63 research outputs found

    An improved code rate search scheme for adaptive multicode CDMA

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Enhanced Wireless Access Technologies and Experiments for W-CDMA Communications

    Get PDF
    This article reviews enhanced wireless access technologies and experimental evaluations of the wideband DS-CDMA physical layer employing intercell asynchronous operation with a three-step fast cell search method, pilot symbol-assisted coherent links, signal-to-interference plus background noise power ratio-based fast transmit power control, site diversity (soft/softer handover), and transmit diversity in the forward link. The article also presents link-capacity-enhancing techniques such as using an interference canceller and adaptive antenna array diversity receiver/transmitter, and experimental results in a real multipath fading channel. The laboratory and field experiments exemplify superior techniques of the W-CDMA physical layer and the potential of the IC and AAAD transceiver to decrease the mobile transmit power in the reverse link and multipath interference from high-rate users with large transmit power in the forward link

    Interference characterization and suppression for multiuser direct-sequence spread-spectrum system

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 175-184).In this thesis we investigate efficient modulation and detection techniques for the uplink (i.e. transmission from mobile to base station) of a DS-CDMA network. Specifically, the thesis contains three parts. In the first part, we focus on the mobile transmitter. In particular, we evaluate and compare the spectral efficiency of two promising variable rate DS-CDMA transmission techniques, multicode (MCD) and variable-spreading-gain (VSG), under the presence of multiple-access (user-to-user) interferences (MAI) and multipath interferences. The uniqueness of our study is that in bit-error-rate evaluation, instead of approximating the interference as Gaussian noise (which has been done in most of the previous studies), we incorporate both power and distribution of interferences into consideration. We show where the Gaussian assumption may give misleading answers and how our results in these cases are different from those obtained in the past. In part two and three of the thesis, we focus on the base station receiver. Specifically, we present effective joint detection techniques that have good performance-complexity tradeoff. Part two of the thesis introduces a class of novel multistage parallel interference cancellation algorithms based on stage-by-stage minimum mean-squared error (MMSE) optimization. We show that this scheme is capable of achieving significantly better performance than other algorithms with similar complexity. Part three of the thesis presents a low-complexity dual-mode multiuser detector that dynamically switches its detection mode between the matched-filter receiver and the decorrelator. We show that this detector is capable of achieving the performance of a decorrelator but with significant savings in processing power and complexity.by Mingxi Fan.Ph.D

    On the performance and capacity of space-time block coded multicarrier CDMA communication systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore