible for 
acoustic contamination that can reduce the accuracy of 
speech recognizer. The main sources of speech variation 
can be classified into three main categories [9]. In the first 
category, the recorded speech is the sum of the speech 
produced by user and the acoustic ambient noise. It is 
generally a colored noise and the noise structures can vary 
according to sources such as babble noise, office 

environment, industrial noises, etc. Second category of 
speech variation related to the convolution of the speech 
signal. They can be produced by mounting position and 
types of microphone, make use of different microphone 
for testing and training and room reverberation, etc. In the 
third category of speech variation, the user can be affected 
by factors like stress, mental state and emotions in his 
speaking style. When user speaks under high noise 
conditions, they change their utterance like pitch, sound 
intensity, sound duration and formant frequencies, etc. 
This Lombard effect degrades the performance of speech 
recognizer. 
 Most of the research in robust speech recognition 
has been focused toward compensation for the effects of 
ambient noise. Above mentioned discussion leads us 
toward the development of noise compensation strategies 
to cope with ambient noise. Before going into the 
development of the noise compensation techniques, there 
is a need to address some of the important issues related to 
speech and noise [10]. 
 

 Speech patterns are represented by a sequence of 
feature vectors rather than single feature vector. The 
complicated HMM is used to model the temporal 
dynamics of speech. 

 Noise is unpredictable, time -varying and has temporal 
characteristics in nature. 

 In speech recognition, with N classes, the features are 
projected into N-dimensional vectors in log-likelihood 
domain. It is difficult to carry study unless we 
consider the correct and competing classes.  

 The assumption that the noise term is additive and 
independent from speech is not true in real feature 
extraction of speech recognition systems, such as 
(MFCC) Cepstral domain. The relation between noise 
and speech is highly nonlinear [6]. 

 
 With the above challenges among many others, it 
is mathematically difficult to study the noise effect for 
practical speech recognition system. As the SNR 
decreases, the noise component in SNR starts to dominate 
and the mean values of the noisy speech shifted toward 
noise. As noise dominates in the speech component the 
value of SNR suppressed significantly. The net effect is 
that the training of speech data set in clean environment 
doesn’t match with the testing environment and 
recognition rates decrease rapidly [11]. 
 
3. APPROACHES TO NOISE ROBUSTNESS 

The acoustic model of a speech recognition 
system is trained on clean speech data set and the decision 
boundary of the model fits well to the distribution of the 
clean training data. When the speech corrupted by noise, 
the statistical characteristics of the noisy speech will be 
different from clean speech. The decision boundary that fit 
to clean speech may not fit for noisy speech and 
recognition rate will degrade. To overcome this problem 
and improve the robustness of speech recognition against 
noise distortion, many methods have been proposed to 
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decreasing the acoustic mismatch between testing and 
training conditions. These techniques can be classified into 
two distinct approaches shown in Figure-3. Feature 
compensation methods and Model compensation methods.  
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Figure-3. Approaches to noise robust recognition. 

3.1 Robust feature extraction techniques 
The main goal of the feature extraction is to find 

a set of parameters to represent speech signal in the ASR 
system which are robust against the variation in the speech 
signal due to ambient noise or channel distortion. The 
extensive research has resulted in such well known 
techniques, this section provide the possible robust feature 
extraction techniques describe in literature like RASTA 
filtering [12], Cepstral mean normalization [13], Dynamic 
spectral features [14], Short time modified coherence [15], 
One-sided autocorrelation LPC [16], Differential Power 
spectrum [17], Relative autocorrelation Sequence [18] as 
shown in Table-1. 

 

 
 

Table-1. Feature extraction techniques. 
 

