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System in a Multipath Fading Environment
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Abstract—Capacity estimation in a code-division multiple-ac-
cess system is closely related to power control schemes, which
complicates the analysis due to the interaction between the
signal power and the interference from other users and from
other paths. For a signal-to-interference ratio (SIR)-based power
control scheme, most previous work has been restricted to a
single-cell system or to a multiple-cell system neglecting the
effect of multipath fading. This paper is to give a theoretical
foundation to the possible reverse link capacity of a multiple-cell
system with perfect SIR-based power control, assuming two
different multipath Rayleigh fading channel models: uniform and
exponential power delay profiles. The effects of the numbers of
resolvable propagation paths and Rake fingers, and other system
parameters such as the required , the processing gain,
and the maximum allowable transmit power of a mobile station,
are investigated. The results are compared between single- and
multiple-cell systems. When the number of resolvable paths is one
or the number of Rake fingers is one, the link capacity becomes
zero in a multiple-cell environment. This can be avoided by the
use of antenna diversity. Antenna diversity reception is found
to linearly increase the link capacity as the number of antennas
increases.

Index Terms—Code division multiple access (CDMA), cellular
system, link capacity, power control.

I. INTRODUCTION

A FTER the first launch of analog mobile communication
systems, better known as first-generation systems, there

has been an explosive increase in the number of mobile
users in the last two decades. Even though second-generation
systems such as IS-95, GSM, and PDC are being successfully
operated in many countries [1], third-generation systems called
International Mobile Telecommunications-2000 (IMT-2000)
are required in the near future [2]. The driving forces are
higher system capacity, higher communication quality, and
flexible accommodation of a variety of wide-band services
with different data rates. Among them, the system capacity is
a key factor to compare the performances of various mobile
communication systems. Direct sequence code-division mul-
tiple access (DS-CDMA or CDMA for short) is being strongly
considered as a radio interface technology for IMT-2000

Manuscript received September 30, 1999; revised August 24, 2000.
D. K. Kim was with Wireless Laboratories, NTT DoCoMo Inc., Yoko-

suka-shi 239-8536 Japan. He is now with SK Telecom, Kyunggi-do 463-020
Korea (e-mail: kdk@ieee.org).

F. Adachi was with Wireless Laboratories, NTT DoCoMo Inc., Yokosuka-shi
239-8536 Japan. He is now with Tohoku University, Sendai 980-8579 Japan.

Publisher Item Identifier S 0018-9545(01)01139-2.

systems [3]. Unlike time-division multiple-access systems,
the capacity of a CDMA system is interference-limited. Many
approaches such as interference cancellation, smart antenna,
and fast transmit power control (TPC) are being actively studied
to reduce the interference from other users and hence increase
the link capacity.

Capacity is closely related toTPCschemes inCDMAsystems.
Many previous papers were based on strength-based fast TPC.
For example, Gilhousenet al. [4] calculated the capacity
of systems supporting voice traffic, and Ariyavisitakul [5]
simulated a strength-based fast TPC system. However, the
signal-to-interference ratio (SIR)-based fast TPC is employed
in IMT-2000 systems as well as in IS-95 systems due to its
potential for higher system performance. Different ways can
be implemented to measure the received instantaneous SIR; for
example, IS-95 systems can use automatic gain control (AGC) to
normalize the noise variance to unity [6], but IMT-2000 systems
can use the pilot symbols, which are transmitted on the reverse
link [7]. This potential was indicated by Ariyavisitakul [8] using
a simulation method. The sum of the interference from other
users is well approximated as a Gaussian noise, when observed
over a short-term time interval (which is defined as a time
interval enough to remove the instantaneous channel variations
due to fading but not to remove those due to shadowing),
due to central limit theorem for a large number of users.
So we use this approximation [15], [21], [23]. Thus, the
transmission quality represented by the bit error rate (BER)
can be evaluated using the signal energy per information
bit-to-short-term average interference plus background noise
powerspectrumdensityratio . Inamobilecommunications
system, the link capacity is often defined as the maximum
number of users per base station (or radio cell) to maintain the
probability that the received cannot satisfy the required

