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Abstract

In this thesis we investigate efficient modulation and detection techniques for the up-
link (i.e. transmission from mobile to base station) of a DS-CDMA network. Specif-
ically, the thesis contains three parts. In the first part, we focus on the mobile
transmitter. In particular, we evaluate and compare the spectral efficiency of two
promising variable rate DS-CDMA transmission techniques, multicode (MCD) and
variable-spreading-gain (VSG), under the presence of multiple-access (user-to-user)
interferences (MAI) and multipath interferences. The uniqueness of our study is that
in bit-error-rate evaluation, instead of approximating the interference as Gaussian
noise (which has been done in most of the previous studies), we incorporate both
power and distribution of interferences into consideration. We show where the Gaus-
sian assumption may give misleading answers and how our results in these cases are
different from those obtained in the past. In part two and three of the thesis, we
focus on the base station receiver. Specifically, we present effective joint detection
techniques that have good performance-complexity tradeoff. Part two of the thesis in-
troduces a class of novel multistage parallel interference cancellation algorithms based
on stage-by-stage minimum mean-squared error (MMSE) optimization. We show that
this scheme is capable of achieving significantly better performance than other algo-
rithms with similar complexity. Part three of the thesis presents a low-complexity
dual-mode multiuser detector that dynamically switches its detection mode between
the matched-filter receiver and the decorrelator. We show that this detector is ca-
pable of achieving the performance of a decorrelator but with significant savings in
processing power and complexity.

Thesis Supervisor: Kai-Yeung Siu
Title: Associate Professor
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Chapter 1

Introduction

Direct-sequence spread-spectrum (DSSS) modulation technique has been developed

since the 1950's [52]. The initial applications were primarily military related such

as anti-jamming tactical communications, guidance systems, and experimental anti-

multipath systems [59, 69]. With the surge of personal wireless communication sys-

tems in the last one and half decade, DSSS modulation became the foundation of the

physical layer of a widely adopted multiuser wireless communication system known

as the direct-sequence code-division multiple-access (DS-CDMA) system. In this the-

sis, we investigate practical physical-layer modulation and detection techniques for

wireless DS-CDMA system that exhibit robust performance in the presence of inter-

ference. In this chapter, we first provide some essential background information on

DS-CDMA system in section 1.1. Those who are familiar with CDMA can skip over

this section and go to section 1.2, where we describe the problems addressed by the

thesis and summarize our key contributions.
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1.1 Background

1.1.1 DSSS modulation and its application to multiuser com-

munication networks

Direct-sequence spread-spectrum (DSSS) system is a digital transmission technique

in which the signal occupies a bandwidth in excess of the minimum necessary to

send the information [52]. The bandwidth expansion is accomplished through the

so-called "direct-sequence" spreading modulation, in which a fast, data-independent

code sequence, defined as the spreading code, causes rapid phase transitions in the

data-bearing carrier. Each element of the code sequence is referred to as a chip,

and hence the rate that the spreading code is running at during DSSS modulation is

referred to as the chip rate. The ratio between the chip rate and the data (symbol)

rate (before spreading) is called the processing gain, or the spreading gain, which

measures the amount of bandwidth expansion due to the spreading process. An

illustration of DSSS modulation in both time and frequency domains is illustrated

in figure 1-1. To recover the data of a DSSS user, the receiver normally employs

matched-filter detection that correlates the received signal with the spreading code

in each symbol interval.

In essence, DSSS modulation trades power for bandwidth to combat interferences.

One of the main original motivations of DSSS modulation is to enhance the anti-

jamming capability of a power-limited single-user communication system by providing

the user additional degrees of freedom (or dimensions) after spreading [59]. DSSS

modulation can be viewed as a process that projects a low dimensional (i.e. narrow

frequency-band) data signal onto a high dimensional (i.e. wide frequency-band) signal

space. The total number of dimensions in the system after spreading is typically N

times that before spreading, where N is the processing gain. The philosophy is that

since the user data only occupies one of the N available dimensions, a large N will

give the jammer a hard time to guess where to concentrate the energy of its jamming

signal in the signal space.
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DSSS b(t) s(t) = b(t)c(t)
Modulation

c(t)

Frequency B(f)
Domain C(f) S(t)
Effect

Time b(t)

Domain c(t)
Effect

s(t)

Symbol Interval (T )

Chip Interval (T)

Figure 1-1: Direct-sequence spread-spectrum modulation illustration

Interestingly, these extra dimensions also turn out to be very useful for multi-

plexing subscribers in a multiuser communication system. Theoretically, by assigning

different users different spreading codes, we have mapped each user onto a unique

"code" dimension in the system, which then allows all users to simultaneous transmit

over the same frequency band without significantly interfering each other. The total

number of available dimensions in the system is determined by the spreading gain.

This is exactly the principle behind the well-known direct-sequence code-division

multiple-access (DS-CDMA) system that is widely used in cellular communications

today. In a DS-CDMA system, the data of each user is spread via DSSS modulation

with a user-specific spreading code, which is also used by the receiver to "de-spread"

or demodulate the data for the desired user. The spreading codes are typically de-

signed to have low cross-correlations to minimize interferences between different users.

There are many benefits for using DS-CDMA for mobile radio communication, which

we discuss next.
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1.1.2 Why use DS-CDMA for mobile communication?

Cellular perspective

Before showing the advantages of using DS-CDMA for mobile communications, we

first introduce briefly the cellular concept, which is the foundation of mobile radio

networks today. Prior to the deployment of cellular networks, the design objective of

early mobile radio system was to achieve a large coverage area by using a single, high

powered transmitter with an antenna mounted on a tall tower [58]. While this indeed

achieves good coverage, the total number of users that the system can accommodate

is extremely limited due to scarcity of the available wireless spectrum, which has to

be shared among all users over a very large geographical region.

The birth of cellular concept was a major breakthrough in solving the spectral-

congestion problem [4, 20]. Instead of having a single, high-powered transmitter, a

cellular network uses many small base stations (cell site) with relatively low transmit

power, each serving a small geographical area (i.e. a cell). Since propagation loss of

the radio signal is proportional to the nth power of the propagation distance, where

n is between 2 and 6 depending on the environment (large for urban area and indoors

and small for rural and light-of-sight connections) [58], the same frequency spectrum

can be reused at distant cells without causing much interference among each other.

The concept of frequency reuse essentially enables the network to serve an unlimited

number of users using finite spectrum, since, if the user population increases beyond

the capacity of the existing cell, a new cell site can always be built to accommodate

the demand.

The frequency reuse pattern of a typical cellular network is illustrated in figure

1-2. The hexagonal cell shape shown in the figure is a conceptual and simplistic model

of the radio coverage for each base station. In a typical cellular network, the overall

available spectrum is divided equally into R disjoint frequency bands, each of which is

reused in every R cells that are far apart enough from each other to minimize intercell

interferences. In figure 1-2, we have R = 3. R is called the frequency reuse factor, and

its value depends on the cell size, distance between the cells, error performance target

14



of the system, and the spectrum-sharing strategy used within each cell. A smaller R

implies a more spectrally efficient system, as well as easier frequency planning.

SPECTRUM ALLOCATION

Spectrum Division

Frequency

Channel Channel Channel
Group 1 Group 2 Group 3 REUSE FACTOR R = 3

Figure 1-2: Frequency assignment in a cellular network, reuse factor = 3

Within each cell, all users make calls through the base station positioned at the

center of the cell. The transmission link from the base station to user terminals is

called the forward link or the downlink, while communication from user terminals to

the base station is named the reverse link or the uplink. A key design consideration

for the cellular network is how to let users share the available spectrum within each

cell to communicate with the base station in both links. One method is to divide

the total spectrum within the cell into small disjoint bands and assign one frequency

band to each user. This is the well-known frequency-division multiple-access (FDMA)

concept. The first generation (analog) cellular systems are mostly FDMA-based. For

instance, the first U.S. cellular telephone system - Advance Mobile Phone Service

(AMPS) [87], developed by AT&T Bell Labs in the 1970s and first deployed in 1983 in

Chicago, is a FDMA system that assigns a 30 KHz band to each user in both up- and

downlink. The 30 KHz band was later reduced to 10 KHz in the N-AMPS standard

(developed by Motorola) using digital techniques to increase the spectral efficiency

[58]. The first cellular system in Europe, the European Total Access Communication

System (ETACS), developed in the 1980's, was also FDMA-based and in fact almost

15



identical to AMPS, except that the bandwidth for each user is 25 KHz per link

[38]. The advantage of FDMA system is its low cost and simplicity. Its major

drawback, however, is the low spectral efficiency due to large spectral gaps between

adjacent frequency bands [58]. Since the analog bandpass filter used in practical

FDMA systems often does not have a sharp cutoff, these gaps are necessary to prevent

severe cross-talks or adjacent-channel interferences.

With the aid of digital technology, a second spectrum-sharing mechanism, time-

division multiple-access (TDMA), was proposed to increase the spectral efficiency.

In TDMA, the spectrum within a cell is divided into a number of wider frequency

bands, each shared by several users. Within each band, every user is assigned a time

slot and therefore transmits only a fraction of the time. With wider frequency bands,

the waste of bandwidth due to the spectral gaps in TDMA is much less than that

in analog FDMA systems, even though a guard-time needs to be inserted between

time-slots for TDMA systems to avoid interference. Most of the second generation

(digital) cellular networks are TDMA-based. A well-known example is the Global

System for Mobile (GSM) developed in Europe. In GSM, the available frequencies

within a cell is divided into channels of 200 KHz wide, each of which is then used to

accommodate eight full-rate users using eight time-slots, each of 576.9/psec duration

[47]. Another example is the US-TDMA (IS-54 and IS-136), which uses 30 KHz wide

frequency channel to serve three full-rate users, with each user assigned a time-slot

of 6.667ms [14].

In contrast to FDMA and TDMA, in a DS-CDMA system, all users in the cell

spread their signal over the entire available spectrum and transmit at the same time.

What differentiates one user from another, as mentioned before, is the user-specific

spreading code. DS-CDMA is the core technology used in IS-95, a popular second

generation (digital) cellular standard that is mainly developed by Qualcomm and

deployed in North America and parts of Asia including South Korea and China.

In IS-95, the transmitted signal of all users spread over the same 1.25 MHz wide

spectrum in a cell, and the typical spreading gain is 64 [65]. A typical chip rate

used in IS-95 is 1.2288 mega-chips per second (Mcps), which corresponds to a chip
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duration of approximately 0.8 microseconds. Figure 1-3 illustrates the differences

between FDMA, TDMA and DS-CDMA.
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Figure 1-3: Multiple access technologies in cellular network

Within each cell, given the same amount of spectrum, it can be shown that in

theory, the total number of available dimensions is the same for FDMA, TDMA, and

DS-CDMA [10]. So what is the advantage of using DS-CDMA over the other two? To

answer that, we have to first look beyond single-cell setting and consider frequency

planning for a large cellular network. In this aspect, both FDMA and TDMA systems

have a frequency reuse factor that is greater than one. This means that neighboring

cells in these systems cannot use the same frequency. A typical frequency reuse factor

for analog FDMA system is 7, while for TDMA system, the reuse factor is normally

between 4 and 7, and at best 3 [21]. The need for frequency reuse adds significant

trouble to frequency planning. For example, if we need to build a new base station

within an existing cell to accommodate the booming subscriber population, frequency

allocation for all near-by cells in this case will have to be re-calculated and re-assigned.

For DS-CDMA, however, the same spectrum can be reused in every cell, as long as

the neighboring cells employ different sets of spreading codes. Hence, the frequency

reuse factor in a DS-CDMA system is 1. The feature of universal frequency reuse

offered by CDMA network significantly simplifies the task of cellular planning, and
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this is in fact one of the main reasons why DS-CDMA is chosen as the dominant

technology for the coming third generation (3G) cellular systems, such as wide-band

CDMA (WCDMA) (chip rate 4.096 Mcps) and CDMA2000 (chip rate 3.6864 Mcps)

[2].

In addition to universal frequency reuse, DS-CDMA also has a soft-capacity, which

FDMA and TDMA systems do not have. In both FDMA and TDMA, the maximum

number of users allowed in each cell is hard-limited by the number of available fre-

quency or time slots, respectively. In DS-CDMA, however, the capacity is "soft"

in a sense that the total number of users in the system is only interference-limited.

Users can be admitted into the system as long as the bit-error rate of all in-cell users

are within their performance target. Consequently, any reduction in interferences

immediately gives room to new users. Thus, practical DS-CDMA systems often use

interference reduction schemes, such as sectorization and voice activity detection, to

increase the capacity. For instance, in IS-95 CDMA, each cell is divided into three

120 degree sectors using directional antennas, which, ideally, reduces the user-to-user

interference by a factor of three. In reality, the gain is slightly less due to spillage

between the sectors. In addition, IS-95 uses variable rate voice encoding together

with data-burst puncturing technique such that whenever a user is silent during a

conversation, the silence is detected and nothing is transmitted. In this way, the

low duty cycle of human speech further reduces the user-to-user interferences. It has

been suggested in [21] that with sectorization, voice activity detector, and universal

frequency reuse, a DS-CDMA network is capable of offering a much higher capacity

than FDMA or TDMA based networks.

Radio propagation perspective

In addition to its attractive features in cellular networks, a DS-CDMA system also

exhibits robust performance in a general mobile radio propagation environment at rel-

atively low cost. Unlike wire-line channels that are usually stationary and predictable,

radio channels are extremely random. The signal path between the transmitter and

the receiver in a wireless channel can vary from simple line-of-sight to one that is

18



severely obstructed by buildings, hills and trees. In addition, speed of the user ter-

minal also affects quality of the received signals. Generally, propagation models have

been made to describe the average received signal strength at a given distance from

the transmitter, as well as the variability of the signal strength in close proximity to a

particular location. Propagation models that predict the mean signal strength for an

arbitrary transmitter-receiver separation distance are called large-scale propagation

model, since they characterize signal strength over a large distance (on the order of

tens of kilometers). On the other hand, propagation models that characterize the

rapid fluctuations of the received signal strength over short travel distances or short

time durations are called small-scale or fading model [58, 83]. Communication link

between a mobile subscriber with its designated near-by base station can be typically

described using small-scale fading model, which we briefly describe next.

The small-scale fading effects are mainly created by the existence of time-varying

multiple signal paths between the transmitter and the receiver, or in short, multipath

propagations. In succinct terms, multipath propagation introduces two types of dis-

tortions into the received signal. First, if the bandwidth of the transmitted signal is

larger than the coherent bandwidth [55, 83] of the channel (i.e. the portion of channel

frequency response that is approximately flat), or equivalently, if the symbol interval

is smaller than the delay spread of the channel, the received signal is going to suffer

from inter-symbol interferences (ISI), as multipath components of the the current

symbol may get into other symbol intervals and therefore cause signal smearing. In

such cases, an equalizer is needed to suppress the ISI. Second, due to movements of

the user terminal and the surrounding objects, the multipath components in general

vary with time. These randomly time-varying phases and amplitudes of the differ-

ent multipath components cause fluctuations in received signal strength and thereby

introduces fading. If there is no ISI, then we have frequency-non-selective or flat

fading, in which there is one signal path with time-varying amplitude. This signal

path is in fact the sum of many weak paths that arrive at the receiver in a very short

time interval [83]. If the time offsets between the paths are large enough to cause

ISI, then we have multipath or frequency-selective fading, in which the amplitude of
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each path varies with time. The amplitude of each faded path is in general modeled

as a Rayleigh random variable [55]. Without proper processing, fading significantly

degrades the quality of the received signal. For example, in a flat fading channel, the

error probability of a single user system only falls off with 1/SNR (where SNR is

the signal-to-noise ratio (SNR)), whereas in an ideal additive white Gaussian noise

(AWGN) channel, the error probability decreases exponentially with increasing SNR

[55].

Many wireless systems need to use equalization techniques to suppress multipath

interferences (ISI). For example, in a TDMA system, equalization is necessary since

the bandwidth of the transmitted signal normally exceeds the coherent bandwidth

of the channel. There are many equalization techniques available, such as maximal

likelihood detection, zero-forcing, MMSE, precoding, and decision feedback [23, 36].

While equalizations can be quite effective, they also add significant complexity at the

receiver. In addition, equalization does not improve the system performance as far as

fading is concerned. To combat fading, diversity techniques are typically employed.

The underlying principle of diversity is to transmit the same information via different

links or channels to the receiver. The motivation is that the more transmission links

we use, the more likely that signal strength on one or more of the links will be

strong. Typical diversity techniques include frequency-diversity, time-diversity, path-

diversity, polarization diversity, and spatial diversity [55]. With diversity, the error

probability in single-user channel now falls off with the Lth power of 1/SNR, where

L is the order of diversity, i.e. the number of transmission links used [55].