Relative auto-correlation 
sequence (RAS) Yuo  and Wang, 1998 

Cepstral mean normalization 
(CMN) Kermorvant, 1999 

One-sided auto-correlation LPC 
(OSALPC) Hernando and Nadeu, 1997 

Short time modified coherence 
(SMC) Mansour and Juang, 1989 

Dynamic spectral features Furui, 1986 

Differential power spectrum 
(DPS) Chen et al., 2003 

RASTA filtering Morgan and Hermansky, 1994 

 
3.2. Feature compensation techniques 

The primary goal of the feature compensation 
technique is to suppress the effect of noise in the extracted 
features which contaminates speech signal. The widely 
used speech enhancement techniques in the presented 
work by researchers are Spectral Subtraction [19, 20], 

Wiener Filtering (for stereo type data, SPLICE Algorithm) 
[21], Approach-II (Non-stereo data, VTS expansion) [8], 
Cepstral mean normalization (CMN and MVN) [22, 23], 
Histogram Equalization (HEQ) [24] and RASTA 
Temporal filter [12] summarized in Table-2. 
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Table-2. Feature compensation techniques. 

 

Spectral subtraction 

This technique provides magnitude 
estimation of speech by explicitly 
subtracting the noise magnitude spectrum 
from the noisy magnitude spectrum. 

Wiener filtering (Approach -I) for stereo 
type data. SPLICE algorithm 

In this approach, SPLICE algorithm 
computes minimum mean square error 
(MMSE) estimate for stereo data type. 

Approach -II (Non- stereo data). First-
Order VTS expansion  

This type of approach dealing with the 
non-stereo data and make use of first -
order vector Taylor series (VTS) to 
establish the relationship between noise, 
speech and noisy speech. 

Cepstral mean normalization (CMN) and 
(MVN) 

CMN and CVN normalize first and second 
moment of probability distribution of 
speech feature. Recent research enhance 
this basic idea for higher order moment of 
probability distribution of speech feature s. 

Histogram equalization (HEQ) 

This approach make use of transformation 
mechanism in which the distribution of 
test speech map on the pre-defined 
distribution, utilizing the relation-ship 
between the CDF of test speech and those 
of referenced speech (training). Histogram 
Equalization normalizes all the moments 
of probability distribution of test speech 
feature to those of the training ones.  

RASTA temporal filter 

The basic working of the RASTA Filter is 
to suppress the spectral components that 
change more quickly or slowly than the 
rate of change of speech. 

 
3.3 Model-based noise compensation 
 The main objective of the model compensation is 
to compensate the acoustic model to match noisy 
environment. Modify the recognition models parameters 
such as means and variance to improve the recognition 
rates between training and testing conditions. The model 
compensation has great potential to improve robustness 
and it makes use of detailed knowledge of the underlying 
clean speech encoded in the acoustic models. Model-based 
noise compensation is merging the clean speech model 
with the noise model including single Gaussian noise and 
multi Gaussian mode for highly varying noise conditions. 
In the frame work of model-based noise compensation, 
statistical models such as Hidden Markov Model (HMMs) 
are consider to remove the mismatch between the training 
model and the noisy speech to improve the performance of 
ASR systems. Model based compensation performs 
adjustment of model parameters in order to obtain a model 
appropriate for recognition in the noisy environment. Due 
to unpredictable nature of noise, it is not possible to 
account for all conditions that may be encountered by 
including them in the training data. Thus other acoustic 

model compensation methods that updates the model 
parameters may be categorized as either; 1) Predictive: In 
the predictive method the speech model is merge with the 
noise model to generate noisy speech model using acoustic 
environment model. 2) Adaptive: In adaptive method 
enough noisy speech data are available to update the 
acoustic model to match the noisy speech observations. 
MAP [25] and MLLR-style [26] transforms can be 
measured as adaptive forms; on the other hand PMC [27] 
and VTS [28] are predictive techniques. The widely used 
approaches for model-based noise compensation are as 
follows: 
 

 Matched-style training: In matched-style training a 
new sample of the waveform taking from the new 
environment, and merge it to all the utterance in the 
existing training databases without making any change 
in the system. If noise characteristics are known 
beforehand, using this method, we can adopt the new 
environment with fewer amounts of data from the new 
environment. 
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 Multi-style training: Multi-style compensation crates 
an artificial acoustic environment by contaminating 
the speech training databases with noise samples of 
varying levels (05 dB, 10 dB, etc.) and types (babble, 
car, etc.). 

