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ABSTRACT

This paper proposes a new approach to anonymous com-
munication called information slicing. Typically, anonymiz-
ers use onion routing, where a message is encrypted in lay-
ers with the public keys of the nodes along the path. In-
stead, our approach scrambles the message, divides it into
pieces, and sends the pieces along disjoint paths. We show
that information slicing addresses message confidentiality
as well as source and destination anonymity. Surprisingly,
it does not need any public key cryptography. Further, our
approach naturally addresses the problem of node failures.
These characteristics make it a good fit for use over dy-
namic peer-to-peer overlays. We evaluate the anonymity of
information slicing via analysis and simulations. Our pro-
totype implementation on PlanetLab shows that it achieves
higher throughput than onion routing and effectively copes
with node churn.

1 INTRODUCTION

Suppose Alice wants to send a confidential and anony-
mous message to Bob. Bob, however, does not have a pub-
lic key that Alice could use to encrypt her message. Further,
Alice does not feel comfortable exposing her unencrypted
message to her ISP or an anonymizer. Alice’s dilemma might
seem simple, but underlying it is the general issue of online
privacy. How do we send anonymous and confidential mes-
sages, when most of us do not have public keys and the
sender does not trust a third party?

Our objective is to leverage popular existing peer-to-peer
overlays to send confidential and anonymous messages with-
out public keys. We focus on practical low-delay anonymity
for everyday applications, rather than perfect anonymity at
all costs. Popular peer-to-peer overlays have thousands of
nodes and much traffic [5], creating an ideal environment
for hiding anonymous communications. The dynamic na-
ture of their participants makes them hard to track, and their
diverse constituency allows dividing trust among nodes that
are unlikely to collude. Some prior work has envisioned us-
ing these overlays for anonymity [15, 24, 21, 23, 16, 27].
Current proposals, however, fall into two camps: either they
do not address the high node churn in these environments
and need all overlay nodes to have public keys [15, 24, 21,
16], or they address churn but need very expensive solutions
such as group key management [31] or broadcast [27].

This paper presentsinformation slicing, a single tech-
nique that provides source and destination anonymity and
churn resilience, without using any public key cryptogra-
phy. It can also provide message confidentiality as long as
the attacker cannot snoop on all traffic going to the destina-
tion. These characteristics make it suitable for use over pop-
ular peer-to-peer overlays. For example, say Alice knows
that Bob, like many of us, uses a popular file sharing over-
lay to download content, and the overlay software supports
information slicing. Then Alice can send Bob a confiden-
tial anonymous message without any public keys and in a
manner robust to node churn and failures.

To provide confidentiality, our technique employs a prop-
erly chosen coding scheme to randomize the message. It
then divides the randomized message into pieces, and sends
the pieces along node disjoint paths that meet only at the
destination. As a result, an attacker that gets all but one of
the pieces of the randomized message cannot decode and
recover the original message. Only the destination receives
all pieces and can decode the message.

Information slicing also provides anonymity without re-
quiring the overlay nodes to have public keys. Typically,
anonymizers use onion routing, which assumes the sender
has the public keys of all the nodes in the overlay. Onion
routing hides the correspondence between a source and des-
tination by sending the route setup message through a chain
of nodes, wrapped in layers of public key encryption, such
that each node along the path knows only its previous and
next hops. Instead, to create an anonymous path, we send
to each intermediate node its routing information (i.e., its
next hop) in a confidential message sliced over multiple dis-
joint paths. The technical challenge is to perform this pro-
cess efficiently. To send a relay node the identity of its next
hop along different paths, we need to tell each node along
these paths about its own next hop anonymously. Performed
naively, this needs an exponential number of disjoint paths,
and thus an exponential number of nodes. To avoid expo-
nential blow-up, we build efficient forwarding graphs that
reuse the overlay nodes without leaking information.

Finally, information slicing naturally provides protection
against node churn and failures. The standard approach to
address node failures is to employ multiple paths and add
redundancy to the data. The challenge however is to mini-
mize the redundancy overhead for the same amount of re-
silience. Typically, communication channels use coding to



address such a challenge. We show that the same codes that
we use to send confidential messages can simultaneously
provide resilience to churn and failures. We also boost ro-
bustness by using network coding, which minimizes redun-
dancy while maximizing resilience to failures [18].

We show analytically and demonstrate experimentally that
information slicing provides high anonymity and is resilient
to node churn. We implement our protocol and evaluate its
real-world performance in PlanetLab. Our experimental re-
sults show that information slicing provides higher through-
put than onion routing. Further, it provides strong resilience
to node churn, while using minimal redundancy.

2 RELATED WORK

First generation anonymizers used a single intermediate
node to relay traffic between senders and receivers [1, 6].
Users had to trust the anonymizing node, which knows the
identities of the source and destination.

Most modern anonymizers are based on Chaum mixes [9]
and its near realtime variant, onion routing [17]. The sender
constructs a route by picking intermediate hops from a list
of mixing nodes. The mixers may delay and re-order the
packets depending on the traffic’s timing constraints. The
sender encrypts the IP address of each node along the path
with the public key of its previous hop. This creates layers
of encryption, like layers of an onion. Each node decrypts
the packets, discovers its next hop and forwards the packet
to the next hop and so on until the entire path is set up.
Once the path is established, nodes exchange computation-
ally efficient symmetric secret keys to transmit the actual
data itself.

A few anonymizers rely on static and dedicated over-
lays [12, 4, 3, 2]. For example, Tor [12] is a widely used
anonymous system based on onion routing. Tor’s infrastruc-
ture contains a small set of distributed nodes. Admission to
the Tor network is tightly controlled. Tor has a centralized
trusted directory server that provides the users with IP ad-
dresses and public keys of all the nodes in the system.

Some proposals [31, 15, 24, 16] aim to build anonymity
out of global peer-to-peer overlays. Most of these systems
employ onion routing and use public key cryptography.Only
one of them addresses churn explicitly [31]. For example,
Tarzan [15] uses onion routing, assumes each overlay node
has a public key, and distributes these keys to interested
senders using a gossip protocol. Tarzan sets up tunnels along
each path, which are rebuilt upon node failures or depar-
tures. MorphMix’s design is fairly similar to Tarzan and dif-
fers only in the details of the tunnel setup procedure [24].
Herbivore [16] builds on DC-nets [9] to provide anonymity
in large overlays. It divides nodes into cliques and requires
shared secrets for nodes across cliques via either a PKI
or offline key exchanges. Freenet [10] is a decentralized
censorship-resistant peer-to-peer data storage facility, in-
tended for anonymous publishing, not communication.

Similar to ours, some prior work does not use public key
cryptography. In Crowds [23], each intermediate node flips
a coin to decide whether to forward a packet to the desti-
nation or to a random node in the overlay. In contrast to
our work, Crowds does not provide destination anonymity,
and uses a centralized admission server to admit nodes into
the overlay. AP3 [21] is based on the same random routing
idea, and similarly does not provide destination anonymity.
P5 [27] achieves anonymity by broadcasting encrypted pack-
ets at a constant rate to all participants. When a node has
no packets to send, it broadcasts noise, which is then propa-
gated through the network in the same manner as data pack-
ets. In comparison, our system does not broadcast messages
and thus has a lower overhead. Finally, Malkhi et al. pro-
pose a system based on Secure Multi-Party Communica-
tion, which does not require cryptography [20]. They do,
however, require secure channels between all participants.
Such a requirement is hard to achieve in a large global over-
lay where most of the participants do not know each other
a priori, and one cannot distinguish between good and bad
participants.

To the best of our knowledge, there is only one prior pro-
posal for addressing churn in anonymizing overlays. Cash-
mere [31] tackles churn by using a multicast group at each
hop instead of a single node. Any node in the multicast
group can forward the message. Cashmere assumes a trusted
public key infrastructure (PKI) that assigns the same key to
all nodes in each multicast group. Hence, Cashmere needs
group key management and key redistribution, whenever
group membership changes, which happens often in dy-
namic peer-to-peer overlays.