In DS-CDMA, the chip rate used for DSSS modulation is typically much higher

than the coherent bandwidth of the channel. Whereas conventional modulation tech-

niques require an equalizer to suppress ISI, the CDMA spreading codes are designed

to provide low correlation (the larger the spreading gain, the lower the correlations)

between successive symbols. Thus multipath propagation in this case merely provides

multiple versions of the transmitted signal at the receiver. Furthermore, if the multi-

path components are delayed by more than one chip duration, they can be resolved

and combined using a RAKE receiver, which provides diversity gain to combat fading.
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The RAKE receiver, as shown in figure 1-4, is essentially a diversity receiver

designed specifically for DSSS modulated system, where the diversity is provided

by the observation that with large spreading gain, the multipath components are

approximately uncorrelated from one another when their relative propagation delays

exceed one chip interval [7]. The responsibility of the RAKE receiver is to combine

time-delayed versions of the original signal transmission (i.e. caused by multipath) in

order to improve the signal-to-noise ratio and obtain diversity gain at the receiver. It

accomplishes this task by first using a separate correlation (matched-filter) receiver

(a RAKE finger) for each of the resolvable multipath signals and then combining

the components from all RAKE fingers using a weighting scheme. Typical weighting

schemes used in practice include equal-gain combining (EGC) and maximal ratio

combining (MRC). In EGC, decisions from all fingers are assigned equal weights,

whereas in MRC, the weight assigned to each finger is proportional to its output

SNR, which can be easily measured at the matched-filter output. Subsequently, if M

correlators (i.e. M RAKE fingers) are used to capture the M strongest multipath

components, the order of diversity gain is approximately M. In the current IS-95

standard, the receiver in the downlink uses three RAKE fingers followed by MRC,
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while the uplink receiver uses four RAKE fingers followed by MRC. With RAKE

receiver, we essentially turn the originally undesirable multipath propagation into

diversity gain to combat fading. Yet, the complexity of RAKE receiver is much less

than most of the equalization techniques. Thus, DSSS is preferable over many other

modulation techniques from the radio propagation perspective because the use of

spreading and RAKE receiver together can lead to robust performance in multipath

fading channels.

1.1.3 DS-CDMA transceiver design for up- and downlink

We now examine and compare the transceiver block diagram for a typical DS-CDMA

user in the downlink (figure 1-5) and the uplink (figure 1-6). In both links, at the

transmitter, the information bits from the source coder (i.e. vocoder or data com-

pressor) of each user first go through channel encoder and interleaver, which offer

protections against random and bursty errors introduced by the channel, respec-

tively. The coded and interleaved symbols are phase modulated and spread by the

user-specific spreading code via DSSS modulation. The output after the spreading is

pulse-shaped and processed by the radio-frequency (RF) front-end before being trans-

mitted to the channel. In the downlink, signals from all users are transmitted by the

base station at the same time, while in the uplink, the user signals are transmitted

by the individual mobile terminals independently and undergo different transmission

delays and channel effects. In both cases, the channel contains signals from all in-cell

users distorted by the channel plus additive background noise that can be modeled as

zero-mean wide-sense stationary Gaussian process. At the receiver, for both up- and

downlink, a conventional DS-CDMA system employs single-user (i.e. matched-filter)

detection followed by RAKE combiner for each user. The detected data symbols are

further processed by the deinterleaver and the channel decoder to recover the original

information bits.

The design considerations for DS-CDMA system are different for the uplink and

the downlink. In the downlink, signals of all in-cell users are transmitted syn-

chronously by the base-station transmitter. This enables us to assign orthogonal

22



User K Encoder Data

Data Interleaver M duar

Usr1 Baseband

User K

Spreading Code
- to.

RF

RcvrdChannel

User K Ecoder Data

User k eInterleaver

User K

Spreading CCde

BASE STATION TRANSUTTER

Recovered ChannDeesil Matched Filter R F

and Device adt
User k eieraerRAKE Receiver Baseband

User k
Spreading Code

MOBILE RECEIVER FOR USER k

Figure 1-5: Standard DS-CDMA transceivers in the downlink

spreading codes to the subscribers to eliminate user-to-user interferences within each

signal path. For example, in IS-95, orthogonal Walsh-Hadamard codes are used for

spreading in the downlink. However, multipath creates problems for this system.

First, many orthogonal codes, such as Walsh-Hadamard, have poor autocorrelation

properties that makes the user vulnerable to multipath interferences from its own

signal. To alleviate this problem, the spread data of each user is also scrambled by

a long pseudo-random (PN) code with good autocorrelation property before trans-

mission [18]. In practical cellular systems, these PN codes are cell-specific and is

hence the same for all users in a given cell. The downlink transmitter of a standard

DS-CDMA user is shown in figure 1-7. Second, even though orthogonal codes are

used, data of different subscribers may still interfere with each other since the user

signals in different paths may not be orthogonal. To solve this problem, since the

(base-station) transmitter can tolerate significantly more complexity than the mo-
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Figure 1-6: Standard DS-CDMA transceivers in the uplink

bile receiver, transmitter precoding and adaptation techniques have been proposed to

tune out the user-to-user interferences, which has been addressed in a number of lit-

eratures [29, 79, 82]. The basic approach here is that, assuming a slowly time-varying

channel, the transmitter learns the channel first using pilot sequences and then as-

signs subscribers the appropriate spreading codes that lead to minimal user-to-user

interferences for the given channel.

In the uplink, which is the focus of this thesis, the interference conditions and

design considerations are very different from that in the downlink. Here, since all

user terminals transmit asynchronously to the base station, it is very difficult to find

enough spreading codes that yield low cross-correlations for all users at all possible

time-shifts. In fact, in practical systems such as IS-95, only long PN codes are used

for spreading. Therefore, with only matched-filter detection, the user signals interfere

with each other even in the same signal path. This leads to the well-known near-
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Figure 1-7: The downlink transmitter of a typical DS-CDMA user

far problem in CDMA, in which the transmitted signal of a user very close to the

base-station receiver can completely overpower the signal of a far-away user. The

user-to-user interference in the uplink, or the so-called multiple-access interference

(MAI), significantly limits the capacity of a DS-CDMA network.

There are several ways to alleviate MAI in the uplink. The first method is to

make the signal of each user look like white Gaussian noise to the others [21, 73, 78].

Hence, the MAI in this case can be treated as white Gaussian noise, which can be

effectively mitigated using powerful low-rate error-correction codes as in single-user

communication systems. This is in fact the philosophy used in the IS-95 uplink, which

assigns PN spreading codes of long period (241 - 1 chips) for each user and employs

rate 1/3 convolutional code with constraint-length 9 to combat interferences. Similar

approach is used in the uplink of several 3G standards such as wideband CDMA

(WCDMA) and CDMA2000 [2]. The main complexity of this approach resides in the
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link layer, where stringent power-control mechanism has to be designed and applied

to ensure that the received signal of all users have equal power, since otherwise the

distribution of MAI may no longer look Gaussian.

The second method is to employ strict timing and synchronization control for

the uplink transmission so that the signal of all users arrive at the base station at

approximately the same time. In this way, orthogonal or low-correlation spreading

codes can be employed to alleviate MAI. This technique is proposed in one of the

3G standards called time-division synchronous code-division multiple access (TD-

SCDMA) jointly developed by the Chinese Science Academy and Siemens [66]. In

TD-SCDMA, the maximum time-offset between the received signals of different users

does not exceed 1/4th of a chip interval. Uplink time control is also used in another

potential 3G technology called large area synchronous CDMA (LAS-CDMA) [41], in

which transmission of all users in the uplink are coordinated. The most interesting

aspect about LAS-CDMA is a very special class of spreading codes that is assigned to

the users. This set of codes, originally proposed in [64] and [16], exhibits ideal auto-

and cross-correlation for small time offsets, while the tradeoff is that the number

of codes that show such desirable correlation behavior is limited. The drawback of

this type of solutions in general is that synchronization in the uplink adds significant

amount of overhead and complexity to link layer and network operation.

The third solution is multiuser joint detection, which introduces additional signal

processing after the matched filter to improve the quality of decision statistics. The

justification here is that since the (base-station) receiver can tolerate more complexity

than the mobile transmitter, we can apply signal processing algorithms with moderate

computational complexity to jointly process the received signals of all users after

matched filtering. Unlike single-user (matched-filter) detectors that treat interferences

from other users as background noise, these joint detectors exploit the structure of

correlations between different users and incorporate this additional knowledge into

the detection process. The role of joint detection in a DS-CDMA base-station receiver

is shown in figure 1-8, where the joint detector follows immediately after the bank

of matched filters. The use of multiuser joint detector has many benefits compared
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to single-user detection. First, it has been shown that systems with joint detectors

typically have a much larger capacity than one with only matched-filter detection

[54, 71, 75, 76, 84]. Second, joint detection relaxes the need for stringent power and

timing control, which takes some processing complexity out of the link and network

layer. The tradeoff here is, however, that effective joint detection algorithms often

introduce significant complexity and cost in the physical layer, which limits its value in

practical implementation. A key contribution of this thesis is to design joint detection

detection techniques that exhibit good performance-complexity tradeoff.
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Figure 1-8: Standard DS-CDMA transceivers with joint detection

1.2 Summary of thesis contributions

In this thesis, we investigate efficient modulation and detection schemes for the uplink

of a DS-CDMA system. The first part of the thesis focuses exclusively on modulation
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and spreading modules at the mobile transmitter. In particular, we evaluate and

compare the spectral-efficiency of two promising variable data (symbol) rate DSSS

modulation techniques, multicode (MCD) and variable-spreading-gain (VSG) CDMA,

under the presence of MAI and multipath interferences. In the second part of the

thesis, we focus on joint detection techniques at the base-station receiver. Specifically,

we introduce two multiuser detectors with good performance-complexity tradeoff.

The first technique is a class of weighted parallel multistage interference cancellation

algorithms based on minimum mean-squared error (MMSE) optimization. The second

technique is a low-complexity dual-mode multiuser detector that dynamically switches

its detection mode between the simple matched-filter receiver and a computationally

intensive linear joint detector. In this section, we describe these topics in more specific

terms and summarize the main contributions of this thesis.

1.2.1 Analysis of variable rate DS-CDMA transmission tech-

niques

Problem

Early DS-CDMA systems are primarily designed for voice applications, in which all

users transmit at the same data rate. Recently, due to the surge of mobile internet

and multimedia applications, the network needs to deliver different types of data to

different users at different symbol rates, which cannot be accomplished using tradi-

tional single-rate systems. This motivates the design of variable data (symbol) rate

DS-CDMA systems.

To minimize the cost at RF front-end, it is desirable to vary the symbol rate

while keeping the chip rate (and thus the spectrum occupation of the transmitted

signal) fixed. For a constant chip-rate DS-CDMA system, there are two promising

variable data-rate transmission techniques. The first technique is called multicode

(MCD) CDMA, in which each user employs more than one spreading codes (code

channels) to transmit in parallel. The second scheme is called variable spreading-

gain (VSG) CDMA, in which each user uses a single spreading code but varies the
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symbol duration, or equivalently, the spreading gain according to the desired data

rate. Figure 1-9 illustrates the idea of MCD and VSG for a simple DS-CDMA system

with two users of different rates, in which the symbol rate of the high-rate user is twice

that of a low-rate user. In MCD-CDMA, the data symbols of the high-rate user is first

split into parallel low-rate symbol streams, and the symbols in each low-rate stream,

namely a code channel, is spread by a channelization code. Sum of the signals from

all parallel code channels is then transmitted. The channelization codes are chosen

to be orthogonal to minimize interferences between the parallel code channels. Since

the symbol rate in each parallel code channel is the same as that of a low-rate user,

each symbol in MCD is spread with the maximum processing gain. In VSG-CDMA,

the transmitter structure is relatively simpler. The high-rate user increases the data

rate by shortening its symbol interval. Since the chip rate is fixed, shorter symbol

interval leads to reduction in spreading gain. To maintain the same symbol energy

for all transmission rates (so that it is the same as that of a low-rate user or a MCD

user), the transmit power of a VSG high-rate user has to be increased proportionally

with the reduction in spreading gain. Figure 1-10 shows the role of the variable rate

modulation and spreading in the uplink transmitter.

MCD bi 71J7J
User L b2

c2L

VSG
User b b2

c71J7J 2

Low Rate
User b

c FF

Figure 1-9: Variable symbol rate transmission in DS-CDMA: Dual-rate

The key question that we are going to answer in this thesis is, for a dual-rate
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system, given the same error-rate target, which of the two schemes, MCD or VSG,

could lead to a higher capacity in the uplink, or from another perspective, given

the same operating environment, which scheme would yield a lower bit-error rate. In

essence, there are two main issues to be considered. First, since the transmitted signal

of the MCD high-rate user is the summation of the spread signals from all parallel

code channels, it has a much larger peak-to-average power ratio than the signal of

VSG high rate user. It is possible that the high-rate user signal may cause the low-rate

users in MCD-CDMA to have a worse error probability than those in VSG-CDMA.

Second, it has been hypothesized that the error performance of the VSG high-rate

user may be inferior to that of a MCD user due to the loss of spreading gain. Even

though both users have the same symbol energy, it is unsure whether we can trade

transmission power for spreading gain on a one-to-one basis.

The error performance of low-rate users has actually been studied in [25], which

showed through rigorous analysis that low-rate users in both systems exhibit the

same error performance. The error probability of the high-rate users has also been

addressed by a number of literatures [3, 49, 39, 68, 88], but the outcomes are debat-

able due to overly ideal assumptions in the system models. The most questionable

assumption made in majority of these studies is the standard Gaussian approxima-
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tion, which models all interferences in the system as zero-mean Gaussian random

variables. This approximation may give misleading results for realistic systems, as

will be seen in chapter 2 of the thesis. Another over-simplification often made is that,

in a multipath fading channel, the outputs from different RAKE fingers are assumed

to be independent of each other. In realistic systems, however, unless the spreading

codes have ideal autocorrelation, the RAKE finger outputs are always going to be

correlated, and sometimes the correlation carry a large weight in the final symbol

decision, as will be seen in chapter 2. Therefore, a thorough error-rate analysis for

the high rate user under more reasonable setting is necessary.

Thesis contribution: error-rate analysis for multirate DS-CDMA trans-

mission

In the first part of this thesis, we analyze the uplink error performance for high-rate

users in VSG and MCD systems from a perspective that is different from most of the

previous studies. We assume the use of random user-specific spreading codes at the

transmitter and the use of matched-filter detection followed by RAKE combining at

the receiver. Instead of making Gaussian approximations in error-rate calculation as

have been done in the past, our error analysis shows how both power and distributions

of the interference together affect the quality of the received symbols of the high-

rate user in VSG and MCD system. The outcome of the study not only enhances

fundamental understanding on the performance of MCD- and VSG-CDMA but also

allows us to recommend the "optimal" modulation technique for different channels

and interference environments.

Specifically, assuming both MCD and VSG users have the same operating envi-

ronment and the same symbol energy, we present two sets of results. First, we show

that if the uplink can be modeled as an ideal additive white Gaussian noise (AWGN)

channel, the VSG high-rate user has a better error performance than the MCD high

rate user if the number of low-rate interferers in the system is small. This gap in error

probability is completely contributed by the differences in the distribution of MAI

seen by VSG and MCD user. The underlying reason, intuitively, is that when the
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number of interferers is small, it is more effective to combat MAI using high trans-

mission power in VSG than spreading in MCD. The same result, however, does not

carry over to flat-fading channel, in which case the error performance of MCD and

VSG users turn out to be identical. This is because the presence of fading smoothes

the distributions of MAI suffered by the VSG user to make it look more like that in

MCD-CDMA.

Our second set of results apply to the case when the uplink is a multipath fading

channel for all users. We show that in this case, if the time offsets between the different

paths are smaller than a fraction of the VSG user's symbol interval (i.e. if the delay

spread of the channel is small), then the MCD high-rate user has a larger SIR than the

VSG user. On the other hand, if the time offsets are larger, then the VSG user would

in general have a better SIR than the MCD user. The difference in the SIR is due to

the correlations between the RAKE finger outputs. A higher SIR, however, does not

necessarily imply a better error probability. While the multipath interferences are

symmetrically distributed for a two-path channel (typical for cellular communication

in rural and suburb areas), in which the SIR gives correct inference about the error

probability, we show that in channels with more than two paths (such as in urban

and indoor environment), the multipath interferences after RAKE combining is not

only non-Gaussian but also asymmetric, in which case a higher interference power

may actually help the corresponding user to achieve a better error rate.