 Model adaptation: In the real world scenario, there 
will always be new speaker and unseen environment. 
The solution to this problem is adaptation. The 
purpose of adaptation is to permits  a less  amount of 

data from user to transform an acoustic model set in to 
compact recognition parameters set and this 
recognition parameters set an be used to reduce 
mismatch between training and testing conditions. 
Different adaptation methodologies have been 
suggested in the literature. Many of these approaches 
can be used with in a speaker adaptive training (SAT) 
frame work. Some of the commonly used schemes are 
summarized in Table-3. 

 
Table-3. Model adaptation schemes. 

 

Feature-based schemes 

Feature-based method based on the 
acoustic features. There are three basic 
approaches define in this scheme: Mean 
and Variance normalization; 
Gaussianisation; Vocal tract length 
normalization (VTLN) 

Linear transform-based schemes 

One of the most effective forms of 
adaptation is based on linear 
transformation methods. Linear 
transformation makes use of model 
parameters and requires a transcription of 
the adaptation data.  Most commonly use 
approaches are MLLR. MLLR works 
under the assumption of likelihood 
maximization of adapted data and linear 
transforms-based schemes are used to map 
an existing model parameters set into a 
new adapted model parameters set. 

Gender/cluster -dependent  model (Cluster 
adaptive training CAT) 

Make use of multiple clusters instead of 
the single cluster to represent the user. 
There are two approaches are used to 
combining the cluster 1) Likelihood 
combination and 2) parameters 
combination. PCA used to determine the 
cluster mean and EM-algorithm 
implemented for the model training. 

MAP adaptation 
 

The basic concept of Model adaptation is 
to use the standard statistical methods to 
find robust parameters estimation instead 
of assuming a concept of transformation to 
signify the difference among users. 

 
 Parallel Model Compensation (PMC): (“The aim of 

the model compensation can be viewed as obtaining 
the parameters of speech plus noise distribution from 
the clean speech mode and the noise model. One 
approach to model-based compensation is parallel 
model compensation [27]. Standard PMC assume that 
the feature vectors are linear transforms of the log 
spectrum, such as MFCC, and that the noise is 
primarily additive. The basic idea of the algorithm is 
to map the Gaussian means and variance in the 
cepstral domain, back into the linear domain, where 
the noise is additive, compute the means and variances 
of the new combined speech plus noise distribution, 

and then map back to cepstral domain”) [11]. The 
parameters of the noisy speech distribution, N(µn, ∑n) 
can be found from 

 
µn= E {Yt} 
 
∑n = E {YtYt

T} - µY µY
T 

 
Where Yt is the noisy speech acquired from a clean speech 
component combined with noise from the noise model. 
Various approximations have been proposed [11], because 
there is no direct solution of these equations is available. 
Many speech recognizer are based on the HMM and use 
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MFCC Features. The calculation of MFCC involves the 
log operation, the relation between noise, speech and 
noise-corrupted speech becomes non-linear. The basic 
objective of the model based compensation is to find 

speech model in noisy conditions and approximation of 
this non-linear relationship. Commonly used approaches to 
solving this problem [29] are shown in Table-4.

 
Table-4. Approximation techniques. 

 

Log-normal 
approximation and 
log-add 
Approximation.  

(“The distribution in the linear domain will be log- normal but 
the sum of two log normal distribution is not log normal. 
Standard PMC ignores this and assume that the combined 
distribution is log-normal. This is referred as log- normal 
distribution/ A simpler, faster, PMC approximation is to 
ignore the variance of the speech and noise distribution. This 
is referred as log-add approximation”) [11]. 