(this is called outage) at a prescribed value. Kim and
Sung [9] introduced a methodology for capacity estimation
for an SIR-based power-controlled system in a multiple-cell
environment and investigated the effects of the voice activity
factor, the required , the maximum received power, and
propagation parameters on the reverse (mobile-to-base) link
capacity. Kim and Sung [10] and Kim and Adachi [11] extended
the above analysis to a multicode CDMA system and an overlaid
multiband CDMA system, respectively. Fast TPC controls the
instantaneous transmit power, so that the received after
Rake combining is kept at the prescribed target value. Thus,
the multipath fading impacts the transmit power with fast
TPC and, accordingly, other cell interference. However, in the

0018–9545/01$10.00 © 2001 IEEE

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on March 05,2010 at 03:15:22 EST from IEEE Xplore.  Restrictions apply. 



KIM AND ADACHI: THEORETICAL ANALYSIS OF REVERSE LINK CAPACITY 453

above theoretical works, the impact of multipath fading on
the other cell interference was neglected, and was included
only in the value of required or target .

Rake combing is a unique method of CDMA systems to
combat the multipath fading [12], [13]. Various combining
techniques for Rake receivers were analyzed in a multipath
fading environment [14]. Kchao and Stuber [15] approximately
derived the area averaged BER of a single cell system for
three different combining techniques in a multipath fading
environment. They also considered a multiple cell environment,
where the base station (BS) was assumed to receive the same
total average signal power from each mobile station (MS)
[16]. Adachi [17] evaluated the achievable BER performance
for an SIR-based fast TPC scheme under a multipath fading
environment. However, his analysis focused on a single cell
system. Adachi [18] also investigated the Rake combing effect
in a multiple cell environment, where he used Monte Carlo
simulations, but other cell interference was modeled based on
the average interference ratio(constant value) of the other
cell and the own cell. So far, the multiple cell capacity under
a multipath fading environment has not been mathematically
dealt for an SIR-based fast TPC scheme, mainly because
the fast TPC complicates the analysis due to the interaction
between the signal power and the interference from other users
and from other paths.

The purpose of this paper is to give a theoretical foundation to
the possible reverse link capacities of single- and multiple-cell
systems in a multipath fading environment, where the SIR-based
fast TPC is performed perfectly with an-finger Rake receiver.
The theoretical investigation of the effects of the number of re-
solvable propagation paths and the number of Rake fingers are
given assuming two different multipath Rayleigh fading channel
models: uniform and exponential power delay profiles. How the
numbers of paths and Rake fingers affect the link capacities of
single- and multiple-cell systems differently is discussed in de-
tail. The effects of the required , the processing gain, and
the maximum allowable transmit power of an MS are also dis-
cussed in this paper. In addition, antenna diversity reception is
investigated.

II. M ULTIPATH FADING CHANNEL MODEL

Due to the reflection by obstacles such as buildings, there are
many propagation paths with different delays and different am-
plitudes. The multipath fading is called frequency selective if
multiple resolvable paths exist. It is assumed in this paper that
each resolvable propagation path suffers from the same atten-
uation according to the distance and the same shadowing. A
DS-CDMA receiver can resolve the multipath channel into sev-
eral frequency-nonselective paths with discrete delays of a mul-
tiple of chip duration . The equivalent low-pass impulse re-
sponse of the multipath fading channel between the MS of in-
terest and the BS can be expressed as [15], [17]

(1)

where and are the complex-valued path gain and time

delay of the th path, respectively, and is the delta function.
satisfies the following condition:

(2)

where denotes the ensemble average. The resolved path
with a time delay of represents a group of unresolvable paths
having time delays over the interval .
Assuming a wide sense stationary uncorrelated scattering
(WSSUS) channel model, can be modeled as an indepen-
dent zero-mean complex Gaussian process due to the central
limit theorem. Then, follows a Rayleigh distribution
and is exponentially distributed [19]. Since the fading
maximum Doppler frequency can in most practical cases be
assumed to be very low compared to the data modulation
symbol rate [17], the time dependency of the path gain is
dropped hereafter and the notationis used instead.