1.2.2 Multiuser joint-detection

Problem

The goal of multiuser joint detectors is to suppress the multiple-access interferences

(MAI), which is particularly serious in the uplink of the DS-CDMA system due to

asynchronous transmission. A joint detector can be viewed as an additional signal

processing block after the matched-filter receiver to enhance the quality of decision

statistics at the input of the symbol-decision device, as shown in figure 1-8. The

optimal joint detector that achieves single-user performance (i.e. the case with no
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MAI at all) was proposed in [74] using the approach of maximum likelihood sequence

search. Its drawback is that the complexity requirement grows exponentially with the

product of number of in-cell users and the number of symbols per processing frame,

which is too costly to be implemented using today's technology.

Consequently, most of recent researches on joint detection look for suboptimal al-

gorithms that exhibit good performance-complexity tradeoff. These suboptimal tech-

niques can be grossly divided into two categories: linear and non-linear joint detectors.

Linear joint detection algorithms, illustrated in figure 1-11, typically perform a linear

transformation on the matched-filter output of all users to tune out MAI [46]. One

example is the decorrelator, which attempts to completely eliminate the MAI through

linear transformation. It is analogous to the zero-forcing equalizer for ISI cancellation

in single-user communication. This detector is much simpler than the optimal max-

imum likelihood (ML) detector and yet significantly outperforms the matched-filter

receiver at high signal-to-noise ratio. The drawback of this detector, however, is that

the decorrelating linear transformation enhances the background noise. As a result,

when background noise dominates over MAI, i.e. at low signal-to-noise ratios, its

performance can become poorer than the matched filter. Another linear joint detec-

tor is the linear MMSE detector (with similar complexity as the decorrelator), which

is obtained by finding the matrix that minimizes the mean-squared-error between

the transformation output and the original transmitted symbols. The linear MMSE

receiver offers a balance between MAI and background noise suppression and has a

better performance than the decorrelator [54]. The drawback of this scheme is that

it needs accurate estimate for the received amplitudes of all users' signals as well as

the background noise power.

While linear joint detectors are much simpler than the optimal ML detector, their

complexity is still significantly higher than the matched filter due to the necessity for

matrix inversion when calculating the transformation matrix. This gives a complexity

on the order of cubic of the product of number of in-cell users and the number of data

symbols per frame, which is quite large for practical implementation. Even though

MMSE detection can be implemented using linear adaptive filters, such algorithms
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Figure 1-11: Linear joint detector at DS-CDMA base-station receiver

usually diverge for spreading codes with period that spans over many symbols [75].

Yet, the performance of these detectors are no better than the matched filter in low

SNR environment. The need for better performance-complexity tradeoff here prompts

us to propose a dual-mode linear multiuser receiver that is capable of achieving the

performance of decorrelator but with significant reduction in the overall processing

power.

In contrast to linear joint detectors, a general class of non-linear detectors try to

suppress MAI via decision-feedback interference cancellation. The MAI cancellation

can be performed successively or in parallel. In successive interference cancellation

(SIC), as illustrated in figure 1-12, the received user signals are first ranked according

to the received power. The user signal with the highest power is detected first using

matched filter. Its decision is then used to reconstruct its original signal, which is

then subtracted from the total received signal. The second strongest user is then

detected in the same manner. This process continues until all users in the system

are detected. It has been shown [10, 51] that, if the users' received powers are very

different, then the performance of SIC can approach single-user performance bound.

In most practical systems, however, the use of power control make the received power
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of all users to be roughly the same. In this case, the average error performance of SIC

is quite poor, not to mention that it also gives rise to extremely unequal performance

among users in terms of error rate and latency.
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- Signal
Reconstruction

User 2
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and RAKE -- Decision

User 2 User 2

- Signal
Reconstruction

User K

Matched Filter Symbol Symbol Estimate
and RAKE WDecision
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Figure 1-12: Successive interference canceller (SIC) at DS-CDMA base-station re-
ceiver

In the presence of power control, as done in practical systems, another type of

nonlinear algorithm - the parallel multistage interference canceller (PIC), has been

shown to perform better than SIC [46]. The conventional PIC, illustrated in figure

1-13, operates in a stage-by-stage manner, with the matched filter being the first stage

[70]. In subsequent stages, the receiver first uses symbol estimates of the previous

stage to reconstruct MAI suffered by all users in the system. These MAI estimates

are canceled from the matched-filter output of all users in parallel. This receiver

performs better much than the matched filter if the user population is not too large,

and unlike in SIC, all users under PIC have the same latency. The drawback with this

type of algorithm, however, is that at every stage, the receiver assumes the symbol

estimates from the previous stage to be completely accurate and hence performs full

MAI cancellation based on these estimates, even though they can be quite poor in
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reality. If a wrong symbol estimate is used to reconstruct and cancel MAI, the error

will propagation through later stages. This error propagation severely limits the

performance of conventional PIC such that its error rate may not decrease beyond

two stages [75]. In this thesis, we propose a class of parallel multistage interference

cancellation algorithms that alleviates the effect of error propagation and achieves

significantly better performance than the conventional PIC.
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Figure 1-13: Multistage parallel interference cancellation (PIC) at DS-CDMA base-
station receiver

Thesis contribution in non-linear joint detection: MMSE-based multistage

parallel interference canceller

Another key contribution of this thesis is the design of effective parallel multistage

interference cancellation algorithms for DS-CDMA base-station receiver. The design

objective here is to maximize the spectral and energy efficiency of the system under

a set of given complexity constraints. We show that, by exploiting the reliability of

previous symbol estimates used in MAI reconstruction, the proposed receiver signifi-

cantly outperforms existing joint detectors that are on the same order of complexity.

36



Specifically, we introduce two algorithms that are differentiated by their com-

putational complexity constraints. The first algorithm is relatively simple, and its

complexity is on the same order of that for conventional PIC. This detector is derived

by finding the optimal MAI reconstruction and cancellation process that minimizes

the mean-squared cancellation error (MSE) at each stage. We show that this MMSE

solution can be viewed as a conventional PIC scaled by a weighting matrix. The exact

expression of the weighting matrix is derived for M-ary phase-shift-keying (M-PSK)

modulated data symbols (typically M = 2 for BPSK and M = 4 for QPSK). We

show that the parameters of the weighting matrix depend mainly on the error prob-

abilities of the symbol estimates in the previous stage, which can be readily obtained

via pilot sequences or signal-to-interference ratio (SIR) approximation using today's

technology. The proposed receiver demonstrates drastically better error performance

over the conventional PIC, particularly for a large system, i.e. a system where the

ratio of the number of users to the spreading gain is large.

Compared to the first method, our second algorithm has a higher complexity,

which is on the order of that for linear joint detection, as it requires one matrix inver-

sion for each stage. In this detector, we suppress the MAI not only via the feedback

MAI reconstruction and cancellation unit but also introduces a preprocessing (feed-

forward) unit that performs a linear transformation to the matched-filter outputs to

tune out part of the MAI even before the feedback cancellation. This leads to the

standard framework of decision-feedback multiuser detector with feedforward pro-

cessing [75], as shown in figure 1-14. In this thesis, we find the optimal feedforward

and feedback unit that jointly minimizes the MSE of symbol decisions at each stage.

The key element here is again the use of a weighting matrix that is derived in the

first algorithm to measure the reliability of symbol estimates in the previous stage.

We show that while the complexity of this receiver is on the order of that for linear

joint detectors, its error performance is not only superior to linear detectors but is

also capable of approaching the optimal (single-user) performance bound in just a

few iterations. In simulation, it also shows essential immunity to MAI for multiuser

DS-CDMA system employing random spreading codes as long as the load is less than
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Thesis contribution in linear joint detection: A dual-mode linear multiuser

detector

In the third part of the thesis, we study linear joint detection techniques for DS-

CDMA receiver. The design objective here is to minimize the complexity and pro-

cessing power while meeting the performance target (such as bit-error-rate target) for

each user. By exploring the differences in signal-to-interference ration (SIR) for the

decorrelator and the matched filter, we derive a dual-mode detector that is capable

of achieving the spectral-efficiency of the decorrelator detector with significantly less

processing power and complexity.

The architecture of the dual-mode detector is quite simple: the receiver dynami-

cally switches its mode between decorrelator and matched-filter detection. The basic

philosophy of this detector is that since decorrelator outperforms the simple matched-

filter detection only in the case when MAI dominates over background interferences,
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and yet it yields a much higher computational complexity, the decorrelating opera-

tion should be performed only when the background interference is weak relative to

MAI. In practical cellular communications, the background interference includes not

only thermal noise but also interferences from users in neighboring cells, which can be

quite strong sometimes. Consequently, in a system where this dual-mode detection

algorithm is implemented in firmware, such as on a DSP chip, skipping the decorrela-

tor operation when necessary is capable of leading to significant savings in processing

power, which allows more effective and dynamic resource sharing at the base-station

receiver.

The key to this dual-mode detector is the decision criterion as when decorrelator

detection should be performed. We derive this decision module based on our analysis

and assessment of the amount of noise enhancement introduced by the decorrelator

transformation. If our noise-enhancement measure is higher than the MAI suffered by

most users, then the decorrelator operation will not be performed. The performance

of this dual-mode detector is verified via simulation, in which we show that, while

the decorrelating operation is performed less than half of the time, the bit-error rate

of this receiver is very close of that of the full decorrelator.

1.2.3 Thesis organization

The rest of the thesis is organized as follows. Chapter 2 presents the bit-error-rate

analysis for multicode and variable spreading-gain DS-CDMA modulation techniques.

Chapter 3 introduces the two aforementioned multistage interference cancellation

techniques that aim to optimize the spectral efficiency of the system while satisfying

the complexity constraints. Chapter 4 introduces the dual-mode multiuser receiver

that saves processing power while achieving the desired BER target. Concluding

remarks and future research directions are given in chapter 5.
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Chapter 2

Error-rate Analysis of Multirate

DS-CDMA Transmission Schemes

In this chapter, we analyze and compare the error performance of a dual-rate DS-

CDMA system using multicode (MCD) and variable-spreading gain (VSG) modula-

tion in the uplink. The uniqueness of our study is that in bit-error-rate evaluation,

instead of approximating the interferences as Gaussian noise (which has been done in

most of the previous studies), we incorporate both power and distribution of interfer-

ences into consideration. Specifically, we present two sets of results. First, we show

that in an ideal AWGN channel, the error rate of the VSG high-rate user is better

than that of the MCD high rate user if the number of low rate interferers is smaller

than a specific threshold. Otherwise, both systems achieve similar error performance.

Second, we show that for RAKE reception in a multipath fading channel, the VSG

user suffers from a larger interference power than the MCD user if the channel de-

lay spread is small. The reverse is true for a large delay spread. Furthermore, we

show that having a larger interference power in this case may lead a better error

performance due to the asymmetric distribution of multipath interferences.
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2.1 Background and motivation

Early mobile communication networks are primarily designed to provide voice-based

services, in which all users transmit at the same data rate. Recently, with the surge

of demand for internet applications, a mobile user also desires to communicate using

other types of information such as short message, video and multimedia contents.

Consequently, traditional modulation method in which all users operate at the same

data rate no longer suffices. In order to deliver different quality-of-services (QoS)

for the individual customers, efficient variable data-rate transmission techniques are

necessary.

In this chapter, we study the performance of variable data-rate modulation tech-

niques in the uplink of DS-CDMA system. Due to wide spectrum occupation of the

CDMA signal, it is desirable for a DS-CDMA system to vary data (symbol) rate while

fixing the chip rate so that spectrum occupation of the transmitted signal is constant.

Under this constraint, there are two promising variable data-rate DS-CDMA modu-

lation techniques. In the first method, the user changes the symbol rate by varying

the spreading gain (and thus the symbol interval). The transmit power is changed

proportionally at the same time so that the user maintains the same symbol energy

for all possible data rates. This is known as variable-spreading gain CDMA (VSG-

CDMA) [28] (since spreading gain and transmit power vary with data rate). Under

the second technique, a user maintains the maximum spreading gain at all times and

increases its data rate by using more than one parallel code channels for simultane-

ous transmission. In such a system, a high-rate data stream is split into a number

of parallel low-rate streams, each operating at the lowest (basic) symbol rate. Data

streams in different parallel channels are spread using different orthogonal spreading

(channelization) codes to avoid excessive self-interferences. The spread signal from all

parallel channels are summed and scrambled by a user-specific signature code before

transmission. This scheme is known as multicode CDMA (MCD-CDMA) [27]. The

transmitter structure for MCD- and VSG-CDMA systems are shown in figures 2-1

and 2-2, respectively.
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An important question to ask is which of the two schemes is more suitable for

practical systems. The answer depends on a wide range of considerations. In terms

of data-rate flexibility, MCD offers more choices of transmission rates than VSG

does. While MCD can offer rates that are integer multiples of the basic (minimum)

rate, VSG can only employ spreading gains that are integer divisors of the maximum

spreading gain [48]. In terms of link-layer complexity, VSG requires more intensive

processing than MCD due to a problem known as code blocking in the downlink

[45]. On the other hand, from the physical-layer perspective, VSG shows a significant

edge over MCD in terms of implementation and operating cost. While the physical
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layer of a VSG system does not vary significantly from that of a single-rate DS-

CDMA system, a MCD system requires noticeably more expensive hardware because

its receiver architecture is non-scalable (the number of RAKE receivers must be equal

to the maximum number of code channels available at the transmitter [48]). Also,

the transmitted signal from MCD-CDMA has a multi-level envelope because it is the

summation over all parallel code channels. This leads to very high peak-to-average

power ratio and requires the use of power-inefficient linear amplifier [11, 80].

Aside from the aforementioned practical tradeoffs, the key performance measure

of our interest is the spectral efficiency, which determines the capacity (i.e. aggregate

data rate of all users) that the system can support at a pre-determined target error

rate. Or equivalently, we would like to compare the bit-error rate of the two systems

under the same operating conditions. We focus on the uplink, i.e. the transmission

link from mobile subscribers to the base-station, where the user-to-user interference,

or the so-called multiple-access interference (MAI) in this case is more severe than

that in the down-link.

We consider a standard dual-rate system, in which there is one high-rate (HR)

user and multiple low-rate (LR) users. For this system, there are two issues to be

considered. First, it would be interesting to study the impact of the HR user on

LR users, since it has been hypothesized that LR users in MCD-CDMA may have a

worse error performance than those in VSG-CDMA because the transmitted signal

of a MCD HR user has a much larger peak amplitude than that of the VSG user [25].

Second, we would like to compare the error performance of VSG and MCD HR users.

A number of literatures [5, 35, 39] raised concern that the VSG HR user may have a

worse performance than the MCD user due to the loss of spreading gain. Even though

the VSG user increases its transmission power proportionally with the reduction in

spreading gain, it is unsure whether we can trade spreading gain with transmission

power on an equal basis. In this chapter, we focus only on the error performance of

the HR user and treat LR users as interferers, since the reverse scenario where LR

users are the target and HR user is the interferer has been clearly addressed in [25]

(which showed that LR users have identical error performance under both VSG and
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MCD HR users).

Specifically, we address two fundamental issues. First, we consider a frequency

non-selective channel, in which the MAI from LR users is the dominant interference.

The key question here is whether it is more effective to combat MAI using a larger

spreading gain (as in MCD) or higher transmission power (as in VSG), as it is unsure

whether we can trade spreading gain for transmission power on a one-to-one basis.

Early work in [49] claimed that MCD and VSG HR users achieve the same error

performance in this case. This result, however, is based on an analytical model that

approximates the MAI as additive white Gaussian noise, which clearly does not apply

to many practical cases [40]. The results from [3] and [68], on the other hand, favored

VSG over MCD. They approximated MAI as Gaussian noise as well and in addition

assumed the parallel code channels of the MCD user to be non-orthogonal, in which

case the VSG user actually has a larger signal-to-interference ratio (SIR) than the

MCD user.

Here, instead of employing the classical Gaussian approximation as have been

done in previous studies, we incorporate not only power but also distribution of the

interferences into error performance evaluation. We show that in an ideal additive

white Gaussian noise (AWGN) channel, the VSG HR user achieves a significantly

lower error probability than the MCD HR user if the number of LR interferers in the

system is small, even though both have the same SIR. This gap in error probability is

completely due to differences in the distribution of MAI seen by the VSG and MCD

HR user. The same result, however, does not carry over to flat-fading channel, in

which case the error performances of MCD and VSG users turn out to be identical.

This is because the presence of fading smoothes the distributions of MAIs suffered by

both VSG and MCD user to make them look more alike.

The second issue that we address applies to transmission over multipath fading

channels, in which RAKE receivers are used as a diversity technique to combat fad-

ing [69]. Analyses for conventional CDMA users (i.e. LR users) usually ignore the

multipath interferences (MPI) at the RAKE finger outputs because they are typically

small when the spreading gain is large [55][9]. Here, however, both MCD and VSG
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HR users may experience strong MPI for different reasons. For the MCD user, the

MPI is a sum of interferences contributed by cross-correlation among its parallel code

channels, while for the VSG user, the MPI is contributed by the partial autocorrela-

tion of its signature code [56], which normally increases with the amount of reduction

in spreading gain. The key question here is which type of interferences has a worse im-

pact under the use of RAKE receivers. This topic has been investigated by a number

of literatures [49][88][39][35]. It has been claimed in [49] that both types of inter-

ferences have the same effect, under the assumption that interferences from different

RAKE fingers are mutually independent. Recent work in [88], however, questioned

the validity of this assumption and suggested that the RAKE finger outputs of a VSG

HR user are strongly correlated, which leads to a much higher error probability than

that of the MCD HR user. Both studies model MPIs as a Gaussian random variables

conditioned on path delays, amplitudes, and phase offsets.

We investigate this issue by incorporating both power and distribution of MPI into

consideration. In terms of interference power, we show that if all pair-wise path time-

offsets are smaller than a fraction of the VSG user's symbol interval (i.e. if the delay

spread of the channel is small), the MCD HR user has a larger SIR than the VSG user.

On the other hand, if the time offsets are larger, then the VSG user would in general

have a better SIR than the MCD user. The difference in the SIR is due to correlations

between the RAKE finger outputs. A higher SIR, however, does not necessarily imply

a lower error probability. We show an example for channels with more than two paths

(such as in urban and indoor environment), in which the multipath interferences after

RAKE combining is not only non-Gaussian but also asymmetric. In this case, a higher

interference power may actually help the corresponding user to achieve a lower error

rate.

The rest of the chapter is developed as follows. In section 2, we develop a basic

model to analyze MCD- and VSG-CDMA systems. We examine the error perfor-

mance of both systems in AWGN channel and flat fading channel in sections 3 and 4,

respectively. In section 5, we present analytical results for multipath fading channels.

Chapter summary is given in section 6.
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2.2 System model

We assume a dual-rate system with one high-rate (HR) user and K low-rate (LR)

users, where the data symbol of all users are binary phase-shift-keying (BPSK) mod-

ulated. We also assume that users transmit asynchronously and that signature codes

of all users are independently and randomly generated, with each chip being 1 or -1

with equal probability. All LR users operate at the basic rate, while the HR user

transmits at M times the rate of LR users. Mathematically, the baseband signal

transmitted by the MCD HR user can be expressed as

M

sMCD(t) (2.1)
m=1

where

00

b(h) (t) = b (h(i)rectb(t - iT),
i=-o

oo N

c(h (t) = d () j)p(h)(iN + j)o(t iT- jTc),
i=-oo j=1

where P is the transmit power per code channel; b$()(i) E {1, -1} is the ith data

symbol in the mth parallel channel; d$(j) E {1, --1} is the jth chip of the orthogonal

spreading code for the mth channel; p(h)(j) E {1, -1} is the jth chip of the HR

user's signature code; T and Tc are the symbol and chip interval, respectively, where

Tb = NTc with N being the maximum spreading gain; rectb(t) is a unit-amplitude

rectangular pulse from t = 0 to t = T; 4'(t) is the normalized time-limited chip

waveform such that ft3| P(t)l 2dt = y (and f I c, (t)|2 = 1 for all m).

Similarly, the transmitted signal of the VSG-CDMA HR user can be expressed as

sVSG(t) = MPb(h)(t)c(h)(t), (2.2)
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where

() b(h)(i) Tect(t-i ), c(h) t)- p(h)(j)4,(t -T)
-0 j=-00

where b(h) (i) is the ith data symbol of the VSG user; Tect(t) is a unit-amplitude

rectangular pulse from t = 0 to t =TI; p's and 4'(t) are the same as those specified for

the MCD user. Note that the symbol interval of the VSG user is shortened by a factor

of M compared to the MCD and the LR user. Its transmission power is increased by

M times to compensate for the loss of spreading gain so that f,=i MO c(h)( 2d 1.

As a side note, the signal of the kth LR user (k E [1, K]) can be expressed as

s -(t) = v/Pbf (t)c4 (t) cos w't, (2.3)

where

00 00

b (t) = b (i)rectb(t - iT), cf (t1) = p(t - jTc),
i=-00 j=-00

where b (i) E {-1, 1} and p)(j) E {-1, 1} are the ith data symbol and the jth chip

of the signature code for the kth LR user, respectively.

Assuming the channel is wide-sense-stationary (WSS) and perturbed by additive

white Gaussian noise (AWGN), the composite received signal at baseband is

K Q(k)

r(t) = A7,qeic/,k sk(t - Tk,q) + r(t) (2.4)
k=O q=1

where n(t) is the background interference and can be modeled as a white Gaussian

process with one-sided spectral density of No; Ak,q's, Okq's, Tk,q's and Q(k) are the

received amplitude, phase, and propagation delay of the qth signal path and the

number of resolvable paths for the kth user, respectively; The path gains and delays

vary according to the channel model. For notational convenience, we denote user 0

as the HR user.
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We assume a receiver that employs matched-filter detection followed by coherent

RAKE combining. The decision statistic for the ith bit in the mth code channel of a

MCD HR user can then be expressed as

Q(O)

y -= Re{ wqy$,q(i)}, (2.5)
q=1

where wq is the weight for the qth signal path in RAKE combining; For equal-gain

combining, signal from all paths are weighed equally, i.e. wq = 1, while in maxi-

mal ratio combining, the weights for each path is proportional to its received signal

strength, i.e. wq= |Aq1; y$,q(i) is the matched filter output at the qth RAKE finger

such that

(i+1)Tb+TO,q

-m~ IiTb+To"q r (t)c~( C TQq)ei-jOO~qdt, (2.6)

Similarly, the decision statistic for the ith bit of the VSG user can be found as

Q(O)
y(h)(i =h (2{ 7)

q=1

where y!h)(i) is the matched-filter output from its qth RAKE finger such that

/ (i+1) $+O,q
-h) i+1 q r (t)c(h) (t -- T0 ,q e j' dt. (2-8)

Yq a ~+ -o, q Oq

2.3 Error-rate analysis in AWGN channel

We first analyze the error performance of the HR user in a stationary AWGN channel.

The composite received signal in this case can be simplified to

K

r(t) = ( Sk(t - Tk)ejlk + n(t). (2.9)
k=O

Without loss of generality, we make the following assumptions to simplify the analysis:
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1. Transmission delay and phase offset of the HR user is the point of reference, i.e.

To = 0 and qo = 0.

2. Signals of all LR users arrive after the HR user, i.e. Tk > 0 for k = 1, 2, ... K;

Phase offsets of the LR users, i.e the #k's, are independent and identically

distributed (i.i.d.) random variables uniformly distributed between -7r and 7F.

3. The system is symbol-asynchronous but chip-synchronous. This means that

transmission delays of LR users are integer multiples of chip intervals, i.e. Tk

6k * Tc, where 6 k E Z+.

The matched-filter output for the ith symbol in the mth code channel of the MCD

HR user can then be expressed as

K

yPb() = b'$ (i) + (cos0)(b p
k=1

+ bk(i - 1)p, (i)) + ni (2.10)
K

VT (b (h)(i) + E Xm,k (j) cos qk + )i

where ni is the background noise term modeled as a zero-mean Gaussian random

variable with variance NO; The summation term contains MAI from all LR users due

to cross-correlation of the spreading (signature) sequences. The correlation terms in

the MAI for k : 0 are defined as

liTbPk i) = c m(t )ck (t - Tk) dt (2.11)
J(i-1)Tb+|Tk

|(i-1)Tb+-kp( = i =(t)ck(t - Tk dt (2.12)
J (i- 1)Tb

49



Due to chip synchronism, we can further express the correlation terms as

P~?k(2)

pt7:?(i)

0) N--Sk
- bki) j d(h)(j ( )(iN + j)p~' (iN + + 'k)

j= 1

.N Z d(h) (j)p(h)(iN + j)pf (iN + j + 6k)

where k is the energy of each chip, i.e. f | (t) 2dt - . Since the signature code

of each user, i.e. the p's, are random, independently and equally likely to be 1 or -1,

we can model the sum of the correlation terms as a "symmetric binomial" random

variable such that

N

Xm,k(i) = P$,(k) -p + i = Zmkmn(j)
j= 1

(2.15)

where Xm,k (j)'s are independent and identically distributed (i.i.d.) random variables

with the following "symmetric Bernoulli" distribution:

Pxm,k(j)(X) =

0.5

0.5

0

if x = - N

ifx = }
N

Otherwise.

Xm,k (i)'s are therefore i.i.d. random variables with "symmetric-binomial" distribution

as follows:

Pxm,k(j)(x) = B(1, x) (2.17)

where B(r, x) is the "symmetric binomial function" denoted as

if X c{-r I- r 2-- r, .. ,Tr-k-Lr}
B(r, x) =

0

Nr

Nx Nr Nr (2.18)

Otherwise.
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Similarly, the matched-filter output for the ith symbol of the VSG user can be

expressed as

K

yVk(i) cosk ) + rVSG (2.19)
k=1

where the factor - results from shortened symbol interval and power compensation,

i.e. the amplitude of the signal component of matched-filter output is

c(h) t)2 
2- Z V) (t)12

N j(2.20)M N/ I

N M
j=1

For similar reason, the noise term niySG is now a zero-mean Gaussian random variable

with variance O. Vk(i) cos #k is the MAI from the kth LR user such that

iTb

Vk(i) J c(h)(t)c(')(t - Tk)dt. (2.21)
(i-1)M

Due to random spreading, using similar approach as in MCD analysis, we can model

Vk(i) as

N/M

Vk(i) = : 1X,O( 3 ) (2.22)
j=1

where Xk,o(j)'s are i.i.d. symmetric Bernoulli random variable with the same distri-

bution as Xm,k(J). Note that due to the shortened symbol interval, the number of

terms in the summation is a factor of M less than in the case of MCD. Consequently,

the distribution of Vk(i) can be found as:

Pvk(i)(v) = B( ,v) (2.23)
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2.3.1 Results based on Gaussian approximation

The simplest method to obtain the error probability is via the standard Gaussian ap-

proximation (GA) [17, 49], which assumes the sum of all interferences experienced by

the desired user to be a Gaussian random variable. In this case, the error probability

of the MCD HR user is

PeMCD = Q(VSIRMCD). (2.24)

where Q(x) equals to one minus the cumulative distribution function of a zero-mean,

unit-variance Gaussian random variable such that [17]

Q(x ) = e-dt (2.25)

Note that the error probability here is a function of only the MCD user's signal-to-

interference ratio (SIRMCD), which can be found as

SIRMCD P
PVar(jk_1 Xm,k(i) cos qk) - N

1

K E[Xmk ()COS2 _L...k=1Lmk 'kJ +P (226
I12 (2.26)

E E[X,k(i)]E[cos 2  o] +
1

where the last step is obtained from

E[X2,k] = ZE[X2,m(j)] = (2.27)
j=1

E[cos 2 Ok] = cos 2 qdq = - . (2.28)
_-,7 27r 2

A more accurate method to evaluate the error probability is the improved Gaussian

approximation (IGA) [40], the basis of which is that if the phase, delay and amplitude
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of all users are fixed, then the MAI can be safely approximated as Gaussian random

variable using the central-limit-theorem (CLT). In our case, the amplitude of all

users are fixed, and due to random signature codes, chip-synchronism and BPSK

modulation, the transmission delay does not affect the distribution of the MAI from

each LR user. Therefore, in using IGA to calculate error probability, we just need to

average over the phase offsets as follows:

PeMCD __K K dQ-U-dK
-x E E[X2~i COS2 N

JJ~V =-E1Xm ,k]cs k + 2P (2.29)

.Q )( )Kd .- dK
COS=1 N 2P

Now we evaluate the error probability of the VSG user using standard GA. The

SIR at the matched-filter output for the VSG user can be expressed as

P

SIRVSG _ M

P I KVar(Vk CoS k) +
P
M

" KI1 E[Vk2]E[cos 2 
qk] + &

_ _ (2.30)
p K +No

2MN 2M

K + 1

2N 2P

=SIRMCD

which means that under GA, the VSG HR user has the same error probability as that

of the MCD HR user.

Now, we calculate the error rate of VSG user using the IGA. In this case, we

again just need to average over the phase offsets of all interferers and find the error
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probability as

PeVSG __f..Q(p j]( M (_cKdo, .. d+KI l-V rK1 k) Cos2 k o27

... KQ( M K (2d3 K 2-31)
VE _ COS2 Nk+ 2fk = 1 1 k+2

.. Q ( -)( -- )K do ..dOK

K COS2 O Nok -

which again equals to the error probability of the MCD HR user obtained via the

IGA. Thus, we see that the use of GA and IGA (with random signature codes and

BPSK modulation) tell us that we can trade spreading gain for transmission power

on a one-to-one basis.

2.3.2 Exact error-rate analysis

Note that in both GA and IGA, the symmetric binomial correlation components in

MAI, i.e Xk,m's and Vk's, are assumed to have a Gaussian distribution. For system

with random signature codes, perfect power control, large spreading factor and large

number of users, the central-limit theorem [17] indeed applies here and validates the

Gaussian assumption. However, if these cases do not hold, the Gaussian approxima-

tion may give misleading results. In such situations, the exact error probability must

be computed to accurately evaluate the error rate of MCD- and VSG-CDMA users.

We first calculate the exact error probability for the case where cos #2 = 1 for all

i, which constitutes the worst case of MAI [78]. The output of the matched filter for

the MCD user now yields

K

yh (i) =Vbh (i) + X+ nl
k=1

=-\-b () (i) + -,-X + ni (.2
+ M (2.32)

=Vi (bh)(i) + X + 

=/P- (h)(i) + Z)
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where the MAI component X = Zk_1 Xk has distribution

Px (x) = B(K, x) (2.33)

The probability density function (PDF) of Z X + n is the convolution of the PDF

of a zero-mean Gaussian random variable with variance - and the discrete density

function of X, which leads to the following expression

NK 1 (z-x)2

fz(z) =- B(K ) e2) (2.34)
x=-NK N 2(2-

where a- = .

Consequently, the exact error probability for the MCD user in this case can be

found as

PeMCD (Prob(Z> 11b$()(i) 1) + Prob(Z < -10)(1) 1))
2

=Prob(Z > 1)

fz(z)dz (2.35)

NK NK (
1

)-X
NK_ N).

x-NK NxNKNo

In the case of very high SNR, i.e. -N-{ - 0, the effect of background Gaussian noise

gradually vanishes, in which case the error probability of the MCD user converges to

K

PeMCD -- Prob(Z Xk > 1)

NKk=1
NK k1(2.36)

= B(K, )
x=N

Note from the expression of B(K, I) that as long as there is a single LR user, the

error probability of the MCD user is nonzero even in this hypothetical absence of the

background noise.
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We next calculate the exact error rate for the VSG HR user for the same setting.

The matched-filter output for the VSG user can be expressed as

() i- b + E Vk + nVSG
k=1

K VSG
- (bh)i +VM~( Vk +

- ff(b (h)(i) +V±+ MnVSG)

(b (i) + W)

where the MAI component V has the following distribution:

K

(2.37)

(2.38)Pv (v) = B (- -' )

and the density of the total interference W can be found in manners analogous to

that of Z in the MCD case as

KN
M

B( K )( e -
N /2701

The error probability for the VSG HR user can subsequently be found as

PeVSG =(1/2)Prob(W > lb9)(i) = -1) + (1/2)Prob(W < -11b$()(i) = 1)

=Prob(W > 1)

j fw(w)dw

K
B( '

(2.39)

(2.40)

v I v- '
NN

_)Q( 1 N

In the case of high SNR, i.e. O -+ 0, the error probability of the VSG user can
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be approximated as

K

PeVSG -+Prob(Z MV > 1)
k=1

NK (2.41)
M K

= ( B(M' N

Note that if K < M, i.e. the number of the LR interferers is less than the square

root of the rate factor M, the VSG user can be demodulated error-free in the absence

of the background Gaussian noise. This happens for the VSG but not the MCD user

because the MAI seen by the MCD user has a wide and smooth distribution, while the

distribution of MAI experienced by the VSG user is narrow and dense. Distribution

of MAI suffered by the VSG and MCD HR user (i.e. Px(x) and P(v)) for a system

with N = 64, M = 16, and K = 2 are shown in figures 2-3 and 2-4, respectively, for

the case where the phase offsets and delay of all users are fixed. In the plot, the MAI

distribution in MCD is nonzero in [-2, 2], while the the probability mass function of

MAI for VSG is nonzero only in [-0.5, 0.5]. Even though these distribution plots are

obtained by fixing the phase and delay offset of all users, variations in phase and time

offsets are unlikely going to alter the range of MAI distributions.