Schwartz-Yeh 
approximation 

This method works under the assumption that resulting 
distribution is normal but should be more accurate than the 
log -normal approximation. Calculations are performed in 
log-spectral or cepstral domain and there is no transformation 
to the linear domain is needed. Method has high 
computational complexity than log-normal approximation. 

Lagrange polynomial 
Approximation 

Lagrange polynomials were used to approximate mean 
parameters for noisy speech. 

Monte-Carlo 
Techniques 

A high mapping accuracy can be attained using Monte-Carlo 
techniques to estimate new distribution by combining the 
sample of noise and speech distribution. Data Driven PMC 
obtain mean and co-variances matrix  through Monte-Carlo 
simulation   

 
 Vector Taylor Series (VTS): PMC and VTS are the 

main methods for acoustic model compensation and 
adaptation. Because the non-linear nature of the 
corrupted model for cepstral parameters under the 
condition of additive noise; some approximation need 
to be made to facilitate efficient computation. PMC 
uses Log-normal approximation for this non-linear 
model. 

 
VTS approximates the non-linear model with its 

first -order vector Taylor series expansion and transform it 
into linear one. Like PMC, the noisy speech model is 
produced by merging of speech HMM and the noise 
HMM. Unlike PMC, the VTS approach combines the 
parameters of speech HMM and noise HMM linearly in 
the cesptral domain [8, 28, 30]. 
 
4.  A TAXONOMY-ORIENTED OVERVIEW  

Noise compensation techniques have been 
developed by speech community during last two decades. 
Model compensation or model-domain approaches are 
used to update the HMM model parameters such as means 
and variances, while the feature enhancement approaches 
are used to reduce the noise distortion from the speech 
feature vectors. Model techniques can be categorized into 
two main classes based on two different approaches. In the 
first category, Unstructured or linear transformation are 
used to convert model parameters. These techniques are 

applicable to noise compensation as well as speaker 
adaptation. They required number of parameters and large 
amount of data sample to estimate model parameters. 
Commonly used algorithms in this category can be 
summarized as Maximum Likelihood Linear Regression 
(MLLR) [26], Maximum a Posteriori (MAP) [25], 
Constrained MLLR [31], Noisy constrained MLLR [32], 
Multi-style Training [33]. In the second category, 
structured or non-linear transformation which takes into 
account the way the noisy speech features (Cepstra) are 
produced from the mixing speech and noise. Techniques 
of this category not used for other types of acoustic 
variation and physical knowledge are used to approximate 
the mixing process of noise and speech. Common 
techniques in this category include Parallel model 
combination (PMC) [27], Vector Taylor series (VTS) [28] 
and Phase sensitive model compensation [34, 35]. 

The feature compensation based on the same 
schemes as it counterpart. In the first category, structured 
feature compensation use similar structured transformation 
as describe for model compensation. Some of the 
commonly used techniques in this category include Vector 
Taylor Series (VTS) [8], Algonquin [36] and Phase-
Sensitive model for feature enhancement [37]. Second 
category is unstructured feature domain compensation, in 
which techniques are developed and don’t provide any 
structured knowledge of how noise and speech mix 
expressed in the log domain. This category includes 
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several feature normalization methods. Commonly used 
techniques in this category are SPLICE [21], Spectral 
subtraction [19, 20], CMN [22], MVN [23], HEQ [24] and 

RASTA [12]. A grouping of noise compensation 
techniques is shown in Table-5. 

 
Table-5. A grouping of noise compensation techniques. 