The multipath fading channel can be characterized by the
power-delay profile. Two power-delay profiles are assumed in
this paper: uniform and exponential

, for a

uniform profile

, for an
exponential profile

(3)

where is the total number of paths in a uniform profile. In
an exponential profile, is implicitly set at infinity and is a
decay factor. If 90% of signal power can be captured on average
by using from zeroth path to the th path, is equal to
2.3 .

III. RECEIVED SIGNAL POWER AND OTHER CELL

INTERFERENCE

It is assumed that multipath fading has no effect on the base
station (BS) selection because a home BS is selected based on
a short-term average signal power level, i.e., the instantaneous
power variation due to multipath fading is removed and only
the influence of shadowing and distance-dependent path loss re-
mains (hereafter, unless otherwise stated, the term “short-term
average” is dropped for simplicity). In [9]–[11], the relation be-
tween the received signal power and the other cell interference
was derived for a given required (the impact of multipath
fading on other cell interference was neglected and was only
included in the value of required ). The following were
assumed:

1) ideal hexagonal cell structure with a unit cell radius;
2) the zeroth cell of interest and 18 other cells with index

in the first and second tiers;
3) spatially uniform density of users , where

is the number of users of each cell;
4) perfect fast TPC;
5) the best cell site that has the least product of path loss

and shadowing is always selected for each user to com-
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Fig. 1. The power levels at an MS, its home BS with an indexk, and the zeroth BS if power control is perfect with an idealM -finger Rake receiver.

municate with (this is equivalent to selection type of soft
handoff);

6) Gaussian model for other cell interference power; hence,
the distribution function can be expressed using the mean
and variance.

Let be the path-loss exponent and the shadowing follow a
log-normal process with standard deviationdB and mean
dB. Then, when neglecting the impact of multipath fading, the
mean and variance of total other cell interference power

can be approximated as [9], [10]

(4)

(5)

where
ensemble operation;
received power.

, , and are given by

is the distance from an MS to theth BS. and are
expressed as

The values , , and depend only on
and . They can be numerically obtained by considering the first
and second tiers. For and dB, ,

, and . The effect of different
values of and can be found in [9].

Now, let us consider a multipath fading environment. If taking
into account the ideal fast TPC in a multipath fading environ-
ment, we need to modify (4) and (5), reflecting instantaneous
variations in the path gains. The BS is assumed to have an ideal
Rake receiver with -finger, where is less than or equal to

for a uniform profile. Fig. 1 shows the instantaneous power
levels at an MS, its home BS indexed, and zeroth BS. Let

denote the squared path gain of theth path to the th
BS. s are exponentially distributed and mutually indepen-
dent for different and , whose means are determined only
by the path index. Without fast TPC, the instantaneous signal
power received at antenna can be represented as

(6)

where denotes the transmitted signal power from an MS. The
terms in square brackets denote the power variation due to mul-
tipath fading. The receiver just collects the instantaneous power
from paths by Rake combining. Therefore, the instantaneous
received signal power after Rake combining becomes

(7)

Assuming perfect TPC, the transmit power is controlled so that
the instantaneous received signal power becomes the minimum
power level satisfying the received the target value.
Hence

(8)

and is now given by

(9)
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Fig. 2. E[1=X] for various values ofL (orL ) andM for uniform and exponential profiles (L = 2:3=�).

where

(10)

Substitution of (9) into (6) gives

(11)

Since the instantaneous power transmitted from the MS suf-
fers both path loss and multipath fading, the instantaneous in-
terference power from an MS that belongs to theth BS to
the zeroth BS can be expressed as

(12)

where represents the effect of multipath fading to the zeroth
BS and is given by

(13)

Since is independent from and its expectation is
equal to one from (2), theshort-term averageinterference power

becomes

(14)