The exact error rate for the case of worst MAI as a function of the number of users

is plotted in figure 2-5 for N = 64 and M = 32. The bit-error rates (BER) of the

VSG and MCD users with time-varying phase uniformly distributed between [-7r, 7]

are obtained from numerical simulation (each point averaging from 1000 trials) and

shown in figure 2-6 for N = 128 and M = 32. We observe that both figures show the

same behavior for the error rate of the HR users. For small K (i.e. small number of

LR users), we see that pysG pMCD and as K increases, the error rates eventually

converge. Intuitively, the difference between the error performance of the two systems

is completely due to the difference in the range of MAI distribution. As the number

of users increases, the range of MAI for both users grow large enough such that the

central-limit theorem can be applied, in which case the error rate of both MCD and
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Figure 2-3: Distribution of MAI seen by the MCD-CDMA HR user in AWGN channel
(N = 64, M = 16, K = 2)

VSG users become equal since they have the same SIR. Note that these figures are

plotted for a moderately high signal-to-noise ratio (SNR) with Eb 12dB. As -No No

becomes smaller, the difference between the BER of VSG and MCD HR user will be

less obvious, as the effect of background Gaussian noise will gradually dominate over

that of the MAI.

2.4 Error-rate analysis in flat-fading channel

We now consider a frequency-nonselective Rayleigh fading channel with slow fading

such that the received amplitude for each user is constant over T. For the MCD HR
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0.1 0.2 0.3 0.4 0.5

Figure 2-4: Distribution of MAI seen by the VSG-CDMA HR user in AWGN channel
(N = 64, M = 16, K = 2)

user, the matched-filter output of the ith symbol in the mth code channel is

K

(h~) (i) =VI/P(Aob$(h)(i) +F Z A kXm,k COS q$k + i

K

=v/(Aob ()(i) + Z +

=,P(Aob ()(i) + X + )

where the A's are i.i.d. with Rayleigh distribution as follows:

2a a2

fA(a) = e-,, a > 0.

(2.42)

(2.43)

Conditioned on A's and #'s, Xk (the MAI term from the kth LR user) has the following

probability distribution

x
PskIAk,0k (x) = B(1, Ac

Ak COS #k
(2.44)
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number of voice users

10 12 14 16

Figure 2-5: The exact error probability of MCD and VSG CDMA users with fixed
phase in AWGN channel as a function of the number of LR users with N = 64,
M = 32 and Eb/No = 12dB

The density of each of the Xk's can be evaluated as

fxk(x) i= f B(
0 _" 27r

x
1, a )fA(a)dqda

a cos 0

Subsequently, we can find the probability density function of the sum of MAI from

all LR users, i.e. X = Ef_, Xk as

f (x) = f, (x) * fx2 (x) * ... * f,(x) (2.46)

where "*" denotes convolution.

To calculate the exact error probability, we see that if we fix X and A0 , then

y(h) (i) has a Gaussian distribution, from which the error probability can be evaluated

as

pMCD(errorl, Ao) =
A 0 ±X

2P

(2.47)
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Bit Error Rate of MCD and VSG Users in AWGN Channel (N = 128, M = 32)
100

-*- MCD High Rate User
--e-- VSG High Rate Uaer
-+- MCD Low Rate User

10 - - VSG Low Rate User
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Figure 2-6: BER of MCD and VSG CDMA users in AWGN channel as a function of
the number of LR users with N = 128, M = 32 and Eb/No = 12dB

The exact error rate can then be found as

pMC A 0 ±X
Pe CD=E [Q(

2P (2.48)

= f QF )fj,,(x)fA(a)dadx,0 No

2P

The numerical value of the error probability can be evaluated using analytical software

or approximated by averaging P MCD from a large number of independent trials over

the distribution of k's and A's.

Using similar method, we now evaluate the error probability of VSG HR user in

flat fading channel. The matched-filter output for the ith symbol of the VSG HR
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user in this case can be described as

y(h)(i) V7p( 1 Aob (h)(i)

VIM--

M
=V (~~ Aob(h)(i) +
= (MAobM

ACos kVk +
k=1

K

E Vk +
k=1

P

ni

Conditioned on all A's and O's, Vk, the MAI term from the kth LR user, has the

following probability distribution

(2.50)PVkAkOk (v) = B( 'As, )MviAk COSqOk

The density of each Vk's can then be evaluated as

fek (H = -- B( 1, x )fA(a)dda
S _ 2 -r M acos

(2.51)

Subsequently, we can find the probability density function of the sum of MAI from

all LR users, i.e. X = EK Xk as

fk(v) = fV (v) * fI2(v) * ... * f(v). (2.52)

To calculate the exact error probability, we see that conditioned on f and A0 ,

y(h) (i) has a Gaussian distribution, from which the error probability can be evaluated

as

PVSG (error Ao) = Q( A + x/7-7

2P

(2.53)
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The exact error rate can then be found as

PVSG =EA,[Q( AO + V

Q2 
(2.54)

Q( + ff (v)fA(a)dadv.

2P

The numerical values of the error probability expression can then be evaluated using

analytical software (such as Mathematica) or approximated by averaging PeVSG over

a large number of independent trials over the distribution of A's and V's.

The error probability of the VSG and MCD user in frequency-non-selective Rayleigh

fading channel (obtained by averaging the error probability over a large number of tri-

als with independent fading and MAI statistics) is plotted in figure 2-7 for N = 128,

M = 32, and b = 12dB. We observe that the error rate of the two systems are

practically the same, even when the number of users is very small. The BER gap

that is evident in analysis for the AWGN channel is closed here because averaging

over the fading statistics widens and smoothes the distribution of the MAI seen by

the VSG user. In this case, we predict that the HR user in both systems would have

identical error performance. Simulation results also show the same behavior.

2.5 Results in multipath fading channel

We now compare the error performance of MCD and VSG HR users in a frequency-

selective (multipath) Rayleigh fading channel. We assume the absence of LR users

to emphasize the effect of multipath interference caused by the HR user's own signal.

This assumption is justified since the interference caused by LR users from multiple

paths are essentially MAI, the effect of which has been addressed in the previous

sections.

Under our assumptions, the received signal from a Q-path channel with only the
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Bit Error Rate of MCD and VSG Users in Flat Fading Channel (N = 128, M = 32)
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-- MCD Low Rate Uaer
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Figure 2-7: BER of MCD and VSG CDMA users in Frequency non-selective Rayleigh
fading channel

HR user can be expressed as

Q
r(t) = AqejsSo (t - Tq) + n(t) (2.55)

q=1

where Aq, <qp, -r are the amplitude, phase, and delay of the received signal from the

qth path, respectively. Using matched-filter detection followed by coherent RAKE

combining, the soft decision for the ith symbol in the mth code channel of the MCD

user can be expressed as

Q
yqYM(D - (2.56)

q=1

where wq ; 0 is the weighting factor for the qth signal path during the combining

process; For example, wq = Aq for maximal ratio combining (MRC), and wq 1

for equal gain combining (EGC)) [55]; ym,q(i) is the output from the matched filter
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receiver at the RAKE finger corresponding to the qth signal path such that

MCD ()Ym,qZ
iTb -T,r

(i-1)Tb -Tq,r

r (t)C (t - Tq,r)dt

M

Ar V/'ej Y(b () )g r)=A /Ijejq b (i) +
r=1,roq 1=1

±b(i Z 1)P$,I) (T-r,q)U(Tr,q) + b P)(i 1) iJ (Tq,r) U (Tq,r)) + nm,q

where nm,q is the background Gaussian noise term with zero-mean and variance IO;

u(t) is the step function, Tq,r = Tr - Tq, which gives Tq,r = -Tr,q; the p's are correlation

terms such that

p (Tq,r) = f Tb

iTb-Tr,q

(i-1)Tb

- 'rq,r)u(Tq,r)dt

(2.58)

c(h)(t)c (t + Tr,q)'U(Tr,q)dt

|(&-1)Tb-T,rI(i-=)Tb C h) (t)c(h)(t - Tqr)dt
(i-1)Tb

= i b c ()(t)c h)(t + Tr,q)dt
iTb-Tr,q

Note that p$(rqO ) - p, (Tr,q). For analytical convenience, we assume that the

receiver can only resolve paths that are separated by integer multiples of chip intervals.

In this case, we have Tq,r = 6 q,rTc, where 6q,r C Z. Since the user signature codes

(p(h) {-1, 1}'s) are random, p(r) (Tq,r), p$2(Tr,q), and P ('rq,r) are zero-mean

'symmetric binomial" random variables with the following variances:

var(py(rq))

var1 p(Tr,q))

N - 16q,r I

N 2

-var(p(-7) (Tq,,r)) =1q~rI

where 6q,r = 6 r - 6q.

Similarly, for the VSG user, the soft decision for the ith symbol after RAKE
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(2.60)
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(2.62)

'. MQ C1



combining can be expressed as

L

yVSG(i) = Re{ we OyVSG

1W

(2.63)

where Yq(i), the matched-filter output for the finger corresponding to the qth signal

path, can be expressed as

yiTb+Tq
VSG 

i-T-

AqL ejeq b( (i) +

r (t) c(h)(t - rq)dt

Q

ArLe)r (b(h) (i) 5(O) (7qr)
r=1,r5q

+ b(h)(Z + 1)/(1)(Tq,r)u(Tr,q) + b(h) (i _ 1) (-1)(Tq,r)U (Tqr))+ Tq

where nq is the background Gaussian noise with zero-mean and variance 2, and

I 'Tb

(i- 1)Tb+Tqr

iTb-Tr,q
+

(i--1)Tb

I iTbiTb

c (h)(t)C(h)(t - Tqr)U(Tq,r)dt

c (h)(t)C(h)(t + Tr,q) U(Tr,q)dt

(2.65)

(2.66)

(2.67)c(h) (t)C(h) (t + Tr,q) dt.

Since the user spreading codes are random, the p's are zero-mean symmetric binomial

random variables with the following variances:

N Irj
M r

N
2

= var(('1 (Tq,r)) = '2

(2.68)

(2.69)

To evaluate the error performance, we first consider a simple 2-path channel, i.e.

1 E {1, 2}. We assume that T1 = = 0 and that T2 = 62 Tc, where 62 E [1, ]L.
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0()( ,r ) =

(-1)(Tr

(1) (Tq,r)

(i-)Tb±Tq,,

c (h)(t)c(h)(t - Tq,r)dt

, q

var(p(O) (Tq ) )
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We first analyze the MCD user, for which the RAKE finger outputs in this case are

simplified to

y M CD j)Ai\/bm(i)

M

+ E A2 V/Pej2 (b(h) (0 2)
j=1 (2.70)

+ b(i - (1p;)(72)) + nm,l

yMCD -A 2 V/Pej02 bm(i) + %/PAl (b(h) (i) p) (T 2 )

j=1 (2.71)

+bh(i + l)p 1 ) (-7 2 )) + n7, 2 .

The soft decision after RAKE combining is then

2

yMCD -j#9qMC DYMCDj -Re{Z wqe My'1Di)

q=1

=(w1AI + w2A 2)xiPbm(zi) + (w1A1 + w2 A 2 ) V cos #2 b (i) Pm(T 2)

+ cos 2VP( (2.72)
1=1,l m

M

+ A1 w2b (h) (j) p 1 (0-) 2  2b h) (i
j=1

± )WlP(-I) (T 2 )

+ Aiw 2 b,(h(i -- 1)pQ(-T 2 ))) + win,1 + w2nn,2 cos 02

where, since the data symbols are transmitted as 1 or -1 with equal probability,

b (h) (i) p$)p(( 2 ), b(h)(Z)p(0) (-7 2 ), b h)(i - 1)p (J(1 2), and b h)(i + 1)p( 1)(-T 2) are inde-

pendent, zero-mean symmetric binomial random variables with the following vari-

ances:

var (b ( pT2)

var(b (h(i - 1)p 30 (72))

N -2, var(b ()Pi (-T 2 )) = N -62

62 A (b (h)(i + 1)p(I)(-T 2 )) =2

N27 1 'I N2

Also, note from eq. 2.72 that the term bn M()pm(T 2 ) appears in both RAKE fingers.
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This is the correlated multipath interference (CMPI) component, as it introduces

correlation between the output of RAKE fingers 1 and 2. All other p's contribute to

the uncorrelated MPI (UCMPI) [9].

Subsequently, the SIR of the MCD user conditioned on Aq, 9q, and Tq can be

expressed as

SIRMCD _ (wiA1 + w2A 2 )2  (2.73)IMCD + 2 o(w + wCOS2 q$2 )

where IMCD = 'CMPIj + IU/CM{PI is the overall multipath interference power normal-

ized by the transmit power, where IC d C P are the normalized power of

correlated and uncorrelated MPI, respectively, which can be expressed as

ICD (w1A 2 +w 2A 1 ) 2 Cos 2 2 N -6 (2.74)_L CMPIN2

IMCy =( A 2W2 + A 2w2) cos 02 M6 + (M -1)(N - 6) (2.75)(AMI 1 1 N2

Note that the weight on CMPI, i.e. (w1 A2 + w2 A 1 )2 is larger than that on each of

the UCMPI, i.e. (A w + A2W2). However, also note that for large M, the total MPI

suffered by the MCD user is always dominated by the UCMPI.

We now analyze the received SIR for the VSG HR user in the same two-path

channel. The output from each of the RAKE fingers of the VSG HR user can be

expressed as

y1 A, -wb(i) VMPA 2ej(2 (bi) (O) ( 2) (2.76)

+ b(i - 1); -5)(T2)) + h1

ySG =A 2  -- e 2b(i) ±A MP(b(i)7(0 )(72)
+ M (2.77)

+ b(i + 1) ((-2)) + i!2
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The soft decision after coherent RAKE combining is then

2
yVSG(Z) =Re{Z wqe-OyVSG

q=1

=(wiA + w 2 A 2 ) b(i)
(2.78)

+ (Aiw 2 + A 2 wI) cos 02 PMI 0 ) (T2 )

± A 2w 1 P M cos 02 pf1 (T2 ) + A 1w 2 cos $2 PMfi(1 ) (--72)

+ w15 1 + w 2 2 cos 02

With random spreading codes and BPSK modulated symbols, b(i)5( 0) (T), b(i-1)i(~1 )(T),

and b(i+1)/i() (-T) are mutually independent, zero-mean symmetric binomial random

variables with the following variances:

-N 62
Var( 0()(T)) = N 2  (2.79)

N2Var(/I 1 )(r)) = N2 (2.80)

Var(p)(-r)) N2  (2.81)

We also observe from eq. 2.76 that the term VfPM3( 0 ) (T2 ) appears in both RAKE

fingers and is hence the CMPI.

The SIR of the VSG user can subsequently be found as

SIRVSG _ (wiAI + w 2 A 2 )2 82)
JVSG + + w2 cos 2)(

where IVSG I+ U PI is the total multipath interference power suffered

by the VSG HR user normalized by its transmit power; IcjiTh and IUMPI are the

normalized correlated and uncorrelated MPI power, respectively, and can be expressed
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as

ICVSPG = M 2 (A1 w2 + A 2 w1) 2 cos2 2 2 (2.83)

IgGPI = M 2 cos 2 q2 (A w + A 2W) (2.84)

Note that if 62 is much smaller than -, the correlated MPI will have a much larger

power than the uncorrelated MPI for large M.

We now compare the SIR of the MCD and VSG HR user in the two-path channel.

