34 research outputs found

    Capacity and Power Scaling Laws for Finite Antenna MIMO Amplify-and-Forward Relay Networks

    Full text link
    In this paper, we present a novel framework that can be used to study the capacity and power scaling properties of linear multiple-input multiple-output (MIMO) dĂ—dd\times d antenna amplify-and-forward (AF) relay networks. In particular, we model these networks as random dynamical systems (RDS) and calculate their dd Lyapunov exponents. Our analysis can be applied to systems with any per-hop channel fading distribution, although in this contribution we focus on Rayleigh fading. Our main results are twofold: 1) the total transmit power at the nnth node will follow a deterministic trajectory through the network governed by the network's maximum Lyapunov exponent, 2) the capacity of the iith eigenchannel at the nnth node will follow a deterministic trajectory through the network governed by the network's iith Lyapunov exponent. Before concluding, we concentrate on some applications of our results. In particular, we show how the Lyapunov exponents are intimately related to the rate at which the eigenchannel capacities diverge from each other, and how this relates to the amplification strategy and number of antennas at each relay. We also use them to determine the extra cost in power associated with each extra multiplexed data stream.Comment: 16 pages, 9 figures. Accepted for publication in IEEE Transactions on Information Theor

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    Asymptotic Analysis of Rayleigh Product Channels : A Free Probability Approach

    Get PDF
    The Rayleigh product channel model is useful in capturing the performance degradation due to rank deficiency of MIMO channels. In this paper, such a performance degradation is investigated via the distribution of mutual information assuming the block fading channels and the uniform power transmission scheme. Using techniques of free probability theory, the asymptotic variance of mutual information is derived when the dimensions of the channel matrices approach infinity. In this asymptotic regime, the mutual information is rigorously proven to be Gaussian distributed. Using the obtained results, a fundamental tradeoff between multiplexing gain and diversity gain of Rayleigh product channels under the uniform power transmission can be characterized by the closed-form expression at any finite signal-to-noise ratio. Numerical results are provided to compare the outage performance between the Rayleigh product channels and the conventional Rayleigh MIMO channels.Peer reviewe

    On implementation aspects of decode and forward and compress and forward relay protocols

    Get PDF
    In this work, the common relay protocols Decode-and-Forward and Compress-and-Forward (CF) are investigated from a practical point of view: This involves on the one hand the impact of imperfections like channel and carrier phase stimation errors and on the other hand, the question of how to implement relay protocol specific signal processing like quantization for CF which is modeled in information theory simply by additive quantizer noise. To evaluate the performance, achievable rates are determined either numerically with the help of the Max-Flow Min-Cut theorem or by link level simulations.Diese Arbeit untersucht die Relay-Protokolle Decode-and-Forward und Compress-and-Forward (CF) mit dem Fokus auf einer praktischen Umsetzung. Es werden sowohl Störeinflüsse wie Kanal- und Phasenschätzfehler betrachtet als auch spezielle Kompressionsverfahren für das CF Protokoll implementiert. Von großer Bedeutung ist hier die Kompression in Form der Quantisierung, weil diese in der Informationstheorie lediglich durch Quantisierungsrauschen modelliert wird. Zur Auswertung der Leistungsfähigkeit der Protokolle werden die erzielbaren Raten entweder numerisch oder durch Simulation bestimmt
    corecore