Since is independent of, is used instead for simplicity.
As mentioned in Section II, multipath fading is assumed to have
no effect on the BS selection. Moreover,and depend only
on the type of power delay profile and the number of Rake fin-
gers. They are independent of the location of an MS (i.e., which
MS transmits the signal and which BS receives the signal). The

total other cell interference poweris the sum of (14) associ-
ated with all users communicating with theth BS for all .
Hence, the mean and variance of the total other cell inter-
ference power in a multipath fading environment can be modi-
fied as

(15)

(16)

and largely depend on , , and power delay profile. It
should be pointed out that compared with the case of no multi-
path fading or neglecting the multipath fading effect [see (4) and
(5)], and always become larger by a factor of .
Hence, the link capacity becomes smaller when the multipath
fading exists due to increased other cell interference with fast
TPC. This was first indicated by Adachiet al. in [23].

is the sum of exponentially distributed random vari-
ables. For a uniform profile, is the sum of statistically
independent and identically distributed random variables and
thereby has an Erlang distribution [20]

(17)

where is the step function. In this case, is given by

(18)

On the other hand, for an exponential profile, can be
obtained numerically. Fig. 2 shows the value of for
various values of (or ) and for both profiles. For

, becomes infinite irrespective of power-delay
profile shape. If is equal to (or ) for , the
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value of is smaller for a uniform profile than for an
exponential profile because 10% power cannot be captured
on average for an exponential profile. For , the
value of is greatly reduced by increasing from one
to four, but the reduction is almost saturated asincreases
beyond four.

IV. COMPUTATION PROCEDURE FORREVERSELINK CAPACITY

A. Expression for After Rake Combining

Assuming an ideal Rake combiner with-finger, the
of the zeroth MS of the zeroth cell is the sum of the of
each path and can be expressed as [15], [17]

(19)

where is the of th path. Since all users’ re-
ceived signals on the reverse link are time asynchronous and
the time delay of the th path varies, is given, from
(11), by [9], [10]

(20)

with being the processing gain defined as , where is
the spreading code chip rate andis the information data rate,
and being the total other cell interference power. The factor 2/3
in the denominator of (20) is due to the assumption of square
chip pulse. The first term inside of the denominator is the
own cell interference. In (20), the signal power and interference
power have been normalized by the background noise power

, where is the two-sided background noise power
spectrum density [thus, and are now the signal-to-noise
power ratio (SNR) and the interference-to-noise power ratio
(INR) at the receiver input, respectively]. represents
of the th MS and are statistically independent and identically
distributed random variables. denotes the squared path gain
of the th path from the th MS of the zeroth cell, and its distri-
bution depends only on the path index. paths are selected
to have the highest power on average.

For a large number of users, in the denominator has
a negligible impact and can be omitted. Hence, substitution of
(20) into (19) yields

(21)

B. Obtaining and

The target value of is set at , and is the minimum
power level satisfying , as defined in (8). Then,
can be expressed as

(22)

Since , , and are mutually independent, can
be expressed as

(23)

For the uniform profile, is given by

(24)

and for the exponential profile

(25)

Since we are assuming that the distribution of the total other
cell interference power is Gaussian, the probability density
function of can be expressed as

(26)

Using (26), and can be calculated from

(27)

(28)

where

and

and is the allowable maximum SNR. It is very important
that the received SNR be limited by in an SIR-based fast
TPC system because the system can only be stable by this lim-
itation.
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The calculation steps for and are as follows.

1) Calculate from (23)–(25) and check if
for a given .

2) Set and at zeros.
3) Calculate and from (27) and (28).
4) Calculate and from (15) and (16).
5) Repeat steps 3) and 4) until the differences between old

and new values of and are within a given bound.
For numerical examples, the differences are set to be less
than 1%.

C. Capacity Computation

The outage probability can be expressed as

Pr (29)

From (22), Pr can be obtained by

Pr

Pr (30)

Pr

(31)

System capacity can now be obtained in terms of the admis-
sible number of users keeping outage probability less than or
equal to a threshold. This threshold can be denoted as the max-
imum allowable outage probability, which is set at 0.01 for nu-
merical examples in this paper.