Since contributions from symbol energy and background noise in both cases are the

same as shown in eq. (2.73) and (2.82), the comparison of SIR can be reduced

to finding the differences in the power of multipath interferences (MPI). The MPI

experienced by the MCD HR user can be expressed as:

IMCD =(wiA 2 +W2A1 2 202N 62

+ (A2W2 + A 2W2) cos 2 0 2 M 6 2 +(M - 1)(N -62)

N2 N=zcos2q$2((w1A 2 +w2A1)2 N 2
6 2 (2.85)

+ (A w + A w2)((M N2 +62

2N-6 2 21 N
= cos 2 ( w1 w2 1A 2 N 2  + (w2 A + w2 A 2)

while the MPI suffered by the VSG user can be rearranged as

N- 62
IVSG =M 2 ( Aw 2 + A 2wI) 2 cos 2 M N2

+ M 2 cos 2  N2 (A w2 + A w)

= COS 2 0 2((A2W2 ± A2W2) M(N - 62) - M(M - 1)62 + M 2 62  (2.86)
= c2 2 1 N 2

+ 2A 1 A 2w 1 w 2 M(N-M 2 )

M(N - M62 ) (W2A2 + W2A2) M
=cos2

2 ( 2ww 2 A1A 2 N 2 + 21 2 1 N)'
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The difference in their MPI power is then:

Idff =IVSG - iMCD

MN - M 2 62  N - 62=cos2 $ 22wiw 2 A1A 2( N 2  
N 2 )

COS 2 
22w1W2A 1A 2 (M - 1)N - (M 2 - 1)62 (2.87)

- N 2

(M - 1)(N - (M + 1)62)
= cos2 b22w 1w2 A 1 A 2  N 2

The above equation gives several important insights:

1. As long as w1 , w2 , A 1, A 2 are all positive (i.e. as long as we combine the output

of the paths), and M > 1 (i.e. HR transmission), the VSG user suffers from

a larger MPI power than the MCD user if 62 < N (i.e. T2 < +). If

MA-< T 2 < 1, then the MCD user suffers a larger MPI power than the VSG

user.

2. The SIR of MCD and VSG users from just a single RAKE finger should be

exactly the same, as this corresponds to the case of selection combining where

either w, or w2 is zero but not both.

The intuitive explanation for the statements made above is that when time offset

between the two paths is small compared to the symbol interval of the VSG user, the

VSG user suffers a great deal of CMPI, while the interferences seen by the MCD user

is always dominated by UCMPI contributed by other parallel code channels. As the

time offset grows, the CMPI suffered by the VSG user quickly decreases, while the

MCD user still has some CMPI component from the code channel where the desired

symbol lies. Note that the threshold at which the SIR of MCD and VSG are equal is

independent of the amplitude and the weighting factor used for each path.

Furthermore, if we let r2 grows beyond M but less than Tb, i.e. by letting - <

62 < T, while the SIR expression for the MCD user are not affected, the VSG user
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will not have CMPI anymore. In this case, the MPI suffered by the VSG becomes

IVSG -m 2(Aw + A2w2) Cos 2 2 -62(Al2+A 1 2 MN 2

+ M 2 cos2 22 (A 2w + A w)

-(A 2w + A w) cos2 02 M
1 2 2 1 N2

In this case, we see that

IVSG - iMCD - -2wjw 2A1 A2 Cos 2 N -62 < 0
N2 <02

(2.88)

(2.89)

where the difference is contributed by the CMPI suffered by the MCD user. In this

case, VSG user will always have a higher SIR than the MCD user.

If we let T2 grow even further such that it is larger than T (which makes 62 > N)

then neither VSG or MCD user will suffer from any CMPI. In this case, the MPI

suffered by both users can be expressed as

IVSG _ IMCD = (A 2W2 + A w) Cos 2  M
1 2 21 02N2

(2.90)

which means that MCD and VSG users have identical SIR.

We now extend the analysis to a general Q-path channel, where Q > 2. We rank

the path i.d. according to the delay offsets, i.e. T1 > T 2 > ... > TQ and assume that

T - ri < T , i.e. the delay spread of the channel is less than the symbol interval of a

VSG HR user. In this case, the soft decision of the MCD user after RAKE combining

can be expressed as

Q Q-1 Q

yMCD V (Z wqAqbm (i) + Cos qqr(UCMPI(Tq,r)

q=1 q=1 r=q+1

Q

+ UUCMPI(rq,r)) + Wq COS q)
q=1

(2.91)

where UCMPI (Tq,r) and UUCMPI(Tq,r) are the normalized correlated and uncorrelated
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MPI components, respectively, between paths q and r, which can be expressed as

UCMPI (Tq,r) = (wqAr + wrAq)bm(i)p$. 2m(Tq,r) (2.92)

UUCMPI (Tq,r) zWqAr( (b,(i)p) (FTq,r) + bi (i - 1 P (Tq,r)
1=1,1#m

(2.93)
+bm(i - 1)p(y)(Tq,r)) + wr Aq(

1=1,I0m

+ bl(i + 1)rho('1 (Tr,q)) + bm(i + 1)PQm(Tr,q))

Due to the random spreading and BPSK modulated transmitted symbols, we observe

that

1. E[UCMPI(Tq,r)] = E[UUCMPI(Tq,r)1 = 0,

1 and2. UCMPI(Tq,r) and UUCMPI(Tq,r) are uncorrelated for all 1

q+1 < r < Q.

3. Both UCMPI (Tq,r) and UUCMPI(Tq,r) are i.i.d. for all pairs of q and r, where

1 < q < Q - I and q+1 < r < Q.

With these observations, we first see that the variance of the MPI components, found

in the same way as that in the two-path case, can be expressed as

var (UcMpI (Tq,r)) =E[UCMPj (Tq,r)I

2N - 16q 
(2.94)

=(wqAr + WrAq )2 N 2

var(UucMpI(Tq,r)) =E[U2CMpI (Tq,rI
(2.95)

w2  
- N -| 6q |(W2 A2 2 A2)((M - 1) N 2 ' + M N )

and that given A's and O's, the overall power of multipath interferences can be ex-
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pressed as

Q-1 Q
1 MCD =var(Z S COS Oq,r(UCMPI(Tq,r) + UUCMPI(Tq,r)))

q=1 r=q+1

Q-1 Q
=E[(E > COS4q,r(UCMPI(Tq,r) + UUCMPI(Tq,r)))2]

q=1 r=q+1

Q-1 Q

=- S cos2 q,,r(E[UMpI(T,r)]+ E[U2CMpI (Tq,r)]) (2.96)
q=1 r=q+1

Q-1 Q 
2 N- |q6r|

Q-1 Q Cos2 #q,r ((wqAr + wrAq) N 2

q=1 r=q+1

+ (w2A2 + W2 A )((M - 1) N - |6T,r + '2

Subsequently, conditioned on A's and #'s, the SIR of the MCD user can be expressed

as

SIRMCD - MC (9 )2

IMCD + E W 2 qOS2 (9

We now evaluate the SIR of the VSG HR user using the same approach. The soft

decision for the VSG user after coherent RAKE combining in a Q-path channel can

be expressed as

yVSG(j) PY V1\"M q q
q=1

Q-1 Q

+ 5 E cOS Oq,r (UCMPI(Tq,r) + UUCMPI(Tq,r)) (2.98)
q=1 r=q+1

+ q
+( 7Wq-q / COS #9)

q=1 VIP

where CMpI(Tq,r) and (UcMpI(Tq,r) are the normalized correlated and uncorrelated

MPI components, respectively, between path q and r, which can be expressed as

UCMPI(Tq,r) (wqAr + WrAq)Mb(i)(0 )(T,r) (2.99)
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UCMPI(Tqr) qAr Mb(i - 1)) (Tq,r
U U C M I ( T q r) - q r( 2 .1 0 0 )

+ wrAqv AIb(i + 1) P)(Tr,q)) (

where the U's possess the same statistical properties that are specified for the U's

earlier (such as pairwise independence, i.i.d., etc.). The variance of each of the MPI

components, found in the same way as that in the two-path case, can be expressed as

var (UcMpI (Tq,r)) =E[UMPI (Tq,r)]

(wqAr + wrAq)2IM(N - 6 qrl) (2.101)

N 2

var( UCMPI(Tq,r)) =E[U CMpI(Tq,r)]

2 2 6 qr (2.102)
WqA +WrAq)M N 2

Conditioned on A's and O's, the overall power of multipath interference can be ex-

pressed as

Q-1 Q

1 VSG =var ( E cos qq,r (CMPI(Tq,r) + UUCMPI(Tq,r)))

q=1 r=q+1

Q-1 Q

E S cos 2 4,r(E[UMp I (Tq,r)] + E[U2CMPI(Tq,r)])
q=1 r=q+1 (2.103)
Q-1 Q)M( 6r)

cos 2 Oq,r ((wqAr + wrAq )2M( N 2 6qr|1

q=1 r=q+1

+ (w A2 +W A )M 16,r|

Subsequently, the SIR of the VSG user can be expressed as

SIRVSG - VS (Q 1 Aqwq) 2 
2

(2.104)
IV SG +X: 2 Cos o

+ s 1  tCD an Gp

As before, the difference between the SIR of MCD and VSG user depends on the
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difference of their MPI power, which can be found as

diff =IVSG - iMCD

Q-1 Q

Z S cos 2 Oq,r(wqAr + wrAq) 2 M(N- 1qr1)
q=1 r=q+1

+A A) N2  (wN - |6WA) I
+ A +r N2 (wqAr+WrAq N 2  (2.105)

N - 6qr | |6 |I
- (w A2 + w A )((M -1) N2 N M 2

Q-1 Q

I:E Cos 2 Sr 2 wqArWr Aq (M - 1)(N - (M + 1) 6qr 1)

q=1 r=q+1

In this case, we see that if time offsets between all possible pairs of paths are small,

i.e. if 6,r < Nor equivalentlyTqr < T1 for 1 < q < Q - 1 and q + 1 < r < Q

(such as indoor or densely populated urban area), the VSG user will suffer from a

larger MPI power than the MCD user. On the opposite, if T < ,r < :I- for all

possible q's and r's (such as in less populated urban and suburban areas), the SIR of

the MCD user is going to be worse than that of the VSG user.

Similar as the two-path case, if we let all rq,,'s grow beyond - but less than T,

i.e. by letting ! < Tq,r < T for all 1 q < Q - 1 and q +1 r < Q, while the

SIR expression for the MCD user is not affected, the VSG user will not have CMPI

anymore. In this case, the MPI suffered by the VSG becomes

Q-1 Q
VSG Cos 2 qq,r(Aqwr +A 2  2 (2.106)

q=1 r=q+1

In this case, we see that

JVSG _ =MCD -WrWqArAq COS2 qr N - 6 qr < 0 (2.107)-MD 55 2 rE~ ~ o 2~~ N 2

q=1 r=q+1

where the difference is contributed by the CMPI suffered by the MCD user. In this

case, VSG user will always have a higher SIR than the MCD user.

If we let Tq,r's exceed T, then neither VSG or MCD user will suffer from any
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CMPI. In this case, the MPI suffered by both can be expressed as

Q--1 Q

IVSG = 1 MCD = Q (1+ AQw) CosW2q2WM)(S2.

q=1 r=q+1

which shows that both MCD and VSG users will have the same SIR.

So far, we have analyzed the SIR of VSG and MCD users in multipath channels.

We showed that, conditioned on the path amplitudes and phase offsets, the SIR of

the VSG user is likely to be worse than that of the MCD user if the channel has a

very small delay spread. On the other hand, for channels with a large delay spread,

the VSG user is likely to outperform MCD user in terms of the SIR. So what is the

implication of this result in terms of error probability? It has been suggested in [88]

that in a channel with very small delay spread, since the MCD user has a better SIR

than the VSG user, the error probability of the MCD user will be lower also. The

basis for this claim is that the error probability for each user can be calculated by

approximating MPI as Gaussian interference, from which the error probability can

be computed as follows:

Pe = JJ Q(SIR(a, #))fA(a)fq (#)dado (2.109)

where A = [A 1 A2 ... AQIT are the i.i.d. Rayleigh distributed path amplitudes and

< = [102 ... OQ]T are the received phase offsets of each path.

For a two-path channel, it can be verified from our equations that the CMPI and

UCMPI indeed have a symmetric binomial distribution and thus can be approximated

as Gaussian if the number of additive components is large enough. In figure 2-10, we

plot the simulated bit-error-rate (BER) for VSG and MCD users with different delay

spread in two-path Rayleigh fading channel for N = 128 and M = 32 averaged over

1000 trials. For small delay spread, the path difference varies between 1 and 2 chips,

while for large delay spread, the path difference randomly fluctuates between 5 and 9

chips. It is clear that the BER of VSG user with small delay spread is the worst due

to large CMPI. The BER difference between MCD and VSG for large delay spread
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may be a bit subtle, since MCD is always dominated by UCMPI, but with careful

observation, we do see that the BER of the VSG user slightly outperforms that of

the MCD user in this case.

Interestingly, when the number of paths grows beyond two, we do not have a con-

clusive answer as to which scheme outperforms the other, even though we know how

SIRs of the two systems compare. The key observation we have is that in this case the

use of Gaussian approximation may lead to serious errors in BER calculation because

the MPIs are not only non-Gaussian but may also have an asymmetric distribution.

In this case, a user with a larger correlated multipath interference power (and thus

smaller SIR) may actually have a better BER.

To see an example, let us consider the case where N = 64, M = 16, Q = 3, and

the delays being T1 = 0, T2 = Tc, and T3 = 3Tc. The received signal of the VSG HR

user from different paths is shown in figure 2-8.

-3  R-2 '- 1  PO P1  P2  P3  P4  P5  P6  P7  P8

Path 1 bl b2 b3 ..... bl6

Path 2
R-3  -2 R 1  0  p1  2  P3  P4  P5  P6  p7  p8

bl b2 b3 ..... bl6

-3 -2 I p 0 p 1  p2  P3  P4  P5  6 7  P8

Path 3 ...... bl b2 b3 ----- b16

Figure 2-8: VSG Signals in a Multipath Channel

Without loss of generality, let's look at the demodulation of bit 2 assuming equal
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gain combining and fixed path amplitudes. The VSG user sees the following MPI:

4I G 64 (2b2 (P1P2 + P2P3 + P3P4 + P1P4 + PlP3 + P2P4 )

+ bi(pop1 + P1P-2 +P2P-1 + P3PO + P1P-1 + P2Po)

+ b3 (p4p5 +P2P5 +P3P6 +P4P7 +P3P5 +P4P6))

=I1 (12 + I + 13)16

where pi's are i.i.d. symmetric Bernoulli random variables with probability of 0.5

being 1 and probability of 0.5 of being -1; 1i is the corresponding normalized MPI

from the ith bit, for which we see that

I1 = bi(pop, + P1P-2 + P2P-1 + P3PO + PiP-1 +P2P) (2.111)

12 = 2b2 (pIp2 +P2P3 +P3P4 +P1P4 +P1P3 +P2P4) (2.112)

13 b3 (p4p5 + P2P5 + P3P6 + P4P7 + P3P5 + p4p6) (2.113)

It is clear that I2 causes CMPI while I, and 13 causes UCMPI. To compute the

error probability, it can be easily verified that the distribution of UCMPI, i.e. I + 13,

are symmetric binomial and can therefore be approximated as Gaussian since the

number of terms in the sum is sufficiently large. The CMPI, i.e. I2, on the other

hand, has the following distribution shown in figure 2-9, which is clearly neither

Gaussian nor symmetric. Since the I's are correlated with each other, the variance

of the MPI can be calculated as

a (I G) - P 36P(2 1 4
var (IVSG 2 (var(I1) + var(I2) + var(13)) = 26 (2.114)

256 256

and the SIR of the VSG user can be found as

SIRVSG 144 (2.115)

MP 36 + 24Nt o(21

With a given received power, the error probability of the VSG user can be calculated
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1/2

3/8

1/8

-4 0 12 2

Figure 2-9: An example of the probability mass function for the correlated MPI of
VSG user in a three-path channel with short delay spread

as

VSG 3 8 1 24 1 12 (2.116)
PeMP = Q( )_ +__( +__) (.16

8 12 + 12 + 24N 2 12 + 24N
P P P

where we assume the UCMPI, i.e. I1 and 13 as Gaussian interferences since the sum

of the two is a sufficiently large binomial random variable that can be approximated

as Gaussian. It can be verified that Pe VfG is significantly smaller than Q(/SIR jS)
for SNR (i.e. -= ) exceeds OdB.No No

Let us now consider demodulation of the bit from the second code channel of the

MCD user in this case. Since most of the multipath interferences for the MCD users

come from other code channels, the total SIR can be approximated as

SIRCD 144
SI24+ 24N (2.117)

P

by ignoring the correlated MPI for code channel 2. This SIR is clearly greater than

SIRvSG . The corresponding error probability for a given received power can then be
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approximated as

Pe MCD QSRmD(218

which is slightly optimistic than the realistic error probability due to the ignorance of

the correlated MPI. However, the reader can verify that Pem D will be greater than

Pell' for T exceeds 3dB.

In figure 2-11, we plot the BER performance of MCD and VSG HR user in a

three-path Rayleigh fading channel under different types of delay-spread for N = 128

and M = 32. We see that for small delay spread (T1, 2 = T, and T 2,3 = 2Tc), the

VSG user outperforms the MCD user even though it sees a larger MPI power. On

the other hand, if the delay spread is large (T 1,2 = 6T, and T2 ,3 = 8Tc), the MCD

user outperforms the VSG user. The BER behavior in three-path channel is there-

fore completely opposite of that in the two-path channel because of the asymmetric

distribution of MPI.