Finally, our information slicing idea is related to the the-
oretical work on secure communication [13, 29]. This work
bounds the adversarial strength under which perfectly se-
cure communication is possible. Our work on the other hand
considers the problem of anonymous, confidential, and re-
silient communication. We provide stronger resilience to
churn, a system implementation and evaluation of the per-
formance of our protocol.

Some of the coding techniques used in our work are re-
lated to secret sharing [26]. A secret-sharing scheme is a
method for distributing a secret among a group of partici-
pants, each of which is allotted ashareof the secret. The
secret can only be reconstructed when the shares are com-
bined together, individual shares are of no use on their own.
Our work, however, is significantly different from prior work
on secret sharing; we focus on building a practical anonymiz-
ing overlay. Furthermore, our ideas about node reuse, the
graph construction algorithm, and churn resilience are all
different from secret sharing.

3 MODEL & A SSUMPTIONS

(a) Goals:This paper aims to hide the source and destina-
tion identities, as well as the message content, from both



external adversaries and the relay nodes. Further, the desti-
nation also does not know the identity of the actual source.
Said differently, we are interested in the same type of anonymity
exhibited in onion routing, where a relay node cannot iden-
tify the source or the destination, or decipher the content of
the message; all it knows are its previous and next hops.

We also want a system that is practical and simple to de-
ploy in a dynamic and unmanaged peer-to-peer overlay. The
design should deal effectively with node churn. It must not
need a trusted third party or a public key infrastructure, and
preferably should not use any public key cryptography. The
system also should not impose a heavy load on individual
overlay nodes or require them to provide much bandwidth.

(b) Threat model: We assume an adversary who can ob-
serve a fraction of network traffic, operate relay nodes of his
own, and compromise some fraction of the relays. Further,
the compromised relays may also collude among themselves.
Like prior proposals for low-latency anonymous routing,
we do not address a global attacker who can snoop on all
links in the network [12, 21, 15, 31]. Such a global attacker
is unlikely in practice. We also assume that the attacker can-
not snoop on all paths leading to the destination. If this lat-
ter assumption is unsatisfied, i.e., the attacker can snoop on
all of the destination’s traffic, the attacker can decode the
content of the message but cannot identify the source of the
message.

(c) Assumptions:We assume the source has an uncompro-
mised IP address to access the Internet,S. Additionally, we
assume the source has access to one or more IP addresses
from which she can send. These IPs, which we call pseudo-
sourcesS′, should not be on the same local network asS.
We assume that the source has a shared key with each of
the pseudo-sources and communicates with them over a se-
cure channel.

We believe these assumptions are reasonable. Many peo-
ple have Internet access at home and at work or school, and
thus can use one of these addresses as the source and the
rest as pseudo-sources. Even when the user has only one IP
address, she is likely to have a spouse, a friend, or a parent
whose IP address she can use. When none of that is avail-
able, the user can go to an Internet cafe and use her home
address as the source and the cafe’s IP as a pseudo-source.

Note that the pseudo-sources cannot identify the desti-
nation or decipher the content of the message. They can
only tell that the source is sending an anonymous message.
In our system, we assume that the source wants to keep
the pseudo-sources anonymous because they are personally
linked to her, i.e., we protect the anonymity of the pseudo-
sources in the same way as we protect the anonymity of the
source. We conservatively assume that if the anonymity of
any one of them is compromised then the source anonymity
is also compromised. Thus, in the rest of this paper, the
anonymity of the source comprises the anonymity of all
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Figure 1—Alice wants to send a confidential message to Bob but does
not know his key. Alice first multiplies the message~m with a random
matrix, A, then splits the resulting information,~I∗ = A~m, into multiple
pieces,I∗1 , ...,I∗d . She sends each piece on a disjoint overlay path to
Bob. Only Bob receives enough information bits to decode theoriginal
message as~m = A−1I∗.

pseudo-sources.

4 INFORMATION SLICING

The design of information slicing involves answering three
questions:

• How do we send a confidential message without keys?
• How do we construct an anonymous overlay path? In par-

ticular, how do we hide the identities of the source and
destination from the overlay nodes along the path and
also hide the identity of the source from the destination?

• How do we make the protocol resilient to node churn?

We address each of these questions in the following sec-
tions, starting with message confidentiality.

4.1 Confidentiality Without Keys

Information slicing enables a source to send a confiden-
tial message to a destination without knowing the destina-
tion’s key. Consider the scenario in Fig. 1. Alice wants to
send the message “Let’s meet at 5pm” to Bob. Alice di-
vides the message intod pieces, e.g.,m1 =“Let’s meet”
andm2 =“at 5pm” whend = 2, so that the original mes-
sage can be recovered only when a node has access to alld
pieces. We call this processslicing the message.

Sending a message slice in the clear is undesirable, as the
slice may expose partial information to intermediate nodes
along the path. For example, a node that seesm1 =“Let’s
meet” knows that Alice and Bob are arranging for a meet-
ing. Thus, Alice multiplies the message vector~m = (m1, ...,md)
with a random but invertible d× d matrix A and generates
d slices which constitute a random version of the message:

~I∗ =







A1
...

Ad






~m = A~m

Then, Alice picksd disjoint overlay paths to Bob. She
sends on pathi both the sliceI∗i andAi , whereAi is row i
of matrix A. An intermediate node sees only some random
valuesI∗i andAi , and thus cannot decipher the content of
the message. Once Bob receives all slices, he decodes the
original message as:

~m = A−1~I∗.
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Figure 2—Alice wants to send an anonymous message to Bob without any public keys. Each node along the path needs to learn the IP addresses
of its next hops in a confidential message, which is done by splitting each IP address and sending the pieces on disjoint paths. Alice has access to
two machinesAliceand Alice′ . A message like{Zl , Bobl} refers to the low-order words of the IDs of nodesZ and Bob, and rand refers to random
bits.

4.2 Anonymous Routing Without Keys

Next, assume that Alice wants to send her message anony-
mously. How can Alice set up an anonymous path without
keys? Each node along an anonymous path should know its
previous hop and its next hop but nothing more. In onion
routing, a node along the path learns its next hop from its
previous hop – its parent. Though the parent delivers this
information to its child, it cannot access it itself becausethe
information is encrypted with the child’s public key. In the
absence of keys, the path cannot be included in the message,
as that allows any intermediate node to learn the whole path
from itself to the destination. We need an alternative method
to tell a node about its next hop without revealing this in-
formation to other nodes, particularly parent nodes.

Our approach to anonymity without keys relies on a sim-
ple idea:anonymity can be built out of confidentiality. For
anonymous communication, the source needs to send to ev-
ery relay node along the path its routing information (i.e.,
its next hop) in a confidential message, accessible only to
the intended relay. Information slicing enables a source to
send such confidential messages without keys.

Using information slicing for anonymity, however, is chal-
lenging. To send a particular node the identity of its next
hop along different anonymous paths, one needs to anony-
mously tell each node along these paths about its own next
hop. This requires an exponential number of disjoint paths,
and thus an exponential number of nodes. To avoid expo-
nential blow-up, it is essential that the source constructsef-
ficient forwarding graphs that reuse the overlay nodes with-
out giving them too much information. The construction of
such graphs in the general case is discussed in§4.2.1, but
we first explain a simple example to give the reader an intu-
ition about how the protocol works.

4.2.1 Example

Alice wants to send an anonymous message to Bob. Alice
retrieves the DNS names of a few overlay nodes that she or
her friends have used in the past to download music via a
P2P file-sharing network. She can use DNS to retrieve the
IP addresses of these overlay nodes. Alice does not know
the public keys of the overlay nodes, or whether they have
keys. She does, however, know that the software of the peer-
to-peer overlay supports information slicing.