As a special case, let us consider a single-cell system. Since
there is no other cell interference, the link capacity can be di-
rectly obtained from (22) and is given by

(32)

For a uniform profile and when , from (22) and
hence . Therefore

(33)

Useful alternative expressions to (31)–(33) are given below.
Since is the maximum allowable SNR at the receiver
input, we have

(34)

TABLE I
SYSTEM PARAMETERS

where represents the allowable maximum value of inter-
ference plus background noise and . Hence, we
obtain for a multiple cell

Pr

(35)

and for a single cell

(36)

Equation (35) is used to compute the capacity of a multiple-cell
system. Equation (36) represents the capacity of a single-cell
system. As increases, the link approaches the inter-
ference-limited condition.

V. NUMERICAL EXAMPLES

Table I shows the system parameters, which are based on the
specification of IMT-2000 systems. For the numerical computa-
tion of the link capacity, the target is necessary. To obtain
the target for acquiring BER , an SIR-based fast
power-controlled reverse link with convolutional coding of rate
1/3 and interleaving length of 10 ms was computer simulated in
a Rayleigh fading environment with Vehicular-B power-delay
profile [22]. It was found from our computer simulation that an

target value dB is required to achieve BER
. Propagation parameters and dB are as-

sumed. These parameters are used in this paper unless otherwise
stated.

A. Single-Cell Case

Fig. 3 shows the link capacity for both profiles in a single-cell
environment for varying the values of(or ) and . When

is equal to for a uniform profile, link capacity is the same
irrespective of because and always in (22). For
an exponential profile, the capacity becomes zero for be-
cause of the impact of the infinite value of on (
in this case). For , the capacity at increases
as increases due to the reduction inand . When

(or ) , the capacity for an exponential pro-
file is approximately 87% of the capacity for a uniform profile.
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Fig. 3. The link capacity for various values ofL (orL ) andM for uniform and exponential profiles in a single-cell environment.

Fig. 4. The link capacity for various values ofL andM for a uniform profile in a multiple-cell environment.

To achieve the same amount of capacity for a uniform profile,
more than 2 Rake fingers are required for an exponential
profile. According to the profiles, different trends are observed
by varying the value of for the same value of (or ).
For an exponential profile, since additional power to be cap-
tured becomes smaller by adding a path with a longer path delay,
the capacity increase tends to be saturated asincreases. On
the other hand, the same power can be captured on average in
each path for a uniform profile. Hence, the capacity tends to in-
crease linearly as increases. It is interesting to note that the
single-cell capacity for for a uniform profile is the same
as the capacity when the impact of multipath fading is ignored,
which can be easily expected from (22)–(24).

B. Multiple-Cell Case

Fig. 4 shows the link capacity for a uniform profile in a mul-
tiple-cell environment. As shown in (15) and (16), the mean
and the variance of total other cell interference depend on the
number of Rake fingers. For , the infinite value of

causes the link capacity to be zero even when
because the other cell interference power becomes infinite. As
more paths are used for a Rake receiver, the value of
can be reduced but saturated, as shown in Fig. 2. Therefore, for

, as increases, the capacity can be increased but sat-
urated and approaches more closely to the capacity of the case
when the impact of fading is neglected. For , the ca-
pacity is approximately 57% of the single-cell capacity. (It was
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Fig. 5. The link capacity for various values ofL andM for an exponential profile in a multiple-cell environment.

found that the multiple-cell capacity is approximately 60% of
the single-cell capacity when neglecting the impact of the mul-
tipath fading on fast TPC [9], [10]. This agrees with our numer-
ical result.)

Fig. 5 shows the capacity for an exponential profile in a mul-
tiple-cell environment. Similar trends as in a single-cell environ-
mentcanbeobservedforasamevalueof .Thecapacity inthe
case of is approximately 57% of the single-cell
capacity (see Fig. 4) and is approximately 86% of that for a uni-
form profile (see Fig. 4). It is found that multiple-cell capacities
in this paper for both uniform and exponential profiles are mostly
consistent with the previous simulation results in [18].