At this point, the reader may question how would addition of LR users into the

system impact the result. We can answer this question by approximating the effect

of LR users as additional background noise. From figures 2-10 and 2-11, we see

that as the amount of background noise increases and gradually dominates over the

MPI, the differences between the BER of MCD and VSG HR user diminishes. We

therefore expect the same thing to happen if the number of LR users in the system

increases. In such cases, the choice of using MCD or VSG will depend more on

tradeoffs between physical layer and higher layer implementation costs since both

systems exhibit practically the same error performance.
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BER of MCD and VSG Users in 2-Path Fading Channel: M = 32, N = 128

-+- MCD (delay = [1,2])
-*- VSG (delay =[1, 2})
-&- MCD (delay =[1, 9])
-B-- VSG (delay =[1, 9])

............. .... -

-5 0 5 10
SNR (in dB)

15 20 25 30

Figure 2-10: BER of MCD and VSG HR users in a two-path Rayleigh fading channel

BER of MCD and VSG Users in 3-Path Fading Channel: M = 32, N = 128
10,

10'

1C -2w 10

10-

10-I
-10

+ MCD (delay = [1,2,4])
-*-- VSG (delay = [1, 2, 4])
-e- MCD (delay= [1, 7,14])
-s- VSG (delay =[1, 7, 14])

-5 0 5 10
SNR (in dB)

15 20 25 30

Figure 2-11: BER of MCD and VSG HR users in a three-path Rayleigh fading channel
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2.6 Chapter Summary

In this chapter, we compared the error performance of MCD- and VSG-CDMA HR

users in AWGN, flat-fading and multipath fading channels. Instead of employing

traditional Gaussian approximation that assumes all interferences to be Gaussian

random variables, we evaluate the bit-error rate using the true interference distribu-

tions. We made three key observations. First, in an ideal AWGN channel, we found

that the VSG user outperforms MCD user at moderately high Eb/No if the number

of LR interferers in the cell is small. As the population of LR user increases, both

users achieve the same error rate. In flat-fading channel, however, both MCD and

VSG user seem to have identical bit-error rate, since averaging over fading smoothes

the distribution of interferences seen by both users and make them become similar.

Second, in multipath fading channels, we found that the VSG user is likely to suffer

from a larger interference power than the MCD user if the channel has a small delay

spread. The opposite is true for channels with moderately large delay spread. Third,

we found that for channels with three or more paths, the SIR does not truly repre-

sent the error probability because multipath interferences may have an asymmetric

distribution. Therefore, the decision on whether to use VSG or MCD for such chan-

nels should be decided on a case-by-case basis rather than rely on theoretical SIR

comparison as has been done in the past[48].
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Chapter 3

Multistage Interference

Cancellation based on MMSE

Optimization

In this chapter, we present two effective decision-feedback multistage interference

cancellation algorithms that can be used at the DS-CDMA base-station receiver to

suppress the user-to-user (multiple-access) interferences (MAI). Both detection algo-

rithms are derived by minimizing the mean-squared error (MSE) of the cancellation

output at each stage, and both schemes use a weighting matrix to incorporate the re-

liability of MAI reconstruction in every stage into the cancellation process. Our first

algorithm uses a MMSE optimized feedback matrix to reconstruct and cancel the MAI

and has similar computational complexity as that of a conventional multistage paral-

lel interference canceller (PIC). We show that this scheme exhibits significantly better

spectral- and energy-efficiency than the conventional PIC. Our second algorithm is

more complex than the first one such that it uses a feedforward matrix together with

feedback cancellation to suppress MAI. We deduce the jointly optimal (MMSE) feed-

forward and feedback processing matrices at each stage. We illustrate that, with

complexity on the same order as that for linear joint detection, the performance of

this receiver not only significantly surpasses that of the linear joint detectors but also

approaches the single-user performance bound.
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3.1 Background and motivation

The idea of suppressing multiple-access interferences (MAI) in a DS-CDMA system

using multistage interference cancellation (IC) was first proposed in [70]. This type of

receiver, shown in figure 3-1, operates in a stage-by-stage manner. The initial stage is

a matched-filter bank followed by minimum-distance decision devices (i.e. quantizers).

In every subsequent stage, the receiver first reconstructs the MAI suffered by each

user based on symbol estimates of all in-cell users made at the previous stage and

then subtracts these MAI estimates from the users' matched-filter outputs. The

results from the cancellation process are sent to quantization devices to determine

the symbol estimates for the current stage. This multistage IC is also referred to as

the conventional parallel IC (PIC) [46], as it performs MAI cancellation for all users

(simultaneously) in parallel.

(i)
Y Z,

bK'

Y 2 Z2 F /(()
2 Zb2

r(t)

yK Z -

-MAI

MAI 2

MAIK

o bK

Figure 3-1: A general multi-stage decision-feedback interference canceller

The PIC is attractive for practical implementation because it has a lower complex-

ity than many other joint detectors [46]. A key weakness with the conventional PIC,
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however, is that it assumes the symbol estimates made at every stage to be entirely

accurate [71, 86]. Hence, complete MAI cancellation based on tentative decisions

from the previous stage is always performed. Since the quality of symbol estimates

at early stages, particularly the initial stage, can be quite poor due to excessive MAI,

the performance of this receiver often suffers from severe error propagation [62]. Con-

sider, for example, in a binary phase-shift-keying (BPSK) modulated system, if a

wrong symbol estimate is used to reconstruct the MAI, the power of the correspond-

ing MAI component will be quadrupled after cancellation. Subsequently, the error

rate of a PIC often diverges, in which case the probability of symbol error at later

stages becomes higher than that at earlier stages [75].

To alleviate the effect of error propagation, [62] proposed the use of partial MAI

cancellation. The essential idea is that since the symbol estimates tend to be inac-

curate at early stages, only a fraction of MAI based on those estimates should be

canceled. As symbol decisions become more reliable in later stages, more substantial

MAI cancellation becomes appropriate. To implement this idea, the receiver assigns

a small weight to MAI cancellation (to cancel a fraction of MAI) at early stages and

a larger cancellation weight at later stages. The performance of this receiver has

been shown to significantly outperform the conventional PIC in a system employing

perfect power control [62]. Two aspects of this receiver can still be improved, how-

ever. First, the cancellation weights are generated in a trial-and-error fashion from

computer simulations rather than via a systematic method. It is therefore unclear

which set of cancellation weights leads to the optimal performance under a specific

design criterion. Second, the receiver assumes uniform error performance among all

subscribers and thereby assigns the same weight to cancel the MAI from all users' at

a given stage. In reality, however, even with random spreading codes and reasonable

power control, the quality of symbol estimates may still differ significantly from one

user to another [75]. It is therefore preferable to assign disparate cancellation weights

to the MAI caused by different users to further improve the system performance.

An alternative approach to PIC is the well-known successive interference canceller

(SIC), which can actually be viewed as a weighted multistage IC that detects one user
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per stage [78, 51]. In a typical SIC, users are ranked according to their received signal

power. The strongest user is detected first based on its matched-filter output. The

MAI from this user is then reconstructed based on its symbol estimate and subtracted

from matched-filter output of all other users. The receiver then proceeds to deter-

mined the received symbol of the second strongest user, after which it reconstructs

and cancels the MAI caused by this user from the matched-filter output of the re-

maining users. This procedure continues until all users in the system are detected.

For a system with K users, SIC can be viewed as a K-stage weighted IC that, at stage

k, it assigns a cancellation weight of 1 to the MAI from the first k - I users (with

the largest received signal power) and a weight of 0 to the MAI from all other users.

Only the kth user is detected at the kth stage. It has been shown that the use of

SIC can asymptotically eliminate the effect of MAI and approach the single-user per-

formance bound, provided that the received powers of the users differ in exponential

order [51]. In practice, however, it is almost impossible to make the users' received

powers to be exponentially distributed, and thus SIC almost never approach such

good performance. In fact, in today's DS-CDMA system where good power control is

employed, the received powers of all users are approximately the same. In this case,

the performance of the SIC, both in terms of bit-error rate (BER) and latency, is

often inferior to that of conventional PIC [46].

An alternative solution to weighted or partial interference cancellation is to en-

hance the quality of symbol estimates at the first stage using linear joint detectors

(such as the decorrelator or the linear MMSE detector) instead of the matched filter

[75]. Such approaches indeed lead to performance that surpasses the conventional

PIC but at the expense of higher complexity. Furthermore, it is known that the

error performance of this type of receivers at later stages may be worse than that

of the decorrelator or the linear MMSE detector alone [75]. This happens because

these receivers make use of the noisy matched-filter output at subsequent stages. To

further improve the receiver performance, a feedforward linear processing unit has

been introduced to work together with feedback cancellation at every stage. Such

proposals lead to several decision feedback joint detectors with feedforward process-
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ing [8, 13, 31, 75]. Most of these receivers, however, still assume that the symbol

estimates from the previous stage is completely accurate and hence may suffer from

severe error propagation when the assumption fails.

Here, we present two types of weighted multistage ICs derived using constrained

MMSE optimization at every stage, and the key difference between our algorithms

and most of the prior techniques is the use of a weighting matrix that assesses the

quality of symbol estimates in the previous stage. The weighting matrix mainly de-

pends on the error probability of the symbol estimates in the previous stage, which

can be easily approximated by estimating the SIR of the cancellation output or by

using interleaved pilot sequences. These two ICs differentiate from each other in com-

plexity constraints. The first algorithm uses a MMSE-optimized feedback matrix to

reconstruct and suppress MAI and has a complexity comparable to that of the partial

and conventional PIC. We show that this detector clearly outperforms both the con-

ventional and partial PIC in terms of spectral- and energy-efficiency. However, due to

its complexity constraint, this scheme may not perform as well as the linear joint de-

tectors do, and its error performance is far from the single-user bound for a crowded

system. Our second technique applies jointly (MMSE) optimized feedforward and

feedback matrices to suppress MAI and therefore has a higher complexity than our

first method. It exhibits superior error-rate performance, which not only significantly

surpasses that of the linear joint detectors but also approaches the single-user perfor-

mance bound in a few iterations. Yet, the complexity of this receiver is comparable

to that of linear joint detectors.

The outline of this chapter is as follows. Section 2 introduces the basic sys-

tem model for multistage interference cancellation. Our first algorithm that employs

MMSE-optimized feedback MAI cancellation is presented in section 3, and its perfor-

mance is shown in section 4. Our second algorithm that uses feedforward and feedback

matrices to suppress MAI is presented in section 5, and its performance is illustrated

in section 6. Section 7 summarizes the chapter. Derivations of the weighting matrix

is shown in appendix A.
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3.2 Existing multistage decision-feedback interfer-

ence canceller

3.2.1 System model

We consider a DS-CDMA system with K equal-rate users communicating simultane-

ously over a common frequency-nonselective channel, each using a unique spreading

code. The composite baseband signal arriving at the receiver can be expressed as

K

r(t) =( Aksk(t - Tk)ejckk + n(t) (3.1)
k=1

where Ak, #k and Tk are the received amplitude, phase and delay of the kth user's

signal, respectively; n(t) is the additive white Gaussian noise (AWGN) with one-sided

spectral density No = 2a2 ; Sk(t) is the kth user's transmitted signal such that

00

Sk(t) E bk(i)ck(t - iTb)
00 N (3.2)

00 N

S bk(i)Eck(iN+j)(t-iT-ITc)
i=-00 j=1

where bk(i) is the ith data symbol of user k; ck(j) E {-1, 1} is the jth chip of user

k's spreading code; T and T, are the symbol and chip durations, respectively, where

Tb = NTc, with N being the spreading gain; 0(t) is the time-limited chip modulating

waveform such that IT d(t)Idt

For analytical convenience, we assume that the receiver has perfect timing, phase,

and amplitude estimation for all users, which makes coherent detection possible.

Without loss of generality, we also assume that each user transmits a frame of L

symbols, where L > 1, and that the maximum difference in reception delay between

different users is less than one symbol interval, i.e. Tmax - Tmin < T, where Tmax =

maxl<k K{Tk} and Tmin - mrnl<k KTk}. In this case, the matched-filter output for
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the lth symbol transmitted by user k, denoted as yk(l), can be described as follows:

I (l+1)Tb+-TkYk 
lTb+k

r(t)ck(t - Tk)e-sk

K

Ak(l)bk(l) + 3 ei(--k)(Am(l)bm(l)pO (l)
m=1,mAk

± Am(l - 1)bm(l - 1)p7 -(l) U(rm - Tk)

+ Am(l + 1)bm(l + 1)Pk m(l)U(T - Tm) + ?2k(l)

(3.3)

where nk (1), the background noise term, is a zero-mean Gaussian random variable

with variance a2 ; Ak(1) is the amplitude of user k's received signal in its lth symbol

interval; u(t) is a unit-step function such that u(t) = 1 if t > 0 and equals to 0

otherwise. The summation term contains MAI from all other users (on user k) due

to cross-correlation of the spreading (signature) sequences. The correlation terms in

the MAI for k 0 m are defined as

) - -1:f f( b-T k+Tm Ck(t - Tk)cm(t - Tm)dt
( ) = 1 k - T t

41b ) _ r Ck(t - - k)Cm(t - T,)dt

if Tm > Tk.

if Tk > Tm.

(3.4)

- f(-1)Tb+Tk+Tm

p ~(l ) = JlTb+rk
lTb+Tk -- Tm

ck (t - Tk)cm(t - Tm)dt

(t - k)cm (t - Tm)dt.

Note that p(7I (l) = p )(l - 1). The corresponding symbol decision bk(l) can be

made based on Yk(l) using the minimum-distance rule [19].

We now develop a vector notation for detection in the case where each user trans-

mits a frame of L symbols, i.e. 1 = 1, 2, ... L. We let y = [y(l) y(2) ... y(L)]T, where

y(l) = [y1(l) y2 (1) ... YK ( -)]. It is straightforward to verify that the vector y can be
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expressed as

y = RaAb+fn (3.7)

where n = [n1(1) n 2 (1) ... nk(l) nk+1(l) ... nK-1(L) nK(L)] is the noise vector; Ra is

the LK-by-LK conjugate-symmetric correlation matrix such that

Ra =

R(0)(1) R(l)H(2) 0

R(1)(2) R(0)(2) R()H (3)

0 0

0

0

0

0
(3.8)

where H denotes conjugate transpose; R(0 )(1) and R(1 )(1) are K-by-K matrices with

entries as follows:

RCo)(l)k,m

R01 ) (l)k,m

if k# m

if k m

if Tk <Tm

otherwise
=0

10

(3.9)

(3.10)

A is the amplitude matrix such that

A(1) 0

0 A(2)

0

0

0 0 A (3)

0

0 0 (3.11)

... ... ... ... O A(L)
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where A(1) is a diagonal matrix such that

A1 (l) 0 ... ... ...

A(1) 0 A2 (l) 0 ... ... (3.12)

L ** ... ... 0 AK(l).

It is clear that the diagonal terms in the product RaA are amplitudes of the desired

signals and the off-diagonal terms contribute to the MAI.

To complete the vector notation, we denote the transmitted symbol vector b as

b = [b(1)T b(2)T ... b(L)T]T (3.13)

where b(l) = [b,(l) b2 (l) ... bk(l)]T with T denoting transpose.

3.2.2 Existing methods

For a typical multistage (parallel) interference canceller (IC) as shown in figure 3-2,

the cancellation output at the ith stage, z('), can be expressed as

z(2) = y - F(z)b(-l) (3.14)

where FW is the feedback matrix that reconstructs the MAI according to receiver-

specific criterion; 0-' = [b(ii 1)(1) b4i1) (1) ... b-1 (1) b0)( 2 ) ... 07 (L)]T is the

vector of symbol estimates for all users made in stage i -1 and is generated by passing

z(-') through the minimum-distance decision (quantization) device. For instance, if

the symbols are BPSK modulated, then b() - sgn(z(')), where sgn(x) = 1 if x > 0

and -1 otherwise. Note that the matched-filter detection corresponds to the initial

stage where i = 1, in which case (o) = 0 and z(1) = y.

Using this model, the conventional PIC is one that defines F to be [71]

F() = (Ra-I)A (3.15)
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Bank-
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Figure 3-2: Multi-stage decision-feedback interference canceller in vector form

for all stages. Intuitively, this means that at every stage, the receiver attempts to

cancel all off-diagonal terms in RaA (i.e. complete MAI cancellation). This model

was derived assuming that the previous symbol estimates used for MAI reconstruction

exactly resembles the original data symbols. In realistic systems, however, the quality

of these symbol estimates can be quite poor, particularly at early stages [62, 81]. The

error propagation caused by the wrong estimates significantly degrades the error

performances of the conventional PIC such that under many circumstances its error

rate does not decrease beyond two stages [75].