Alice has Internet at home and work, and hence has ac-
cess to two IP addresses:Alice andAlice′. Alice arranges
the overlay nodes into stages. Let’s say she uses the graph
in Fig. 2, which contains 3 stages (path lengthL = 3), each
containing 2 nodes (split factord = 2) (we will show how
to pick appropriate values forL andd in §6). The 0th stage is
the source stage itself. Each node in this graph is connected
to every node in its successive stage. Note that the destina-
tion node, i.e. Bob’s node, is randomly assigned to one of
the stages in the graph.

Alice needs to send to each relay node the IP addresses
of its next hops, without revealing this information to other
nodes. To do so, she splits each IP into two pieces and sends
this information over two paths. Alice could have split each
IP address to its most significant and least significant words.
This, however, is undesirable as the most significant word
may indicate the owner of the IP prefix. Instead Alice first
transforms the IP addresses of the relay nodes by multiply-
ing each address by aninvertible matrix Aof sized×d (i.e.,
2×2). (For simplicity, assume thatA is known to all nodes;
in §4.3, we explain how the sender anonymously sendsA
to the relays on the graph.) LetZl andZh be the low and
high words of the IP address of nodeZ; Alice splits the IP
address as follows:

(

ZL

ZH

)

= A

(

Zl

Zh

)

. (1)

She sendsZL andZH to nodeZ’s parents,V andW, along
two different paths.

Fig. 2 shows how messages are forwarded so that each
node knows no more than its direct parents and children.
Consider an intermediate node in the graph, sayV. It re-
ceives the message “{ZH, BobH}{XH, YH}{randH}” from its
first parent. It receives “{ZL, BobL}” from its second parent.
After receiving both messages,V can discover its children’s
IP addresses as follows:

(

Zl Bobl

Zh Bobh

)

= A−1

(

ZL BobL

ZH BobH

)

(2)

But V cannot, however, identify the children of its chil-
dren (i.e., the children of nodesZ andBob) because it misses
half the bits in these addresses, nor does it know the rest of
the graph. NodeV also does not know that Bob is the des-
tination and Alice is the sender. From its perspective, Alice
may have received the message from someone upstream,
and Bob may be just another forwarder.



Var Definition

d Split factor, i.e., the number of slices a message is split to.
L Path length, i.e., the number of relay stages along a path.
N Number of nodes in the peer-to-peer network excluding the

source stage.
f Fraction of subverted nodes in the anonymizing network.

Table 1—Variables used in the paper.

IP Header Slice 1 Slice i Slice L

(Cleartext)

     (Cleartext)
Transformation Vector

Flow ID

Ai Ai.~I′xEncoded block I
∗
xi =

Figure 3—Packet Format. Each packet containsL information slices.

You might be wondering how the graph in Fig. 2 will be
used to anonymously send data to Bob. Indeed, as it is, Bob
does not even know he is the intended destination; but this
is easy to fix. In addition to sending each node its next-hop
IPs, Alice sends him: (1) a symmetric secret key, (2) and
a flag indicating whether he is the destination. Similar to
the next-hop IPs, the key and the flag of each node are split
along disjoint paths, and thus inaccessible to other nodes.
To send a confidential data message, Alice encrypts the data
with the key she sent to Bob during the route setup phase,
chops the data intod pieces, and forwards the pieces along
the forwarding graph to Bob. Once Bob receives thed slices
of the data, he can decode the encrypted data and invert the
encryption using the key previously sent to him. No other
node can decipher the data even if it gets alld slices.

4.3 Protocol Specification

This section rigorously describes our protocol. Our anony-
mous routing protocol delivers packets along a forwarding
graph as explained in§4.2.1. The protocol has two phases.
First, the source anonymously and confidentially informs
each of the relay nodes on the graph of its forwarding in-
formation, i.e., it establishes the graph. Second, the source
uses the forwarding graph to send data. If the source does
not need to send much data, it is possible to collapse the
two phases together and concatenate the data slices with the
slices that build the graph. Before delving into the detailsof
the protocol, we refer the reader to Table 1, which describes
the variables used in the rest of the paper.

4.3.1 Per Node Information

Let x be one of the nodes in the forwarding graph.Ix is
the routing information the source needs toanonymously
deliver to nodex. Ix consists of the following fields:

• Nexthop IPs.The IP addresses of nodex’s d children.
• Nexthop flow-ids.These ared 64-bit ids whose values are

picked randomly by the source and are to be put in the

clear in the packets going to the correspondingd next-
hops. The source ensures that different nodes sending to
the same next-hop put the same flow-id in the clear. This
allows the next-hop to determine which packets belong
to the same flow. The flow-id changes from one relay to
another to prevent the attacker from detecting the path by
matching flow-ids.

• Receiver Flag.This flag indicates whether the node is the
intended destination.

• Secret Key.The source sends each node along the path
a symmetric secret key that can be used to encrypt any
further messages intended to this node.

• Slice-Map.This field describes which of the slices the
relay receives go to which child (see§4.3.4).

• Data-Map.This field describes how the data packets flow
down the graph (see§4.3.7).

4.3.2 Creating Information Slices

The source chops the node informationIx into d blocks
of |Ix|

d bits each and constructs ad length vector,~Ix. Further,

it transforms~Ix into codedinformation slicesusing a full
rankd× d random matrixA as follows:1

~I∗x =







A1
...

Ad







~Ix = A~Ix (3)

The source concatenates each element in~I∗x with the row
of the matrixA that created it (i.e., it concatenatesI∗xi with
Ai). The result is what we callan information slice. The
source delivers thed slices to nodex along disjoint paths.

4.3.3 Packet Format

Fig. 3 shows the format of a packet used in our system. In
addition to the IP header, a packet has a flow-id, which al-
lows the node to identify packets from the same flow and
decode them together. The packet also containsL slices.
The first slice is always for the node that receives the packet.
The other slices are for nodes downstream on the forward-
ing graph.

4.3.4 Constructing the Forwarding Graph

The source constructs a forwarding graph that routes the
information slices to the respective nodes along vertex dis-
joint paths, as explained in Algorithm 1.

We demonstrate the algorithm by constructing such a
graph in Fig. 4, whereL = 3 and d = 2. The source
starts with the 2 nodes in the last stage,X andY. It assigns
both the slices,I∗X1, I∗X2 to X. The source then has to decide
from whom nodeX will receive its slices. The source goes
through the preceding stages, one by one, and distributes
(I∗X1, I∗X2) among the 2 nodes at each stage. The distribution
can be random as long as each node receives only one of
the slices. The path taken by sliceI∗X1 to reachX can be con-
structed by tracing it through the graph. For e.g., the slice
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Figure 4—An example showing how to split information slices along disjoint paths. R is the destination, S and S’ are the sources. The text on
the arrows refers to the information slices traversing thatedge. The text next to each node describes the slices collected by that node.

Algorithm 1 Information Slicing Algorithm
Pick L × d nodes randomly including the destination
Randomly organize theL × d nodes intoL stages ofd nodes each
for Stagel = L to l = 0 do

for Nodex in stagel do
Assign to nodex its own slicesI∗xk, k ∈ (1, . . . , d).
for Stagesm = l − 1 to m = 1 do

Distribute slicesI∗xk, k ∈ (1, . . . , d) uniformly among thed
nodes in stagem, assigning one slice per node

end for
end for
Connect every node in stagel−1 to every node in stagel by a directed
edge going towardsl
for every edgeedo

Assign the slices that are present at both endpoints of Edgee to
the packet to be transmitted one

end for
end for

Figure 5—An example of how a node decodes its information from its
incoming slices. It uses thed incoming slices and reconstructs the orig-
inal information by inverting the matrix A and gets the IP addresses of
its next-hops as well as the flows ids, its secret key, its slice-map, and
its data-map.

