2,354 research outputs found

    Resin transfer molding for advanced composite primary aircraft structures

    Get PDF
    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    Cost projections for Redox Energy storage systems

    Get PDF
    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost

    Chinese workers exploited by U.S.-owned iPhone supplier: An investigation of labor conditions at Jabil Green Point in Wuxi, China

    Get PDF
    This document is part of a digital collection provided by the Martin P. Catherwood Library, ILR School, Cornell University, pertaining to the effects of globalization on the workplace worldwide. Special emphasis is placed on labor rights, working conditions, labor market changes, and union organizing.CLW_2013_Report_Chinese_workers_exploited_by_US_iPhone_supplier.pdf: 568 downloads, before Oct. 1, 2020

    Sustainability Benefits Analysis of CyberManufacturing Systems

    Get PDF
    Confronted with growing sustainability awareness, mounting environmental pressure, meeting modern customers’ demand and the need to develop stronger market competitiveness, the manufacturing industry is striving to address sustainability-related issues in manufacturing. A new manufacturing system called CyberManufacturing System (CMS) has a great potential in addressing sustainability issues by handling manufacturing tasks differently and better than traditional manufacturing systems. CMS is an advanced manufacturing system where physical components are fully integrated and seamlessly networked with computational processes. The recent developments in Internet of Things, Cloud Computing, Fog Computing, Service-Oriented Technologies, etc., all contribute to the development of CMS. Under the context of this new manufacturing paradigm, every manufacturing resource or capability is digitized, registered and shared with all the networked users and stakeholders directly or through the Internet. CMS infrastructure enables intelligent behaviors of manufacturing components and systems such as self-monitoring, self-awareness, self-prediction, self-optimization, self-configuration, self-scalability, self-remediating and self-reusing. Sustainability benefits of CMS are generally mentioned in the existing researches. However, the existing sustainability studies of CMS focus a narrow scope of CMS (e.g., standalone machines and specific industrial domains) or partial aspects of sustainability analysis (e.g., solely from energy consumption or material consumption perspectives), and thus no research has comprehensively addressed the sustainability analysis of CMS. The proposed research intends to address these gaps by developing a comprehensive definition, architecture, functionality study of CMS for sustainability benefits analysis. A sustainability assessment framework based on Distance-to-Target methodology is developed to comprehensively and objectively evaluate manufacturing systems’ sustainability performance. Three practical cases are captured as examples for instantiating all CMS functions and analyzing the advancements of CMS in addressing concrete sustainability issues. As a result, CMS has proven to deliver substantial sustainability benefits in terms of (i) the increment of productivity, production quality, profitability & facility utilization and (ii) the reduction in Working-In-Process (WIP) inventory level & material consumption compared with the alternative traditional manufacturing system paradigms

    Remanufacturing and Advanced Machining Processes for New Materials and Components

    Get PDF
    "Remanufacturing and Advanced Machining Processes for Materials and Components presents current and emerging techniques for machining of new materials and restoration of components, as well as surface engineering methods aimed at prolonging the life of industrial systems. It examines contemporary machining processes for new materials, methods of protection and restoration of components, and smart machining processes. • Details a variety of advanced machining processes, new materials joining techniques, and methods to increase machining accuracy • Presents innovative methods for protection and restoration of components primarily from the perspective of remanufacturing and protective surface engineering • Discusses smart machining processes, including computer-integrated manufacturing and rapid prototyping, and smart materials • Provides a comprehensive summary of state-of-the-art in every section and a description of manufacturing methods • Describes the applications in recovery and enhancing purposes and identifies contemporary trends in industrial practice, emphasizing resource savings and performance prolongation for components and engineering systems The book is aimed at a range of readers, including graduate-level students, researchers, and engineers in mechanical, materials, and manufacturing engineering, especially those focused on resource savings, renovation, and failure prevention of components in engineering systems.

    PermeabilityNets: comparing neural network architectures on a sequence-to-instance task in CFRP manufacturing

    Get PDF
    Carbon fiber reinforced polymers (CFRP) offer highly desirable properties such as weight-specific strength and stiffness. Liquid composite moulding (LCM) processes are prominent, economically efficient, out-of-autoclave manufacturing techniques and, in particular, resin transfer moulding (RTM), allows for a high level of automation. There, fibrous preforms are impregnated by a viscous polymer matrix in a closed mould. Impregnation quality is of crucial importance for the final part quality and is dominated by preform permeability. We propose to learn a map of permeability deviations based on a sequence of camera images acquired in flow experiments. Several ML models are investigated for this task, among which ConvLSTM networks achieve an accuracy of up to 96.56%, showing better performance than the Transformer or pure CNNs. Finally, we demonstrate that models, trained purely on simulated data, achieve qualitatively good results on real data

    Nonterrestrial utilization of materials: Automated space manufacturing facility

    Get PDF
    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility

    J Chem Health Saf

    Get PDF
    There is a paucity of data on additive manufacturing process emissions and personal exposures in real-world workplaces. Hence, we evaluated atmospheres in four workplaces utilizing desktop "3-dimensional" (3-d) printers [fused filament fabrication (FFF) and sheer] for production, prototyping, or research. Airborne particle diameter and number concentration and total volatile organic compound concentrations were measured using real-time instruments. Airborne particles and volatile organic compounds were collected using time-integrated sampling techniques for off-line analysis. Personal exposures for metals and volatile organic compounds were measured in the breathing zone of operators. All 3-d printers that were monitored released ultrafine and fine particles and organic vapors into workplace air. Particle number-based emission rates (#/min) ranged from 9.4 7 10| to 4.4 7 10| (n = 9samples) for FFF3-d printers and from 1.9 to 3.8 7 10| (n = 2 samples) for a sheer 3-d printer. The large variability in emission rate values reflected variability from the printers as well as differences in printer design, operating conditions, and feedstock materials among printers. A custom-built ventilated enclosure evaluated at one facility was capable of reducing particle number and total organic chemical concentrations by 99.7% and 53.2%, respectively. Carbonyl compounds were detected in room air; however, none were specifically attributed to the 3-d printing process. Personal exposure to metals (aluminum, iron) and 12 different organic chemicals were all below applicable NIOSH Recommended Exposure Limit values, but results are not reflective of all possible exposure scenarios. More research is needed to understand 3-d printer emissions, exposures, and efficacy of engineering controls in occupational settings.CC999999/ImCDC/Intramural CDC HHS/United States2019-12-03T00:00:00Z31798757PMC68898856943vault:3399
    • …
    corecore