616 research outputs found

    A Centralized SDN Architecture for the 5G Cellular Network

    Full text link
    In order to meet the increasing demands of high data rate and low latency cellular broadband applications, plans are underway to roll out the Fifth Generation (5G) cellular wireless system by the year 2020. This paper proposes a novel method for adapting the Third Generation Partnership Project (3GPP)'s 5G architecture to the principles of Software Defined Networking (SDN). We propose to have centralized network functions in the 5G network core to control the network, end-to-end. This is achieved by relocating the control functionality present in the 5G Radio Access Network (RAN) to the network core, resulting in the conversion of the base station known as the gNB into a pure data plane node. This brings about a significant reduction in signaling costs between the RAN and the core network. It also results in improved system performance. The merits of our proposal have been illustrated by evaluating the Key Performance Indicators (KPIs) of the 5G network, such as network attach (registration) time and handover time. We have also demonstrated improvements in attach time and system throughput due to the use of centralized algorithms for mobility management with the help of ns-3 simulations

    Interworking Architectures in Heterogeneous Wireless Networks: An Algorithmic Overview

    Get PDF
    The scarce availability of spectrum and the proliferation of smartphones, social networking applications, online gaming etc., mobile network operators (MNOs) are faced with an exponential growth in packet switched data requirements on their networks. Haven invested in legacy systems (such as HSPA, WCDMA, WiMAX, Cdma2000, LTE, etc.) that have hitherto withstood the current and imminent data usage demand, future and projected usage surpass the capabilities of the evolution of these individual technologies. Hence, a more critical, cost-effective and flexible approach to provide ubiquitous coverage for the user using available spectrum is of high demand. Heterogeneous Networks make use of these legacy systems by allowing users to connect to the best network available and most importantly seamlessly handover active sessions amidst them. This paper presents a survey of interworking architectures between IMT 2000 candidate networks that employ the use of IEFT protocols such as MIP, mSCTP, HIP, MOBIKE, IKEV2 and SIP etc. to bring about this much needed capacity

    UAV-Empowered Disaster-Resilient Edge Architecture for Delay-Sensitive Communication

    Full text link
    The fifth-generation (5G) communication systems will enable enhanced mobile broadband, ultra-reliable low latency, and massive connectivity services. The broadband and low-latency services are indispensable to public safety (PS) communication during natural or man-made disasters. Recently, the third generation partnership project long term evolution (3GPPLTE) has emerged as a promising candidate to enable broadband PS communications. In this article, first we present six major PS-LTE enabling services and the current status of PS-LTE in 3GPP releases. Then, we discuss the spectrum bands allocated for PS-LTE in major countries by international telecommunication union (ITU). Finally, we propose a disaster resilient three-layered architecture for PS-LTE (DR-PSLTE). This architecture consists of a software-defined network (SDN) layer to provide centralized control, an unmanned air vehicle (UAV) cloudlet layer to facilitate edge computing or to enable emergency communication link, and a radio access layer. The proposed architecture is flexible and combines the benefits of SDNs and edge computing to efficiently meet the delay requirements of various PS-LTE services. Numerical results verified that under the proposed DR-PSLTE architecture, delay is reduced by 20% as compared with the conventional centralized computing architecture.Comment: 9,

    Applying SDN/OpenFlow in Virtualized LTE to support Distributed Mobility Management (DMM)

    Get PDF
    Distributed Mobility Management (DMM) is a mobility management solution, where the mobility anchors are distributed instead of being centralized. The use of DMM can be applied in cloud-based (virtualized) Long Term Evolution (LTE) mobile network environments to (1) provide session continuity to users across personal, local, and wide area networks without interruption and (2) support traffic redirection when a virtualized LTE entity like a virtualized Packet Data Network Gateway (P-GW) running on an virtualization platform is migrated to another virtualization platform and the on-going sessions supported by this P-GW need to be maintained. In this paper we argue that the enabling technology that can efficiently be used for supporting DMM in virtualized LTE systems is the Software Defined Networking (SDN)/OpenFlow technology

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    An Innovative RAN Architecture for Emerging Heterogeneous Networks: The Road to the 5G Era