I∗X1 traverses(S′, W, Z, X), which is disjoint from the path
taken byI∗X2, i.e., (S, V, R, X). The source repeats the pro-
cess for the slices ofY, and for the slices of every node in
all the other stages.

4.3.5 Decoding the Information Slices

A node decodes its information from thed slices it re-
ceives from its parents, as shown in Fig. 5. The first slice in
every packet that nodex receives is for itself. It consists of
one of thed-slices ofx’s information,I∗xi, and the row of the
transform matrix that helped create it,Ai . Nodex constructs
the vector~I∗x from thed slices it receives, and assembles a
d× d matrixA = [A1; . . . ; Ad] from thed rows of the trans-
form matrix sent in the slices. Then, nodex computes its
information vector,~Ix, as~Ix = A−1~I∗x .

4.3.6 How to Forward Information Slices

After the relay decodes its own information, it has to de-
cide what to send to each one of its children. As is apparent
from Figs. 2 and 4, a relay does not send the same infor-
mation slices to all of itsd children. The relay needs a map
that tells it which of the information slices it received from
its parents goes to which child, and in what order. This in-
formation is provided by the source in the slice-map.

Fig. 6 shows an example slice-map. The slice-map is a
d×L matrix that tells the relay how to construct the packets
it sends to its children. For example, in Fig. 6, nodex has
received 2 packets from its parents. The number of slices in
each packet is fixed to the path lengthL = 4. Note thatx
should first extract its own slice from each of the packets,
which is the first slice in the packet, as explained in§4.3.5.
The other three slices in each packet are to be forwarded
downstream, as prescribed byx’s slice-map. For example,
the figure shows that the third slice in the packet received
from V should be the first slice in the packet sent to nodeC.
Entries labeled “rand” refer to padding slices with random
bits that are inserted by the relay node to replace its own
slices and maintain a constant packet size.

Additionally, all packets headed to a child node should
contain the child node’s slice as the first slice. The source
constructs the slice maps of the parent nodes such that the
packets meant for the child node always have the child node’s
slice as the first slice in the packet. Also the child node
needs to be able to identify whichd packets go together.
The source arranges for all of the parent relays to use the
same flow-id for packets going to the same child. The par-
ent learns these flow-ids as part of its information, as shown
in Fig. 5.

4.3.7 Data Transmission

Once the forwarding graph is established, the source can
send anonymous data messages to the destination until it ex-
plicitly terminates the connection or the routing information
times out. Also the destination can use a similar procedure
to transmit to the source along the reverse path.

The source encrypts each data message with the key it
sent to the destination node. Then it chops the data message
into d pieces, converts them intod slices and multicasts the
slices to the nodes in the first stage of the forwarding graph.
Each relay node in the first stage receives alld data slices,



Figure 6—An example showing the slice-map of nodeX, which hasV
and W as parents andC and D as children.

but they cannot multicast whatever they receive to the nodes
in the next stage, since each child then will received2 data
slices leading to bandwidth overhead. On the other hand,
if each node forwards a random slice to each of its chil-
dren, then each child will getd data slices; but these slices
may overlap and thus be useless. To solve the problem, the
source sends each relay a data-map as part of its informa-
tion. The data-map tells the node how to forward the data
slices between each parent-child pair. The data map is very
similar to the slice map shown in Fig. 6, except that instead
of slice numbers the entries correspond to data packets. The
source picks the entries in the data-map to ensure that each
child gets all useful data slices, and no more. Each node in
the graph including the destination therefore getsd slices,
but since the data slices are encrypted using the destina-
tion’s keys, only the destination can decrypt the data.

4.4 Resilience to Churn and Failures

Overlays with open membership suffer from churn be-
cause nodes join and leave frequently. Node churn causes
data loss. The standard way to deal with loss is to add redun-
dancy. The challenge, however, is to maximize the probabil-
ity of recovery for the same amount of redundancy. Com-
munication systems typically usecodingto achieve this goal.
Our design naturally extends the codes used to provide con-
fidentiality to also provide resilience against churn and fail-
ures.

(a) Basic idea:Take a vector ofd elements~m = (m1, . . . , md)
and multiply it by a random matrixA′ of rank d and size
d′ × d whered′ > d. The result will be a a vector ofd′

elements,~m′ = (m′
1, . . . , m′

d′); it is a redundant version of
your original vector. What is interesting about this process
is that it is possible to retrieve the original message from
any d elements of~m′ and their corresponding rows in the
matrix [18].

(b) Adding redundancy to graph establishment phase:
Instead of slicing the per-node information intod indepen-
dent pieces that are all necessary for decoding, we used′ >
d dependent slices. Replace Eq. 3 with:

~I∗x = A′~Ix (4)
whereA′ is a d′ × d matrix with the property that any

d rows ofA
′

are linearly independent. The source picksd′

disjoint paths to send the message. A node can recover its
information from anyd out of d′ slices that it successfully
receives.

(c) Adding redundancy to the data transfer phase:As

mentioned earlier, the source encrypts the data with the sym-
metric key it sent to the destination during path establish-
ment. The source then chops the encrypted message into
d pieces, creating a message vector~m. Before it sends the
message, however, it multiplies it by a random matrixA′

of sized′ × d and rankd, whered′ > d. This createsd′

data slices that the source sends alongd′ disjoint paths. The
destination can recover the original information as long as
it receives anyd slices out of thed′ data slices the source
created.

4.4.1 Boosting Resilience to Churn Via Network Coding

The resilience scheme above is far from optimal. Con-
sider an example whered = 2 andd′ = 3, and assume that
at some stagei along the path, one of the three relays fails.
Its children in stagei +1 will receive two data slices instead
of three. This is sufficient for recovering the original data.
The problem, however, is that the redundancy is lost. Un-
less the redundancy is restored, downstream relays cannot
recover from any additional failures.

We use network coding to solve the problem. Network
coding allows intermediate nodes to code the data too. In
our scheme, during the data transmission phase, a relay can
easily restore the redundancy after its parent fails. To do
so, the relay creates a linear combination of the slices it re-
ceived, i.e.,m′

new =
∑

pim′
i , wherepi are random numbers.

The relay also createsA′new =
∑

piA′i , wherepi are the same
numbers above. The new slice is the concatenation ofA′new
andm′

new and can effectively replace the lost slice. Any re-
lay that receivesd or more slices can replace all lost redun-
dancy. Thus, with a small amount of redundancy, we can
survive many node failures because at each stage the nodes
can re-generate the lost redundancy.

5 SECURITY ANALYSIS

Instead of standard key-based encryption, our scheme
uses information slicing. To understand the level of confi-
dentiality, i.e., the security obtained with such an approach,
we estimate the amount of information a malicious node
can glean from the messages it receives. We borrow the fol-
lowing definition from [8, 28].

Definition A function f is packet independentpi-secure if
for all v and a uniformly distributed message block~x =
[x1, x2, . . . , xn] Pr[xi = v] = Pr[xi = v|f (~x)].

A pi-secure information slicing algorithm implies that to
decrypt a message, an attacker needs to obtain alld infor-
mation slices; partial information is equivalent to no infor-
mation at all. The proof of the following lemma is in a tech-
nical report [19]:

LEMMA 5.1. Information slicing ispi-secure.

We note that there are many types of security, e.g., cryp-
tographic security, pi-security, and information theoretic se-



curity. The strongest among these is information theoretic
security. Information slicing can be made information the-
oretically secure, albeit with increased overhead. Instead of
chopping the data intod parts and then coding them, we
can combine each of thed parts withd − 1 random parts.
This will increase the space requiredd-fold, but provides
extremely strong information-theoretic security.