C. Comparison Between Single and Multiple-Cell Cases

The multiple-cell capacity has a different trend from the
single-cell capacity according to the numbers of paths and
fingers. Table II compares the system capacities for various
numbers of paths when for a uniform profile. The
multiple-cell capacity becomes zero when , as indicated
in the previous subsection. Thus, when , intentionally
added multipaths or antenna diversity reception should be
used to avoid null capacity, which occurs because the value of

becomes infinite and therefore, the other cell interfer-
ence power becomes infinite, as mentioned in Section V-B.
The effect of antenna diversity reception will be investigated
in the following section.

Table III shows a different trend of single-cell capacity for
the case of exponential profile when . Unlike the
case of uniform profile, single-cell capacity is also influenced
by , which has already been illustrated in Fig. 3.

D. Impact of the Target Value of Fast TPC

Fig. 6 investigates the effect of , where the single- and mul-
tiple-cell capacities are obtained for both profiles. It can be un-

TABLE II
THE SYSTEM CAPACITIES IN SINGLE- AND MULTIPLE-CELL ENVIROMNENTS

WHENM = L FOR A UNIFORM PROFILE

TABLE III
SYSTEM CAPACITIES IN SINGLE- AND MULTIPLE-CELL ENVIROMENTS WHEN

M = L FOR AN EXPONENTIAL PROFILE

derstood that from (33), the link capacity is inversely propor-
tional to . Since the effect on link capacity is negligible,
the effect of can be estimated from these results. Doubling the
value of is equivalent to decreasing the value ofby half in
view of link capacity.

E. Impact of the Transmit Power Limitation

So far, only the received power is assumed to be limited and
the transmit power of an MS is assumed to be infinite. In a
practical system, the transmit power is limited. Below, the SNR
equivalent to the maximum transmit power is assumed to be 130
dB. Then, the link capacity varies according to the coverage size
of each BS (or cell size). For example, let us consider a special
case where for a uniform profile in a single-cell envi-
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Fig. 6. The link capacity for varying the value of for M = L (or L ).

ronment. Since and from (9) and (22), the instanta-
neous transmit SNR at an MS can be expressed as

(37)

Assuming a circular cell with a radius ofand a uniform distri-
bution of users for simplicity, the link capacity can be expressed
by

Capacity (link capacity when users are located at

(38)

where can be obtained as the maximum value ofsatisfying

Pr dB

Fig. 7 shows the link capacity for various values of the cell size
and the number of paths. The link capacity largely depends

on the distance and drastically varies in the range of . If
the transmit power of an MS is limited in an SIR-based fast TPC
system, the user around the cell boundary cannot meet the re-
quired more frequently than the user near the BS receiver.
Therefore, as the cell becomes larger, the total link capacity re-
duces when the transmit power of an MS is limited.

VI. A NTENNA DIVERSITY RECEPTION

Let us consider a uniform profile. Since and
from (18), the value of [1 ] becomes infinite

if . This means that the multiple-cell capacity becomes

zero if , as discussed in the previous section. This is also
true for the exponential profile. To avoid this situation, we need
to adopt antenna diversity in the multiple-cell system using a
narrow-band CDMA, where the number of resolvable paths is
one at a high probability.

A. Received Signal Power and Other Cell Interference

When -branch antenna diversity is used, number of
-finger Rake combiner outputs, each associated with

different antennas, are just combined (this is equivalent to
-finger Rake receiver). It can be understood from this

observation that when-branch antenna diversity is used, the
instantaneous transmit power is expressed by (9) by replacing

with

(39)

where is the square path gain of theth path to the th
BS experienced on theth antenna. The instantaneous received
signal power on theth antenna, corresponding to (11), is ex-
pressed as

(40)

where

(41)

Since is independent of and its expectation ,
the mean and variance of the total other cell interference
power in a multipath fading environment with antenna diversity
reception are obtained from (15) and (16), respectively, by re-
placing with (39).
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Fig. 7. The link capacity for varying the cell sizeR whenM = L for a uniform profile in a single cell environment (maximum of transmit power= 130 dB).