 

 Model-based Feature-based 

Linear transformation
MAP, C-MLLR, 

MLLR, N-CMLLR, 
multi-style training 

Spectral subtraction, 
SPLICE, HEQ, 

RASTA wiener filter, 
MMSE, MMSE- 

Cepstra, MVN, CMN 

Non-linear 
transformation 

VTS, PMC, phase-
sensitive model 

VTS, Algonquin, 
phase-sensitive model 

 
In spite of major progress in robust speech 

recognition during last two decades, most of the well-
known noise compensation techniques (Feature-domain 
and Model-domain) have been quantitatively summarized 
in this paper but the problem is not being solved. Speech 
research community intensively put their effort in this 
field of research to improve the accuracy of the real-world 
speech recognition problem and applications under 
different acoustic conditions. Here, a brief discussion from 
the authors prospective on the research activities in the 
field of robust speech recognition. 

First, despite of benefit performing noise 
compensation in cepstral domain such as smaller numbers 
of parameters estimation, Log-spectral based features are 
widely used in the existing speech recognition systems and 
statistical models are more accurate and easily developed 
in the log-spectral or cepstral domain, the relation between 
speech, noise and noisy speech is a complex non-linear 
function of the channel, clean speech and noise in log-
spectral or cepstral domain. Two aspects of the mentioned 
issue are needed to be addressed. i) How to approximate 
this relationship and ii) how to improve the exciting 
approaches in order to achieve good recognition 
performance.  

Second, acoustic models have critical importance 
in speech technology. Speech research communities are 
trying to focus two major aspect of acoustic modeling: 1) 
how to develop the statistical models and derive their 
structures and 2) how to learn these structures 
automatically from data. We know that as the level of 
ambient noise increases, the associated uncertainty of 
speech increases accordingly. One of the promising 
research activities in this direction is to learn the structure 
of the acoustic sounds to enhance the generalization 
capability of the acoustic model being used for speech, 
noise and their interaction. 

Third, with reference to above discussion on 
improved acoustic modeling for speech and noise 
interaction, two aspect of acoustic modeling 1) speed of 
parameter estimation and 2) improving discriminative 
power are gaining significant important among speech 
research community. Improving the discriminative power 
for speech recognition system, one of the prominent issues 

with speaker independent speech recognition system is 
that the acoustic model trained on large data set has to 
waste a large number of parameters for recognizing the 
inconsistency among users rather than desire words. On 
other hand discriminative and margin based training 
methods can be used to improve speed of parameter 
estimation by reducing the empirical risk and enhancing 
the generalization capability of acoustic model. 

Fourth, front end features may not always be 
strict log-spectra. Whereas, most of the speech recognizers 
make use of cepstra based on which all nonlinear 
structured acoustic distortion models are developed and 
approximated. PLP features, discriminatively derived 
feature, Mean and variance normalization often performs 
better than plain MFCC. There is a need to rethinking of 
new emerging technology from deep machine learning, 
which can provide the opportunity to automatically derive 
features from the raw data. 
 
5. CONCLUSIONS 

The noise effect is reduced by either feature 
compensation methods or model compensation methods. 
In this review paper, we revisited the well-known noise 
compensation techniques used in the various approaches to 
noise robust speech recognition and analyzed the effects of 
noise on speech recognition. In feature based noise 
compensation, the noisy features are compensated to 
eliminate the effects of noise, where as  in model based 
noise compensation the clean acoustic model are 
compensated to match the noisy environment. Feature 
compensation methods are simpler, easy to implement and 
computationally efficient. In contrast, Model-
compensation methods have potential for greater 
robustness but they are computationally very expensive. 
Model-based noise compensation methods that update the 
model parameters may be categorized as either Adaptive 
forms such as MAP or MLLR may be used to compensate 
for noise and predictive forms such as VTS and PMC have 
the advantage that only a noise model of environment is 
necessary to compensate the systems. Noise is inherently 
unpredictable, it may be characterized as additive and 
convolutional noise components, leading to noise 
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compensation techniques that can help Automatic Speech 
Recognition handle adverse environments. 

In this review paper, we presented taxonomy-
oriented overview of noise compensation techniques for 
speech recognition using two different axes, feature 
domain vs. model domain and linear vs. non-linear 
transformation and discussed some research activities in 
the field of robust speech recognition where difficulty of 
the task and variety of acoustic conditions surges. 
 
REFERENCES 
 
[1] Y. Gong. 1995. Speech recognition in noisy 

environment: A survey. Speech Communication. 
16(3): 261-291. 
 

[2] A. Acero. 1993. Acoustic and Environmental 
Robustness in Automatic Speech Recognition. 
Kluwer Academic Publishers, Boston, M.A. 
 

[3] B. H. Juang. Speech Recognition in Adverse 
Environments. Computer Speech and Language. 5: 
275-294. 
 

[4] R.M. Stern, A. Acero, F. H. Liu and Y. Ohshima. 
Signal Processing for Robust Speech Recognition. In: 
Speech Recognition, C. H. Lee and F. Soong, Eds., 
Boston: Kluwer Academic Publishers. 
 

[5] J.H.L. Hansen. 1996. Analysis and compensation of 
speech under stress and noise for environmental 
robustness in speech recognition. Speech 
Communication. 20(2): 151-170. 
 

[6] A. Acero. 1990. Acoustical and Environmental 
Robustness in Automatic Speech Recognition. PhD 
thesis, Carnegie Mellon University, USA. 
 

[7] M.J.F. Gales. 1995. Model-Based Techniques for 
Noise Robust Speech Recognition. PhD thesis, 
Cambridge University, U.K. 
 

[8] P.J. Moreno. 1996. Speech Recognition in Noisy 
Environments. PhD thesis, Carnegie Mellon 
University, USA. 
 

[9] Jean-Pal Haton. 2004. Automatic Speech Recognition: 
A Review. Camp et al (Eds), Enterprise Information 
Systems. Kluwer Academic Publishers. 5: 6-11. 
 

[10] Xiong Xiao, J. Li, Eng Siong Chng, H. Li and Chin-
Hui Lee. 2010. A study on the generalization 
capability of Acoustic modes for Robust Speech 
Recognition. IEEE Trans on Audio, Speech and 
Language Processing. 18(6).    
 

[11] J.F. Gales and S. Young. 2008. The Application of 
Hidden Markov Models in speech Recognition. 

Foundation and trends in Signal Processing. 1(3) 
(2007): 195-304. 
 

[12] H. Hermansky and N. Morgan. 1994. RASTA 
processing of speech. IEEE Trans. Speech Audio 
processing. 2(4): 578-589. 

[13] C. Kermorvant. 1999. A comparison of noise 
reduction techniques for robust speech recognition. 
IDIAP-RR99-10. 
 

[14] S. Furui. 1986. Speaker- independent isolated word 
recognition using dynamic features of speech 
spectrum. IEEE Trans. on Acoustics, Speech and 
Signal Processing. 34(1): 52-59. 
 

[15] D. Mansour, B.-H and Juang. 1989. The short-time 
modified coherence representation and noisy speech 
recognition. IEEE Trans. on Acoustics and Signal 
Processing. 37(6): 795-804. 
 

[16] J. Hernando and C. Nadeu. 1994. Linear prediction of 
one-sided autocorrelation sequence for noisy speech 
recognition. IEEE Trans. Speech Audio Processing. 
5(1): 80-84. 
 

[17] J. Chen, K.K. Paliwal and S. Nakamura. 2003. 
Cepstrum derived from differentiated power spectrum 
for robust speech recognition. Speech 
Communication. 41(2-3): 469-484. 
 

[18] K.-H. You, H.-C. Wang. 1998. Robust feature 
derived from temporal trajectory filtering for speech 
recognition under the corruption of additive and 
convolutional noise. Proc. ICASSP. pp. 577-580. 
 

[19] J. Beh and H. Ko. 2003. A novel spectral subtraction 
scheme for robust speech recognition: spectral 
subtraction using spectral harmonics of speech. Proc. 
ICASSP. 1: 648-651.  
 