6 EVALUATION OF ANONYMITY

The basic threat to anonymity in peer-to-peer overlays
are attackers who compromise the overlay network. They
can hack nodes, operate their own nodes, or eavesdrop on
links to do traffic analysis. They can further collude to com-
promise anonymity. In this section we evaluate the anonymity
of information slicing against such adversaries via simula-
tions.

6.1 Anonymity Metric

The anonymity of a system is typically measured by its
entropy [25, 11],2 and is usually expressed in comparison
with the maximum anonymity possible in such a system,
i.e.:

Anonymity=
H(x)
Hmax

=

∑

x −P(x)log(P(x))
log(N)

, (5)

whereN is the total number of nodes in the network,P(x)
is the probability of a node being the source/destination,
and Hmax = log(N) is the maximum entropy that occurs
when the attacker has no information. Anonymity is a num-
ber between 0 and 1. For example, the source is perfectly
anonymous when it is equally likely to be any node in the
network, in which caseP(x) = 1

N and theAnonymity=
H(x)/Hmax = 1.

Note thatAnonymity= 0.5 is quite high. It does not
mean that the attacker knows the source or the destination
with probability 0.5. Rather it means the attackers are still
missing half the information necessary to discover the anony-
mous source or destination.

6.2 Simulation Environment

We would like to measure how the anonymity of the
source and destination depends on the strength of the at-
tackers. We simulate a scenario in which the attacker sub-
verts a fractionf of the overlay nodes and the subverted
nodes collude together. We assume that all attackers col-
lude and consider them together as one powerful attacker.
Note that this scenario subsumes attacks in which the at-
tacker eavesdrops (i.e. does traffic analysis) on a fractionof
the links because compromising a node is always a stronger
attack than snooping on its input and output links. Further,
this also subsumes “intersection” attacks in which attackers
across multiple stages collude to compromise anonymity.

We assume that the source picks the relays randomly
from the set of all nodes in the network, and that every node
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Figure 7—Source and destination anonymity as functions of the frac-
tion of malicious nodes in the network (N = 10000,L = 8,d = 3). The
anonymity obtained via information slicing is close to whatChaum
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appears only once in the anonymity graph. These assump-
tions degrade anonymity, making our results conservative.

In each simulation, we randomly pickf × N nodes to be
controlled by the attacker, whereN is the number of over-
lay nodes. Then we pickL× d nodes randomly and arrange
them intoL stages ofd nodes each. We randomly pick the
destination out of the nodes on the graph. We identify the
malicious nodes in the graph and analyze the part of the
graph known to the attacker. Once we know the part of the
graph known to the attacker, the anonymity for thatpartic-
ular scenario is computed. The details of how to compute
source and destination anonymity for a particular simula-
tion scenario are kept in a technical report [19]. Depending
on the random assignment, the part of the graph known to
the attacker will vary and so will the anonymity. Hence the
simulation procedure is repeated 1000 times and the aver-
age anonymity is plotted.

6.3 Simulation Results

6.3.1 Comparison with to Chaum mixes?

In this section we evaluate the anonymity provided by
information slicing and compare it to Chaum mixes. Con-
sider attackers who compromise a fractionf of all nodes or
links and collude together to discover the identities of the
source and destination. Fig. 7 plots the anonymity of the
source and destination as functions of the fraction of com-
promised nodes, for the case ofN = 10000,L = 8,d = 3.
When less than 20% of the nodes in the network are ma-
licious, anonymity is very high and comparable to Chaum
mixes, despite no keys. As the fraction of malicious nodes
increases, the anonymity falls. But even when the attack-
ers control half of the nodes, they are still missing half
the information necessary to detect the source or destina-
tion. Destination anonymity drops faster with increasedf
because discovering the destination is possible if the at-
tacker controls any stage upstream of the destination, while
discovering the source requires the attacker to control stage
1, as we show in [19].
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6.3.2 Impact of Protocol Parameters

We evaluate how anonymity is affected by the parameters
under the source’s control: how many slices each piece of
information is split into and the number of stages in the
routing graph.

Fig. 8 plots source and destination anonymity as func-
tions of the splitting factord. When f is low, information
leakage is due primarily to the malicious nodes knowing
their neighbors on the graph. In this case, increasingd in-
creases the exposure of non-malicious nodes to attackers
which results in a slight loss of anonymity. Whenf is high,
information leakage is mainly due to attackers being able
to compromise entire stages. Hence, increasingd increases
anonymity. However, even an anonymity as low as 0.5 is
fairly strong; it means that the attacker is still missing half
the bits necessary to identify the source/destination.

Fig. 9 plots the source and destination anonymity as func-
tions of the path lengthL. Anonymity of both source and
destination, increases withL. The attacker knows the source
and destination have to be on the graph; thus, for moder-
ate values off , putting more nodes on the graph allows the
communicators to hide among a larger crowd.

We also evaluate how anonymity and churn resilience
trade off against each other. The theoretical analysis is in[19].
Fig. 10 plots the source and destination anonymity as func-
tions of the redundancy added to combat churn. Redun-
dancy is calculated as(d′−d)/d, and in the figured = 3. As
the added redundancy increases, it becomes more likely that
the attacker compromises an entire stage of nodes. Hence
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destination anonymity decreases. Source anonymity is not
much affected because it depends on whether specifically
the first stage is compromised.

7 EVALUATION OF PERFORMANCE

We evaluate the performance of information slicing via a
prototype implementation run on the local and wide-area
networks. Our wide-area experiments use 256 PlanetLab
nodes, including nodes in North America, South America,
Europe, and Asia. In each experiment, we pick a random
subset of the above nodes depending on the size of the graph
being set. We repeat each experiment 25 times by changing
the randomly chosen subset of PlanetLab nodes and we take
the average of the measured quantity. Our local-area experi-
ments are performed on a 1 Gbps switched network with the
nodes being 2.8 GHz Pentium boxes with 1 GB of RAM.

7.1 Implementation and Benchmarks

We have built a prototype of information slicing in Python.
It includes two programs: an overlay daemon and a source
utility. Each overlay node runs a multi-threaded daemon
that listens on a special port. The daemon maintains a hash
table keyed on the flow-id. For each anonymous flow, the
table contains all the relevant forwarding information in-
cluding the flow’s next-hop IPs. When the daemon receives
a packet, it forks a thread to process the packet and appro-
priately update the flow table. Additionally, the daemon pe-
riodically garbage collects the flow table to remove stale
entries. The source utility program takes as input a list of
willing overlay nodes, and a few configuration parameters
such as the path lengthL, the number of parallel pathsd′,
and the number of independent slicesd.

The overhead of information slicing is low. We have per-
formed benchmarks on a Celeron 800MHz machine with
256MB RAM connected to the local 1Gbps network. Cod-
ing and decoding require on averaged finite-field multipli-
cations per byte. Hence, the maximum achievable through-
put is limited by how fast the multiplications can be accom-
plished. Ford = 5, coding takes on average 60µsper 1500B
packet, which limits the maximum output rate to 200Mbps.
The memory footprint is determined byd, since we need
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Figure 12—Comparison of the throughput of information slicing
and onion routing on PlanetLab. Information slicing achieves higher
throughput than onion routing.

thed packets to generate outgoing coded packets. Thus the
memory consumed for packet storage isd × 1500B which
is negligible.

7.2 Per-Flow Throughput

Fig. 11 and 12 show the throughput obtained when a
transfer is run for 150 seconds using onion routing and our
protocol for the local area network and PlanetLab respec-
tively. The onion routing protocol uses computationally ef-
ficient symmetric session keys for the data transfer; pub-
lic key cryptography is used only for the route setup. Both
protocols use 1500 byte packets. On the local-area network
(Fig. 11), our protocol can send at about 40-60 Mb/s. Our
protocol achieves higher throughput than onion routing due
to its parallelism. On PlanetLab (Fig. 12), the nodes are
highly loaded, reducing the achievable throughput. Yet, the
transfer achieves about 1 Mb/s, which is a good throughput
for the wide-area network.