    Full text link
    The global demand for mobile-broadband data services has experienced phenomenal growth over the last few years, driven by the rapid proliferation of smart devices such as smartphones and tablets. This growth is expected to continue unabated as mobile data traffic is predicted to grow anywhere from 20 to 50 times over the next 5 years. Exacerbating the problem is that such unprecedented surge in smartphones usage, which is characterized by frequent short on/off connections and mobility, generates heavy signaling traffic load in the network signaling storms . This consumes a disproportion amount of network resources, compromising network throughput and efficiency, and in extreme cases can cause the Third-Generation (3G) or 4G (long-term evolution (LTE) and LTE-Advanced (LTE-A)) cellular networks to crash. As the conventional approaches of improving the spectral efficiency and/or allocation additional spectrum are fast approaching their theoretical limits, there is a growing consensus that current 3G and 4G (LTE/LTE-A) cellular radio access technologies (RATs) won\u27t be able to meet the anticipated growth in mobile traffic demand. To address these challenges, the wireless industry and standardization bodies have initiated a roadmap for transition from 4G to 5G cellular technology with a key objective to increase capacity by 1000Ã? by 2020 . Even though the technology hasn\u27t been invented yet, the hype around 5G networks has begun to bubble. The emerging consensus is that 5G is not a single technology, but rather a synergistic collection of interworking technical innovations and solutions that collectively address the challenge of traffic growth. The core emerging ingredients that are widely considered the key enabling technologies to realize the envisioned 5G era, listed in the order of importance, are: 1) Heterogeneous networks (HetNets); 2) flexible backhauling; 3) efficient traffic offload techniques; and 4) Self Organizing Networks (SONs). The anticipated solutions delivered by efficient interworking/ integration of these enabling technologies are not simply about throwing more resources and /or spectrum at the challenge. The envisioned solution, however, requires radically different cellular RAN and mobile core architectures that efficiently and cost-effectively deploy and manage radio resources as well as offload mobile traffic from the overloaded core network. The main objective of this thesis is to address the key techno-economics challenges facing the transition from current Fourth-Generation (4G) cellular technology to the 5G era in the context of proposing a novel high-risk revolutionary direction to the design and implementation of the envisioned 5G cellular networks. The ultimate goal is to explore the potential and viability of cost-effectively implementing the 1000x capacity challenge while continuing to provide adequate mobile broadband experience to users. Specifically, this work proposes and devises a novel PON-based HetNet mobile backhaul RAN architecture that: 1) holistically addresses the key techno-economics hurdles facing the implementation of the envisioned 5G cellular technology, specifically, the backhauling and signaling challenges; and 2) enables, for the first time to the best of our knowledge, the support of efficient ground-breaking mobile data and signaling offload techniques, which significantly enhance the performance of both the HetNet-based RAN and LTE-A\u27s core network (Evolved Packet Core (EPC) per 3GPP standard), ensure that core network equipment is used more productively, and moderate the evolving 5G\u27s signaling growth and optimize its impact. To address the backhauling challenge, we propose a cost-effective fiber-based small cell backhaul infrastructure, which leverages existing fibered and powered facilities associated with a PON-based fiber-to-the-Node/Home (FTTN/FTTH)) residential access network. Due to the sharing of existing valuable fiber assets, the proposed PON-based backhaul architecture, in which the small cells are collocated with existing FTTN remote terminals (optical network units (ONUs)), is much more economical than conventional point-to-point (PTP) fiber backhaul designs. A fully distributed ring-based EPON architecture is utilized here as the fiber-based HetNet backhaul. The techno-economics merits of utilizing the proposed PON-based FTTx access HetNet RAN architecture versus that of traditional 4G LTE-A\u27s RAN will be thoroughly examined and quantified. Specifically, we quantify the techno-economics merits of the proposed PON-based HetNet backhaul by comparing its performance versus that of a conventional fiber-based PTP backhaul architecture as a benchmark. It is shown that the purposely selected ring-based PON architecture along with the supporting distributed control plane enable the proposed PON-based FTTx RAN architecture to support several key salient networking features that collectively significantly enhance the overall performance of both the HetNet-based RAN and 4G LTE-A\u27s core (EPC) compared to that of the typical fiber-based PTP backhaul architecture in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. It will also been shown that the proposed HetNet-based RAN architecture is not only capable of providing the typical macro-cell offloading gain (RAN gain) but also can provide ground-breaking EPC offloading gain. The simulation results indicate that the overall capacity of the proposed HetNet scales with the number of deployed small cells, thanks to LTE-A\u27s advanced interference management techniques. For example, if there are 10 deployed outdoor small cells for every macrocell in the network, then the overall capacity will be approximately 10-11x capacity gain over a macro-only network. To reach the 1000x capacity goal, numerous small cells including 3G, 4G, and WiFi (femtos, picos, metros, relays, remote radio heads, distributed antenna systems) need to be deployed indoors and outdoors, at all possible venues (residences and enterprises)

    Distributed Mobility Management for Future 5G Networks: Overview and Analysis of Existing Approaches

    Get PDF
    The ever-increasing demand of mobile Internet traffic is pushing operators to look for solutions to increase the available bandwidth per user and per unit of area. At the same time, they need to reduce the load in the core network at a reasonable cost in their future 5G deployments. Today's trend points to the deployment of extremely dense networks in order to provide ubiquitous connectivity at high data rates. However, this is hard to couple with the current mobile networks' architecture, which is heavily centralized, posing difficult challenges when coping with the foreseen explosion of mobile data. Additionally, future 5G networks will exhibit disparate types of services, posing different connectivity requirements. Distributed mobility management is emerging as a valid framework to design future mobile network architectures, taking into account the requirements for large traffic in the core and the rise of extremely dense wireless access networks. In this article, we discuss the adoption of a distributed mobility management approach for mobile networks, and analyze the operation of the main existing solutions proposed so far, including a first practical evaluation based on experiments with real Linux-based prototype implementations.The research leading to these results has received funding from the European Community's Seventh Framework Program FP7/2007-2013 under grant agreement 317941-project iJOIN. The European Union and its agencies are not liable or otherwise responsible for the con tents of this document; its content reflects the view of its authors only.Publicad

    Traffic Management in LTE-WiFi Slicing Networks

    Get PDF
    Proliferation of the number of smart devices and user applications has generated a tremendous volume of data traffic from/to a cellular network. With a traditional cellular network, a user may experience many drawbacks such as low throughput, large latencies and network outages due to overload of data traffic. The software defined networking (SDN) and network function virtualization (NFV) rise as a promising solution to overcome such issues of traditional network architecture. In this paper, we introduce a new network architecture for LTE and WiFi slicing networks taking into account the advantage of SDN and NFV concepts. We propose an IP-Flow management controller in a slicing network to offload and balance the data traffic flow. By utilizing the P-GW and Wireless Access Gateway, we can handle the IP-Flow between LTE and WiFi networks. The P-GW works as an IP-Flow anchor to maintain the flow seamlessly during the offloading and balancing IP-Flow. Within WiFi networks, we leverage the Light Virtual Access Point (LVAP) approach to abstract the WiFi protocol stack for a programming capability of centralized control of WiFi network through the WiFi controller. By creating a client virtual port and assigning a specific Service Set Identifier (SSID), we give a capability to slice an operator’s network to control over his clients within a WiFi coverage area network
    • …
    corecore