Fig. 8. The link capacity for varying the value ofJ for M = L (or L ) = 4.

Let us obtain for the case of uniform profile. For
uncorrelated antennas (i.e., s are mutually indepen-

dent for different and ), is obtained by simply letting
in (17) and is given by

(42)

Thus, we can obtain

(43)

From (43), even when , does not become
infinite if . Furthermore, when , be-
comes

for large

This means that the average interference power can be reduced
by a factor of , thereby increasing the capacitytimes. For
the exponential profile, the value of can be obtained
numerically.
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B. Capacity Computation

The of the zeroth MS of the zeroth cell is the sum of the
of each path for all antennas. Corresponding expressions

to (19) and (20) are given by

(44)

(45)

where

(46)

For a large number of users, in the denominator
of (45) has a negligible impact and can be omitted. Since

is independent of and , (44) can be
approximated as

(47)

Since and letting

, we obtain

(48)

where and is given by (24) and (25)
for the uniform profile and the exponential profile, respectively.
Furthermore, since s for , , are mutually
independent

is the same for all and . Hence, from

(49)

we obtain

for all (50)

As a consequence, (47) becomes

(51)

The target value of is set at , and is the minimum
power level satisfying , as defined in (8). Then
can be expressed as

(52)

which corresponds to (22) of no antenna diversity case.
Using the same procedure described in Section IV, the values

of and are obtained. Finally, the outage probability can
be calculated from

Pr

with

Pr

(53)

In the case of a single-cell system, there is no other cell in-
terference. The link capacity can be directly obtained from (52)
and is given by

(54)
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For a uniform profile and when , and hence
. Therefore

(55)

The use of antenna diversity increases the capacitytimes com-
pared to the no antenna diversity case. This is also true in the
multiple-cell case.

C. Numerical Examples

Fig. 8 shows the single- and multiple-cell capacities for var-
ious values of when (or ) . Both capacities
linearly increase as increases. Single- and multiple-cell capac-
ities have slightly different trends according to the power-delay
profile. For a single-cell case, from (55), the capacity is exactly
proportional to for a uniform profile. On the other hand, for an
exponential profile, and is reduced as increases.
Hence, from (54), the capacity is increased more than just
times for an exponential profile.

The multiple-cell capacity for an exponential profile is
84 89% of that for a uniform profile; hence, the slopes are
different for uniform and exponential profiles. The percentage
slightly differs according to the numberof antennas because
of the different impact of on and other cell
interference. It slightly increases but saturates asincreases.
Similar trends are observed for single- and multiple-cell cases.

VII. CONCLUSION

The reverse link capacity was theoretically evaluated for
a CDMA system in a multipath fading environment. Ideal
Rake combining was assumed for a BS receiver, and two
different power-delay profiles were considered for modeling
the multipath fading channel: uniform and exponential profiles.
The multiple-cell capacity differs from the single-cell capacity
according to the numbers of resolvable propagation paths
and Rake fingers and the power-delay profile. In a single-cell
environment, the link capacity is independent of the number of
paths when for a uniform profile and is the same as
neglecting the impact of multipath fading. On the other hand,
the capacity for for an exponential profile varies
according to . To achieve the same amount of capacity as
that for a uniform profile, more than 2 fingers are required
for an exponential profile. In a multiple-cell environment, the
capacity for (or ) can be increased but saturated
by increasing the number of paths. When (or )

, the multiple-cell capacity is approximately 57% of the
single-cell capacity for both profiles, and the multiple-cell
capacity for an exponential profile is approximately 86% of
that for a uniform profile. The capacity is found to be inversely
proportional to and vary according to the cell size if there is
a limitation on the transmit power of an MS.

When the number of resolvable paths is one or the number of
Rake fingers is one, the link capacity becomes zero especially
in a multiple-cell environment because of the infinite value of

. This can be avoided by using antenna diversity recep-
tion, which was found to linearly increase the link capacity as
the number of antennas increases.

In this paper, the impact of multipath fading during soft
handoff was not considered, which may affect and,
accordingly, system performance. This impact is left for further
study.
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