The overhead of information slicing in path setup is higher
compared to onion routing. Specifically, since each message
is split into d components, and each node outputsd pack-
ets in every round, the total number of packets between any
two stages isd2. For onion routingd = 1, whereasd can
be varied in information slicing. But on the other hand, in-
formation slicing delivers higher throughput, since it used d
parallel paths to deliver the data.

7.3 Scaling with the Number of Users

We examine how the throughput scales as the number of
sources using the anonymizing overlay increases. Fig. 13
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Figure 14—Average graph setup times on the local-area network as
functions of path length L and splitting factor d. Increasing d means
higher setup times, since each node has to wait for more packets before
it can decode and forward its packet.

shows thetotal throughput as a function of the average load
on the overlay nodes. The total throughput is the sum of
the throughputs of the anonymous flows in the experiment.
Load is quantified as the number of concurrent anonymous
flows using the overlay. The experiment is performed on a
set of 100 PlanetLab nodes that have long uptimes, so that
churn does not affect the result (for churn results see 8). We
setd = 3 andL = 5, hence each flow uses 15 nodes from
the set of 100 nodes.

The figure shows that, as load increases, the total through-
put scales linearly. At significantly high load, the through-
put levels off and the overlay reaches saturation. The sat-
uration threshold is a function of the used set of Planet-
Lab nodes and the loads imposed on these nodes by other
users/experiments. Information slicing therefore scaleswell
with the amount of load placed on the overlay up to moder-
ate loads.

7.4 Route Setup Latency

Setup latency is measured end-to-end, from when the
sender initiates the route establishment until the receiver
sends back an ack (the ack is for measurement collection
and not part of the protocol.) Our protocol allows the re-
ceiver to be randomly placed anywhere in the graph to ob-
scure its identity. For purposes of our experiments, however,
we place the receiver in the last stage of the graph, so that
the measured setup times are the times to set up the entire
graph, not just those stages up to the receiver’s stage.

Fig. 14 plots the average graph setup times on the local-
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Figure 15—Average graph setup times on the wide-area network
(PlanetLab) as functions of path lengthL and splitting factor d. Setup
times are high since nodes have been picked all around the world and
PlanetLab nodes were heavily loaded before the conference deadline.

area network. As one would expect, the setup time increases
with increased path lengthL and splitting factord. A large
d affects the setup time because a relay has to wait to hear
from all of itsd parents and thus, the delay at each stage will
be dominated by the slowest relay in that stage. In general
however, the setup time is less than a couple of seconds.
Furthermore, ford = 2, the setup time is a few hundred
milliseconds.

We repeat the same experiments on PlanetLab to mea-
sure how much the conditions in the wide area network af-
fect our setup times. Fig. 15 shows the average graph setup
times in that environment. The setup times have increased
beyond their values in the local-area network because of the
larger RTT, but more importantly because PlanetLab nodes
have a high CPU utilization leading up to the conference
deadline. Despite this increase, the setup time is still within
a few seconds.

8 EVALUATION OF CHURN RESILIENCE

Churn is an inescapable reality of dynamic peer-to-peer
overlay networks. In§4.4 we presented a novel technique
that recreates lost redundancy to combat churn. Here we
evaluate its performance via analysis and an actual imple-
mentation. First we show analytically how coding helps us
achieve high resilience with a small amount of added re-
dundancy. Then we evaluate information slicing’s churn re-
silience on PlanetLab and show that it can successfully cope
with failures and make long anonymous transfers practical.

8.1 Analysis

We first show the efficiency of our coding approach com-
pared to onion routing via analysis; but comparing it to stan-
dard onion routing would be unfair, as onion routing does
not have any redundancy added and it would show very bad
performance. Hence we compare it to a modified version of
onion routing which has the same amount of redundancy as
information slicing.

Imagine making onion routing resilient to failures by hav-
ing the sender establish multiple onion-routing paths to the
destination. The most efficient approach we can think of
would allow the sender to add redundancy by using era-
sure codes (e.g., Reed-Solomon codes) over multiple onion

routing paths. Assuming the number of paths isd′, and the
sender splits the message intod parts, she can then recover
from anyd′ − d path failures. We call this approachonion
routing with erasure codes. Recall that in information slic-
ing as well, the sender adds redundancy by increasing the
number of pathsd′ > d, i.e., d slices of information are
expanded tod′ slices. But the key difference in information
slicing is that relaysinsidethe overlay network can regen-
erate lost redundancy.

To evaluate analytically, consider a message ofS bytes.
Suppose a sender has sentS(1 + R) bytes, whereR is the
amount of redundancy in your transfer.R is also the over-
head in the system; it limits the useful throughput. Now, let
us compare the probability of successfully transferring the
data under our scheme and onion routing with erasure codes
when the same amount of redundancy is added. In particu-
lar, assume the path length isL, and that failures are inde-
pendent and the probability of a node failing isp, the redun-
dancy in both schemes isR = d′−d

d , henced′ = (R+ 1)d.
Onion routing with erasure codes succeeds when there

are at leastd operational paths. A path is operational if none
of the nodes on that path fail. Thus, the probability of a path
success isP(path succeeds) = (1− p)L. The probability of
the scheme succeeding is the probability of having at least
d non-failing paths, i.e.,

P(success) =
∑i=d′

i=d

(d′

i

)

(1− p)Li(1− (1− p)L)
(d′−i)

(6)The information slicing approach, on the other hand, can
tolerated′ − d failures in each stage. The scheme succeeds
if all stages succeed. A stage succeeds if at leastd nodes in
the stage do not fail, i.e.,

P(stage succeeds) =
∑i=d′

i=d

(d′

i

)

(1− p)ipd′−i

The slicing scheme succeeds if all stages succeed, i.e.:

P(success/slicing) = (P(stage succeeds))
L . (7)

Fig. 16 illustrates the two success probabilities as a func-
tion of the amount of redundancy ford = 2, andL = 5.
The probability of a node failure during the transfer is set to
p = 0.1 in the top graph andp = 0.3 in the bottom graph.
The figure shows that, for the same amount of overhead,
the slicing approach has a substantially higher probability
of successfully completing its transfer.

8.2 Resilience to Churn on PlanetLab

We complement the analytical evaluation with real ex-
periments on a failure-prone overlay network, i.e., the Plan-
etLab network. We run our experiments with all nodes in
our PlanetLab slice including the ones which are very fail-
ure prone. “Failure-prone” are nodes which are often in-
accessible due to myriad reasons, either due to heavy CPU
overload or network disconnectivity. These nodes have short
“perceived” lifetimes of less than 20 minutes, and are ex-
tremely likely to fail during an experiment. The rationale
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Figure 16—The probability of completing a transfer in information
slicing and onion routing with redundancy as a function of the added
redundancy. Figure shows that for the same level of redundancy, in-
formation slicing achieves much higher resilience to node failures
(L = 5,d = 2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.5  0  0.5  1  1.5  2

P
ro

ba
bi

lit
y 

of
 S

uc
ce

ss

Redundancy

Information Slicing
Onion Routing with erasure codes

Standard Onion Routing
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for picking such nodes is that the sender usually has a list
of overlay nodes, some of which are up and some are down.
The sender cannot ping the nodes to identify the operational
ones because this might jeopardize its anonymity.

We focus on the following question: “Given PlanetLab
churn rate and failures, what is the probability of success-
fully completing a session that takes 30 minutes?” Given the
throughput figures presented earlier, a 30-minute flow can
transfer over 90 MB, which is typical of P2P file transfers.
We compare information slicing with the modified version
of onion routing which has redundancy added as described
in the previous section.