[20] S. F. Boll. 1979. Suppression of acoustic noise in 
speech using spectral subtraction. IEEE Trans. on 
Acoustic, Speech and Signal Processing. 27(2): 113-
120. 
 

[21] J. Droppo, L. Deng and A. Acero. 2001. Evaluation 
of the SPLICE Algorithm on the aurora 2 database. 
In: proceeding of Eurospeech, Aalberg, Denmark. pp. 
217-220. 
 

[22] S. Furui. 1981. Cepstral analysis technique for 
automatic speaker verification. IEEE Trans. 
Acoustics, Speech, Signal Processing. ASSP-29(2): 
254-272. 
 

[23] O. Viikki and K. Laurila. 1998. Cepstral domain 
segmental feature vector normalization for noise 
robust speech recognition. Speech Comm. 25: 133-
147. 



                                         VOL. 7, NO. 7, JULY 2012                                                                                                                          ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2012 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
833

[24] Y. Suh, M. Ji and H. Kim. 2007. Probabilistic class 
histrogram equalization for robust speech 
recognition. IEEE Signal Process. Let. 14(4): 287-
290. 
 

[25] J.L. Gauvain and C.H. Lee. 1994. MAP estimation 
for multivariate Gaussian mixture observation of 
markov chains. IEEE Trans. Speech Audio Process. 
2(2): 291-298. 
 

[26] C.J. Leggetter and P.C. Woodland. 1995. MLLR for 
speaker adaptation of continuous density hidden 
markov models. Compt. Speech Lang. 9: 171-185. 
 

[27] M. J.F. Gales and S.J. Youngm. 1995. Robust speech 
recognition in additive and convolutional noise using 
PMC. Computer Speech and Language. 9; 289-307. 
 

[28] [25]A. Acero, Li. Deng, T. Kristjansson and J. Zhang. 
2000. HMM adaptation using Vector Taylor series 
for noisy speech recognition. In: Proc. ICSLP. 3: 869-
872.  
 

[29] S. G. Petterson, M.H. Johnsen and T.A. Myrvoll. A. 
Comparative Study of Model Compensation Methods 
for Robust Speech Recognition in Noisy Conditions. 
 

[30] D.Y. Kim, C.K. Un and N.S. Kim. 1998. Speech 
recognition in noisy environments using first-order 
vector Taylor series. Speech Communication. 24(1): 
39-49. 
 

[31] M.J. Gales. 1998. Maximun likelihood linear 
transformation for HMM-based speech recognition. 
Computer Speech and Language, 12 (January). 
 

[32] D. Kim and J.F. Gales. 2010. Noisy constrained 
MLLR for noise robust speech recognition. IEEE 
Trans. Audio Speech and language processing. 
 

[33] J. Droppo and A. Acero. 2007. Environmental 
Robustness. In: Handbook of Speech Processing, 
Springer. 
 

[34] J. Li, L. Deng, D. Yu, Y. Gong and A. Acero. 2008. 
HMM adaptation using Phase-Sensitive acoustic 
distortion model for environment-robust speech 
recognition. In: Proc. ICASSP, Las Vegas, USA. 
 

[35] M. Seltzer, K. Kalgaonkar and A. Acero. 2010. 
Acoustic model adaptation via linear spline 
interpolation for robust speech recognition. In: Proc. 
ICASSP. 

 
 
 
 
 
 

[36] B. Fery, L. Deng, A. Acero and T.T. Kristjansson. 
2001. Algonquin: Iterating Laplace method to remove 
multiple types of acoustic distortion for robust speech 
recognition. In: Proc. Eurospeech, Aalborg, 
Denmark. 
 

[37] V. Stouten, H. Vanhamme and P. Wambacq. 2005. 
Effect of Phase-Sensitive environment model and 
higher order VTS on noisy speech feature 
enhancement. In: Proc. ICASSP. pp. 433-436. 

 
 


