59 research outputs found

    Data sharing in DHT based P2P systems

    Get PDF
    International audienceThe evolution of peer-to-peer (P2P) systems triggered the building of large scale distributed applications. The main application domain is data sharing across a very large number of highly autonomous participants. Building such data sharing systems is particularly challenging because of the "extreme" characteristics of P2P infrastructures: massive distribution, high churn rate, no global control, potentially untrusted participants... This article focuses on declarative querying support, query optimization and data privacy on a major class of P2P systems, that based on Distributed Hash Table (P2P DHT). The usual approaches and the algorithms used by classic distributed systems and databases forproviding data privacy and querying services are not well suited to P2P DHT systems. A considerable amount of work was required to adapt them for the new challenges such systems present. This paper describes the most important solutions found. It also identies important future research trends in data management in P2P DHT systems

    From Outlaws to Trusted Partners

    Get PDF

    Improving Content Availability in the I2P Anonymous File-Sharing Environment

    Get PDF
    International audienceAnonymous communication has gained more and more interest from Internet users as privacy and anonymity problems have emerged. Dedicated anonymous networks such as Freenet and I2P allow anonymous file-sharing among users. However, one major problem with anonymous file-sharing networks is that the available content is highly reduced, mostly with outdated files, and non-anonymous networks, such as the BitTorrent network, are still the major source of content: we show that in a 30-days period, 21648 new torrents were introduced in the BitTorrent community, whilst only 236 were introduced in the anonymous I2P network, for four different categories of content. Therefore, how can a user of these anonymous networks access this varied and non-anonymous content without compromising its anonymity? In this paper, we improve content availability in an anonymous environment by proposing the first internetwork model allowing anonymous users to access and share content in large public communities while remaining anonymous. We show that our approach can efficiently interconnect I2P users and public BitTorrent swarms without affecting their anonymity nor their performance. Our model is fully implemented and freely usable

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages

    Information Slicing: Anonymity Using Unreliable Overlays

    Get PDF
    This paper proposes a new approach to anonymous communication called information slicing. Typically, anonymizers use onion routing, where a message is encrypted in layers with the public keys of the nodes along the path. Instead, our approach scrambles the message, divides it into pieces, and sends the pieces along disjoint paths. We show that information slicing addresses message confidentiality as well as source and destination anonymity. Surprisingly, it does not need any public key cryptography. Further, our approach naturally addresses the problem of node failures. These characteristics make it a good fit for use over dynamic peer-to-peer overlays. We evaluate the anonymity ofinformation slicing via analysis and simulations. Our prototype implementation on PlanetLab shows that it achieves higher throughput than onion routing and effectively copes with node churn

    Securing Peer-to-Peer Overlay Networks

    Get PDF
    Overlay networks are virtual networks, which exist on top of the current Inter net architecture, and are used in support of peer-to-peer (P2P) applications. The virtualization provides overlays with the ability to create large, scalable, decentral ized networks with efficient routing. Many implementations of overlay networks have come out of academic research. Each provides a unique structure and routing configuration, aimed at increasing the overall network efficiency for a particular ap plication. However, they are all threatened by a similar set of severe vulnerabilities. I explore some of these security deficiencies of overlay network designs and pro pose a new overlay network security framework Phyllo. This framework aims to mitigate all of the targeted security problems across a majority of the current overlay implementations, while only requiring minimal design changes. In order to demonstrate the validity of Phyllo, it was implemented on top of the Pastry overlay architecture. The performance and security metrics of the network with the pro posed framework are evaluated against those of the original in order to demonstrate the feasibility of Phyllo
    corecore