Fig. 17 compares the probability of successfully finish-
ing the transfer under our approach, standard onion routing
(one path), and onion routing with redundancy added us-
ing erasure codes. As we saw in the previous section, for
the same number of paths, onion routing with erasure codes
has the same level of redundancy as our scheme. Redun-
dancy is added by increasing the number of pathsd′ > d, in
this case the added redundancyR is given by(d′−d)/d. The
results are forL = 5 andd = 2. We vary the level of added
redundancy by varyingd′, and measure the probability of

successfully completing a session lasting 30 minutes.
The figure shows that with standard onion routing com-

pleting such a transfer is extremely unlikely. The proba-
bility of success increases with onion routing with erasure
codes but stays relatively low. In contrast, with information
slicing, adding a little amount of redundancy results in a
very high success probability, making such relatively long
anonymous transfers practical.

9 ROBUSTNESS TOATTACKS

The biggest threat to peer-to-peer anonymizing overlays
are from attackers who control nodes or can eavesdrop on
links. Under conservative assumptions, i.e., even after as-
suming that an attacker who can eavesdrop on links leading
to a node is as powerful as one who controls the node itself;
we have shown that information slicing achieves anonymity
comparable to Chaum mixes in§6. This section describes a
few other attacks and how we address them. These attacks
are fairly generic and apply to almost all anonymizers.

9.1 Limiting Malicious Nodes on the Graph

How does a sender choose relays for the anonymous graph
it is setting up? One may be tempted to choose nodes com-
pletely at random from all available nodes; but an attacker
could control large address spaces and increase the likeli-
hood that the sender chooses colluding malicious nodes. To
counter this attack, we leverage the structure of the IP ad-
dress space. While an adversary can potentially control as
many nodes as IP addresses to which he has access, these
addresses are rarely scattered uniformly through the IP ad-
dress space or through multiple autonomous systems (AS).
IP addresses are divided into prefixes that are allocated to
various networks worldwide. The prefixes appear in the inter-
domain routing tables with their corresponding routes. These
routing tables arepublicly availablefrom multiple vantage
points [7]. It is realistic to assume that the attacker can-
not compromise a large fraction of the inter-domain rout-
ing tables. Indeed if she can, then the attack has already
jeopardized the Internet connectivity. By analyzing the pub-
licly available routing tables, the sender can choose its re-
lay nodes to be under different ASes potentially in different
countries (e.g., Iran, US, China etc). This makes the above
attack significantly more difficult because the attacker now
needs to control many IP addresses belonging to many dif-
ferent ASes potentially spread around the world. Though
this is possible, it is much more difficult. In the general case,
picking overlay nodes that are independent and are guaran-
teed not to collude is a very difficult problem. Even if one
knew the physical connectivity of the network, it is still not
possible to guarantee non-collusion. Picking nodes based
on their AS membership ensures that with high probability
nodes are unlikely to collude.



9.2 Denial of Service Attack

It is always possible for a subverted relay to drop mes-
sages. It is also possible for a malicious source to try to
consume the resources of the overlay nodes, denying other
sources access to these resources. Overall, we believe that
our approach neither increases nor decreases the vulnerabil-
ity of an anonymizing overlay to denial of service; in com-
parison to onion routing, our approach allows the sender to
store a small state (the per-node information) on the overlay
nodes, but onion routing allows the sender to force the over-
lay nodes to do CPU-expensive public key cryptography.

In general, the best way to deal with denial of service
attacks on anonymizing systems is to increase the size of
the network. By allowing unmanaged peer-to-peer overlays
with no trusted authority, our scheme has the potential to
increase the size of these networks, thus increasing the re-
silience of the service.

9.3 Powerful Firewall

Consider a sender who lives under a repressive govern-
ment that censors international online communications. The
sender wants to anonymously communicate with an out-
side destination. To do so, it has to traverse the govern-
ment’s firewall. There are two cases. First the sender knows
a pseudo-source outside the country. In this case, the sender
splits the communication and securely tunnels a slice or
more to outside pseudo-sources. The firewall, though it sees
all slices, cannot reconstruct the message because some slices
are encrypted. (Recall that a pseudo-source cannot read the
message content or tell who the destination is.)

In the second case, the sender does not have access to a
pseudo-source outside the firewall. In this case, the sender
chooses some of the relays in some stagei to be outside
the country and the rest inside –i.e., the firewall does not
cut the graph at a single stage. For the firewall to be able to
decipher the message, it needs to pick the rightd2 packets
out of all packets in a particular interval (say 0.5s). These
packets do not come from the same set of senders (because
of the cross-stage cut) and the bits in these packets are hard
to correlate. Furthermore, there are potentially billionsof
packets traversing the firewall during that interval. Picking
the rightd2 packets therefore is a very difficult problem.

9.4 Traffic Analysis Attacks

There is always a tradeoff between robustness to attacks
and increased overhead. Most solutions either send exces-
sive amount of traffic or increase complexity making the
system less usable. The right operation point usually de-
pends on the application scenario. Our system focuses on
providing practical low-delay anonymity for everyday ap-
plications rather than providing perfect anonymity at all costs.
As mentioned in§3 we cannot protect against a global eaves-
dropper who can observe all traffic. Further if an attacker

can snoop on all links leading to the destination, message
confidentiality is compromised. But the attacker still cannot
discover the identity of the sender.

Traffic analysis attacks become significantly harder to
mount in a global overlay with thousands of nodes and a
large amount of normal filesharing traffic. In predecessor
attacks [30], the attacker forces frequent rebuilding of paths
and tries to identify the sender and destination by identify-
ing specific responders outside the overlay to which con-
nections are made. For this attack, the attacker needs to ob-
serve all traffic across the global overlay which is unrealistic
in practice. Murdoch et.al. [22] present an attack in which
the attacker pings nodes in the overlay and identifies how
the load offered by the adversary affects the delay of other
anonymous communication streams at the source node. The
attacker has to ping potentially thousands of nodes in the
global overlay before he can observe any significant sta-
tistical change in the senders anonymous communication.
Further the large amount of P2P filesharing traffic already
present makes such attacks based on statistical analysis hard
to mount in a global overlay network. We describe below
some other specific traffic analysis attacks and how our sys-
tem protects against them.

(a) Inserting a pattern in the data: Colluding attackers
who are not in consecutive stages might try to track a con-
nection by inserting a particular pattern in the packet and
observing the path of the inserted pattern downstream. To
prevent such attacks the sender makes the nodes along the
path intelligently scramble each slice such that no pattern
can percolate through the network. We will demonstrate
the algorithm through a single sliceK, which belongs to
an intermediate nodeN in stagei. As we have seen before
this slice passes throughi − 1 nodes before it reaches node
N. Before transmitting the slice, the sender passes the slice
throughi − 1 random transformationsT1 ∗ T2 ∗ . . . ∗ Ti−1

successively. Now the sender has to ensure that when node
N receives the slice, all of these random transformations
have been removed, else the slice will be useless to node
N. Therefore the sender confidentially sends each of the in-
verses of thei −1 random transformations applied above to
the i − 1 nodes which handle this slice. Each intermediate
node applies one inverse transform to the sliceK, hence by
the time the slice reaches nodeN, the slice is throughi − 1
inverse transformations and is back to its original unmod-
ified state. NodeN can then decode and recover his own
information.

The source repeats this process for all slices. This ensures
that a slice is guaranteed to not look the same at any two
links in the graph. Hence though the attacker might insert a
particular pattern, the pattern will change in the immediate
next stage without the attacker knowing how it changed. As
a result, colluding non-consecutive attackers never see the
same bit pattern, thereby nullifying the attack.



(b) End-to-End Time analysis attacks:The attacker may
study the timing pattern in the traffic at various nodes in the
overlay network in an attempt to identify where an anony-
mous flow enters and exits the overlay. Feamster et al [14]
have shown that such an attack is possible in the Tor net-
work. In particular, they report that Tor [12] has many nodes
in the same AS. Hence, it is probable that the entry and
exit nodes of an anonymous flow end up in the same AS. If
this AS is adversarial, it can conduct timing analysis attacks
to determine the sender and receiver. This attack becomes
much harder in a large peer-to-peer overlay. In a large peer-
to-peer network spread across the world, it is unlikely that
a significant fraction of the nodes belong to the same AS.
Furthermore, the node selection strategy outlined in§9.1
ensures that nodes are picked from different ASes, hence it
is significantly hard for any single AS to mount a timing
analysis attack.

(c) Resilience to packet size analysis:Looking at Fig. 4,
the reader may think that the packet size decreases as it
travels along the forwarding graph, and thus the attacker
can analyze the position of a relay on the graph by observ-
ing the packet size. This is not the case, however. As ex-
plained in§4.3.4, each relay replaces its own information
slices with random padding and shuffles the slices accord-
ing to the sender’s instructions sent in the slice-map. The
map ensures that the packet size stays constant.

10 CONCLUSION

Anonymity spans a large design space; different anonymiz-
ers optimize for different objectives with corresponding trade-
offs. Information slicing presents a unique point in this de-
sign space. It provides confidentiality, anonymity and churn
resilience without public key cryptographybut with the trade-
off that the anonymity and confidentiality guarantees are
slightly weaker than if we had public keys. We have ana-
lyzed the security and anonymity of the protocol and shown
that it presents good guarantees against a variety of impor-
tant attacks. We have also implemented the protocol, run
it over PlanetLab, and shown that it is feasible and robust
to node churn and failures. We believe information slic-
ing simplifies the implementation and deployment of global
peer-to-peer anonymizing networks, which is an important
step towards scalable and practical online privacy.
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APPENDIX
A A NONYMITY ANALYSIS

A.1 Source Anonymity
Source anonymity depends on the probability of the attackeridentifying the nodes

in stage 0 (i.e., the sender stage). We conservatively assume that compromising the
anonymity of the pseudo sources compromises the anonymity of the source as well.
We distinguish two cases:
Case 1:All nodes in stage 1 are malicious. In this case, the attackercan decode the



entire graph, discover that it controls the first stage, and thus the previous stage has
to be the source stage. Thus, the anonymity of the source in Case 1 is 0, but the
probability of the Case 1 occurring isP(Case1) = f d, which is exponentially low.
Case 2:Some nodes in stage 1 are not malicious. Although the attacker cannot decode
the entire graph, it still knows about many nodes in the graph. Since flow-ids change
every hop, malicious nodes can collude only when they are in successive stages in the
graph; otherwise they would not know whether they belong to the same forwarding
graph. Assumes is the largest number of successive stages known to the attacker.
The attacker’s best guess is to consider the nodes in the firststage in the chains to
be the source stage. The first stage necessarily has no malicious nodes, since if it did
the previous stage would be known to the attackers ands would not be the longest
chain. LetΓ be the set of nodes in the first stage in the chains. The probability that
the first stage the attacker knows about is stage 0 is1

L−s .3 Thus, if x ∈ Γ, then

P(x = src) = 1
L−s . The rest of the probability is divided equally between non-

malicious nodes/∈ Γ. The number of such nodes isN(1 − f ) − |Γ|. Thus, the
probability that a nodex is the source:

P(x = src) =

(

1
(L−s) x ∈ Γ

(1− 1
L−s)

1
N(1−f)−|Γ| otherwise

(8)

The length of the chains is estimated via simulation. Anonymity can then be easily
computed by substitutings in Eq. 8, then substituting the outcome in Eq. 5.

A.2 Destination Anonymity
Destination anonymity depends on the probability the attacker assigns to each

node being the destination. In contrast to the source, the destination can be in any
stagei > 0. Again, we distinguish two cases:
Case 1:All the nodes in some stagei upstream of the destination are attackers. The
attacker can decode the downstream graph and discover the intended destination.
Assume the destination is in stagej + 1. Then the probability that at least one entire
stage before stagej + 1 consists of attacker nodes is given by

Pfail(j + 1) =

i=j
X

i=1

“j

i

”

(f d)
i
g(d, d − 1, f )(j−i) (9)

whereg(x, y, z) =
Pi=y

i=1

`x
i

´

zi(1− z)x−i . Since the destination could be in any
stage with equal probability 1/L, the overall probability is given by

P(Case1) =
1

L

X

1≤j≤(L−1)

Pfail(j + 1) (10)

When Case 1 occurs the anonymity of the destination is 0. But,as shown in Eq. 10,
the probability of Case 1 occurring is low.
Case 2:When the attacker cannot decode the part of the graph containing the desti-
nation, it can still try to infer the destination from among the nodes it knows to be on
the graph. Lets be the largest number of consecutive stages whose nodes are known
to the attacker. Call the set of nodes in theses stagesS. There aresd nodes inS,
among whichsd(1− f ) nodes are non-malicious. Since the destination can be in any
stage in the graph, the probability that it is inS is s

L . Each non-malicious nodex ∈ S
is equally likely to be the destination,P(x = dst) = s

L
1

sd(1−f) = 1
Ld(1−f) . The

remaining probability is divided equally among the(N − sd)(1− f ) non-malicious
nodes outsideS. Thus:

P(x = dst) =

(

1
Ld(1−f) x ∈ S

(1− s
L ) 1

(N−sd)(1−f) x /∈ S
(11)

GivenP(x = dst), the destination anonymity is computed using Eq. 5.

A.3 Anonymity-Resilience Tradeoff
Increasing churn resilience means a slight loss in anonymity since the attacker is

now more likely to compromise enough nodes to discover the entire graph down-
stream. Specifically for source anonymity, the probabilityof Case 1 increases to

P(Case1) =
Pi=d′

i=d

`d′

i

´

f i (1 − f )d′−i . Since Case 1’s contribution to loss of
anonymity is very low, this multiplicative factor doesnt change things too much unless
d′ is extremely high. Destination anonymity is more drastically affected. In particu-
lar, the probability that at least one stage before the destination’s stage hasd attackers
is given by

Pfail(j + 1) =

i=j
X

i=1

“j

i

”“d′

d

”
i

(f d)
i
(g(d′, d− 1, f ))j−i (12)

The rest of the analysis stays the same.

B PROOF OF L EMMA 5.1
Proof: Let~x = [x1, x2, . . . , xn] be the original message. Them messages re-

ceived at nodei can be written asA~x = ~b whereA is a m × n matrix,~b is a m
length vector andm < n. Pick (m− n) components of~x and set them to arbitrary

values~v and set the rest of the components of~x to 0. Let this vector be~x′ . Compute
~b′ = ~b − A~x′ . Eliminate the columns inA corresponding to the components of~x

which were set to arbitrary values. Let the resulting matrixbeA
′
. A

′
is am×mma-

trix of full rank since the messages received at the node are all independent of each

other. Hence the matrixA
′

is invertible and therefore a unique solution to the equa-

tion A
′ ~x′ = ~b′ exists. Hence for any arbitrary values~v of the(m− n) components

picked out from~x we can find a solution satisfying the constraints at each node. Since
the components and their values were picked arbitrarily, knowledge ofA doesn’t add
any information to the likely values of~x. ThereforePr(xi = v) = Pr(xi = v|f (~x))
which proves that our information slicing algorithm ispi-secure.

NOTES
1Elements of~Ix andA belong to a finite fieldFpq wherep is a prime

number andq is a positive integer. All operations are therefore defined in
this field and differ from conventional arithmetic.

2 The entropy of a random variablex is H(x) = −
P

x P(x)log(P(x)),
whereP(x) is the probability function.

3Note that the total number of stages including the source stage is L+1.
The attacker knowss stages, out of which the lasts− 1 cannot be the
source stage.