To improve the performance of conventional PIC, partial PIC is proposed, which

defines the feedback matrix as: [62], [81]

F() - p(W (Ra - I)A (3.16)

where p(i) E [0, 1] is a weighting constant depending on the stage number i. At early

stages (i.e. small i), p(i) is small since the tentative symbol decisions are likely to be

unreliable. The value of p(') increases with i as symbol decisions become more reliable

in later stages. While this method offers significant performance improvement over

the conventional PIC for a system with perfect power control, two aspects of this

mechanism can be further improved. First, the receiver assigns all users the same
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cancellation constant and is thus not favorable for systems where the users' error

performance clearly deviates from one another. Second, the cancellation weights at

each stage were chosen arbitrarily in a trial-and-error fashion. A simple, systematic

and robust method needs to be developed to calculate the cancellation weights. Next,

we introduce a class of weighted multistage ICs that overcomes these two problems

and offers a much improved performance over both conventional PIC and partial PIC.

3.3 MMSE-based multistage decision-feedback in-

terference cancellation

3.3.1 Derivation

In this section, we propose a MMSE-based weighted parallel interference canceller

(WPIC) that dynamically adjusts the feedback matrix F2 to minimize the mean-

squared error (MSE) between the actual transmitted symbols and the symbol esti-

mates in each stage. In specific terms, we would like to find F() that satisfies

F(- = F()* = argminFJ{E[(z() - Ab)H(Z(i) - Ab)]} (3.17)

For the derivation process, we make three assumptions that are typically used in

analyzing the uplink of a DS-CDMA system. First, we assume that data symbols

of different users are independent and that the successive symbols from the same

user are also independent. Thus, in terms of correlations, we have E[bk(l)b,(j)] =

6[k - m]6[1 - J] for all 1, j, k, and m, where 6[n] is the unit-sample (discrete impulse)

function. Second, we assume that E[bk(l)bm(]j)] < E[b,(l)bk'(l)] = 1 for all 1 = j

and/or m = k. This implies that the detected symbol estimates retain the statistical

properties of the transmitted symbols. Third, we assume that spreading codes and

received amplitudes of all users are known and deterministic rather than random, as

in a realistic system with reasonable power control.

Under the given assumptions, we proceed to find F()*. Since minimizing the
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mean-squared error denoted in eq. 3.17 is equivalent to minimizing the trace of the

covariance matrix of z(') - Ab, i.e.

F(') = argminF(1 )tr(cOv(Z(i) - Ab))} (3.18)

where tr(.) denotes the trace operation. We start the derivation process by simplifying

the covariance matrix as follows:

cov(z(') - Ab) = cov((Ra - I)Ab + n - FEU-')

E[((Ra - I)Ab + n - F(- 1))((Ra - I)Ab + n - Fbi-)H

= (Ra - I)AE[bbH]AH(Ra - i)H + U2 Ra + F(i)E[(-i1 )(i- 1)H]F(i)H

-(Ra - I)AE[bb(i- 1 )H]F()H - F(')E[('-l)bH]AH(Ra - J)H

(Ra - I)AAH(Ra - I)H + F(i)F(i)H - (Ra - I)AE[bb(i- 1 )H]F(i)H

-F()E[(~Z1)bH]AH(Ra - i)H + U2 Ra

where simplification in the last step comes from assumptions that E[bbH] I,

E[nbH] = E[nbH] = 0, and E[b0-1 )(i 1)H] = I. Let E[bb(i-1 )H] - A_(i1), we

can rewrite the covariance matrix as

cov(z(2) - Ab) = (Ra - I)AAH(Ra - I)H + F(i)F(i)H - (Ra - I)AAa(Z) F(i)H

-F()Aa(i- 1 )HAH(Ra - i)H + U2 Ra

- ((Ra - I)AAa('~0 - F(Z)((Ra - I)AAa(Z1) - F())H

+Oc 2Ra + (Ra - I)A(I - Aa(Z 1 )Aa(i- 1 )H)AH(Ra - I)

Since ((Ra - I)AAa(' 1 ' - F(Z))((Ra - I)AAa(2~) - F(i))H is positive semi-definite,

we see that the choice of F() that minimizes the trace of the covariance matrix (and

thus the mean-squared error) at the ith stage is

F(')* - (Ra - I)AAaG 1l (3.19)
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where Ai - E[bf(i-1 )H].

Clearly, the choice of Aa() determines F()*. If we let Aa(') = I for all i, then we

obtain the conventional PIC. Similarly, if we assign Aa() = p()I, we have partial PIC.

The Aa(') of our choice, which is derived in appendix A for a M-ary phase-shift-keying

modulated (M-PSK) system, is a LK-by-LK matrix such that

Aa(W =

A (',0 (1)

A(, -1(2)

A('),' (1)

A ('),0 (2)

0

A('),0 (2)

0

0

0

0

0

A(),)'(L) A(z),O(L)

(3.20)

where

1 - (1 - cos ?g)Pe

= ,0 -4- Lm ej2727(Q(sin (y~ - Om,k(l)) 7m,k ())(e~ - 1)A (')O)m,k =
+Q(sin ( - + Om,k (l)) 7m,k(l))(ej - 1))

0

ifk=m

if k h m and i = 1

if k $ m and i > 1

A(u(,1()mk U(Tm - rk)u(2 - i) M jE ej m (Q(sin ( - 0m,k(l)) 'm,k(l))(e M - 1)
m=O

+Q(sin (7 + km,k(l)) m,k(l))(e'r - 1))

A(),- (l)m,k = u(rk - rm)u(2 - i)Z ej 2 (Q(sin( - km,k (l) Ym,k ())(e 9 - 1)
m=0

+ Q(sin (7 + m,k(l)) 'jrm,k(l))(e& - 1))

where Pe(' is the symbol error probability of user k in the ith stage, u(t) is unit-step
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function, and

_ m An1)po (1) sin (2~ + Om -_ ,

Om,k(l) = tan-' Am() ) Am 0 k
Ak(l) + Am(l)p (l) COS (2nl- +M m 'k)

Ak(l)
2 + Am l)2 ( 2)4(1)) + 2Ak(l)Am(l)PA(l) COS (p27 + (k - qk)

Mm,k MAIk(l) - A2 ()(p 0 )(())2 + 0.2

Am(l)p ~Q(l ± 1) sin (2mr + #m - 7k)
Om,k(l) = tan- 'P mM

Ak(l +1) + Am(l)p- 1(l + 1) COS (2mr

Ak(l + 1)2 + Am(l)2(2 + 2Ak(l + 1)A p ( +1) cos((p + __ +

Ym~~l)MAIk(l + 1) - A2 (1)(p -l)(Y + 1)) 2 + U2

Am 1) sin(2  + (m - )
6m, k~l tan-'()kmM+0 

k

Amn( -1) + Am Y 1) cos (F + m - k)

Ak(l - 1)2 + Am (l)2(pi) (1 - 1))A p (1 - 1) COS + m - $7 )
Ymk MAIk(l - 1) - A2 (1)(p( - 2 ± 0.2

where

K

MAIk(l) = ( ((Am l)p((l))2 Am 1)p (l))2 m
m=1,mAk

+(Am(l + 1)p~l (l))2U(Tk _ Tm)).

is the total MAI power suffered by user k during its lth symbol interval.

Intuitively, Aa(2) measures the correlation between the symbol estimates at stage

i and the actual transmitted symbols. The mth diagonal term (Aa(m, M)), where

M = K(l - 1) + k, denotes the correlation between the the estimate for the lth symbol

or user k in stage i with its original transmitted symbol. Therefore, the diagonal terms

measures the reliability of symbol estimates in stage i. Each off-diagonal term, on the

other hand, denotes the correlation between a transmitted symbol and the detector

output for another different symbol. These correlation terms arise from the effect of

MAI.
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3.3.2 Asymptotic approximation

The necessity to compute every entry in Aa leads to significant amount of compu-

tations in addition to conventional PIC (particularly at the first stage), despite the

fact that complexities of these receivers are all on the same order. We now show

that by examining the asymptotic behavior of Aa(i), we can significantly reduce the

complexity of our proposed receiver for a large system with reasonable power control.

As the number of users become large, i.e. K -+ oc, Aa can be approximated as

a diagonal matrix (as shown in appendix A) such that

W( 0 0 ... ... 0

0 W WO 0 0 ... ... 0 ( .1oai (3.21)

0 ... ... ... 0 0 W(W

where W( is a K-by-K diagonal matrix that can be evaluated depending on mod-

ulation format used in the system. For a M-PSK modulated system, we found (in

appendix A) that

W3 ~1 - Pe (1 - cos ). (3.22)

Intuitively, the reason why Aa(i can be approximated as a diagonal matrix for

large K is because as number of users in the system increases, the effect of MAI from

any particular user becomes negligible when compared to the MAI from all users, and

therefore the correlation between transmitted and received symbols of different users

approaches zero. Hence, under asymptotic approximation, the cancellation weights

in the ith stage solely depend on W( 's, which measures the reliability of each user's

symbol estimates at the ith stage. The larger W( is, the more reliable user k's

estimate is, and a larger weight will subsequently be applied to cancel the MAI from

this user.

The proposed receiver implemented using asymptotic approximation is shown in
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figure 3-3. The soft decision output for the lth symbol of the kth user in stage i can

now be expressed as

K
m=1,mok

+ Am(l -(1 - 1)p- 1)(l)U(7m - Tk)
(3.23)

+ Am(l + 1)b(- (± + 1)p (l)u(Tk - Tm)) + flk(l)

Here, instead of computing all entries of the LK-by-LK matrix F, we only need to

compute one cancellation weight for each user and hence achieve significant complex-

ity reduction.

(i)
Zi0)

(i)

Y2 + Z2(1)

M ()

MAIAl

MAI (t1)

MAI K(L)

C0

03

b 1i{)

wK

/((i-1)

b (1)

b

w2(I

Figure 3-3: Weighted multistage interference canceller

3.3.3 Simplified MMSE-based weighted PIC

So far, the complexity of our proposed receiver can be reduced for a large system such

that it just needs to compute one cancellation weight for each individual user at each
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stage. To further reduce its complexity so that it is equivalent to that of conventional

or partial PIC, we constrain the weighting matrix AM to be:

A(') = w)I (3.24)

where w() is a cancellation constant applied to all (M-PSK modulated) users in stage

i and I is the identity matrix. In this case, the cancellation output becomes

z) = RaAb - w()(Ra- I)Ab + n (3.25)

We would again like to find the optimal choice of w(') such that it minimizes the

mean-squared error at stage i under the constraint, i.e.

w(iopt = min{(i){E[(z() - Ab)H(z(i) - Ab)]j (3.26)

To proceed, we first assume that

E[bk(l)bm(j)HI = E[bk(l)bm(j)H]
0

E[bk(l)bm(j) (i= 11- Pe)(1 - cos
0

if k - m and I - j

otherwise.

if k = m and I =j,

otherwise.
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Now we simplify the mean-squared error as follows:

MSE(2) = E[(z(z) - Ab)H(z() - Ab)]

= E[((Ra - I)A(b - w(')b) + n)H (Ra - I)A(b - w(2)b) + n)]

= E[((Ra - I)A(b - w(Z)b))H((Ra - I)A(b - w(')b)) + E[nHn]

E[bHAH(Ra - I)H(Ra - I)Ab + WHAH (Ra - I)H (Ra - I)Abw

-bHAH(Ra - I)H(Ra - i)Abw - WbHAH(Ra- I )H(Ra - I)Ab]

+E[nHn]
L K

S J5(MAIk(l) + (w(2))2MAIk(1)
1=1 i=1

-2wMAIk(l)(1 - Pe 1)(1 - cos ))) + LKU2

where MAIk(l) is defined in eq. (3.21). To find the w(0 that minimizes MSEW, we

simply take the derivative of MSE() with respect to 0 and obtain

d{ MSEW)I L K 27
d{w(} = 2 (w() MAIk(l) - MAIk(l)(1 - Pedj1 )(1 - cos -))) (3.29)

The choice of w(0 that satisfies the MMSE criterion under this constraint is thus

( zI ZkI1(1 - p(i1) cos ))MAIk (l)
W ()Ot-= k- L_ (3.30)

11 j:K IMAl (1)

In the case of perfect power control and random spreading codes, the amount of

MAI experienced by all users in every symbol period is approximately the same. The

weighting factor can then be simplified as

K(i),opt - Pe-(1 - cos ))MAIk

Kk=1MAIk (3.31)
K -Pe((1 - COS

K
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Intuitively, w(') depends on the average error probability of all users at stage i weighted

by the MAI suffered by each user at the output of its matched filter. This receiver,

which we name as the simplified weighted PIC (SWPIC), is considerably simpler than

the our previous solutions because only it only computes one cancellation weight for

each stage.

3.3.4 Practical considerations

To implement the proposed receiver in a practical system, we carry out the following

procedures in stage i:

1. Estimate the symbol error rate for each user in the previous stage.

2. Compute the weighting matrix Aa(Z1 ) according to eq. 3.20. (For a large

system, just compute the corresponding weight for each user (i.e. W i 1)(l)k,k)

according to eq. 3.22; For SWPIC, just compute W according to eq. 3.30.)

3. Find Ra and A using the knowledge of user signature waveform and received

amplitude, phase, and delay offsets.

4. Subtract RaAAa(2 )b(Z) from the matched-filter output vector y.

5. For each user, pass its corresponding cancellation output through the quantiza-

tion device to obtain the updated symbol estimates for the current stage.

6. Repeat procedures 1 through 5 for subsequent stages until the target BER has

been reached for all users in the system or as desired.

In practical applications, since the proposed receiver operates on a frame of data

symbols each time, the data frame size, i.e. L, needs to be carefully chosen based on

the tradeoff consideration between bit-error rate and latency requirement. The larger

the frame is, the longer the latency, but the better the performance since interferences

at the edge of the frame will be negligible when compared to the frame size.

A remaining question is how to estimate the error probability for each user at

a given stage. There are two solutions. First, the error probability of each user
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can be approximated by first estimating the signal-to-interference ratios (SIR) of the

cancellation outputs (i.e. elements in z(')) and then applying Gaussian approxima-

tion. For a M-PSK modulated system, the error probability can be approximated

as Pe ~ Q(v/SIR sin ') [55]. Second, each user can employ interleaved pilot (train-

ing) sequences within each data frame. The error probability can then be estimated

by observing the error rate of these pilot sequences. Even though the use of these

training sequences result in some loss of throughput, we will see in section 3.4 that

such loss is negligible comparing to the overall capacity improvement achieved by the

proposed receivers over the conventional PIC.

3.4 Performance analysis of MMSE-based weighted

multistage decision-feedback IC

3.4.1 Asymptotic error-rate analysis

In this section we analyze the error performance of the proposed receivers (using

MMSE feedback cancellation and Aa) for a M-PSK modulated DS-CDMA system

with K users. Since computation of the exact error probability is burdensome for

multistage IC (as illustrated in [71]) and does not yield significant insight, we evaluate

the error probability for a large system using classical Gaussian approximation [40].

We assume K -* oo, N -+ oc and i = 3, and that the user spreading (signature)

codes are random, which is a good model for a practical DS-CDMA system that uses

pseudo-random (PN) signature sequences with period much longer than the spreading

factor. We also assume a symbol-synchronous system, i.e. Tk = 0 for all k E [1, K],

which corresponds to the case of strongest MAI [78]. In this case, the correlation terms

in the MAI can be simplified such that p() = 1 = 0 for all m, k E {1, 2, ... K,

and pfM pmk.

An important measure of the system performance is the signal-to-interference ratio
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(SIR). In our case, the SIR at the matched-filter output for user k can be found as

A 2
SIR MF Ak

k Z=1,jk AE[p ]E[bb] + (.
A~j k2 j 3 (3.32)

where E[bjb '] = 1 for M-PSK modulation with equi-probable selection of constel-

lation points and E[p ,] = 1 due to random spreading. Furthermore, in the case

of perfect power control, i.e. A 1 = A 2 = ... = AK = A, the SIR of matched-filter

detection for all users can be simplified to:

SIRMF - 1 1 (3.33)IR K-1 + No +N
N 2A 2  2

for a large system.

We proceed to compute the SIR for the conventional PIC. The SIR for the can-

cellation output of user k at stage i is

SIRPIC,(i) A
k j=,jAk AE[Pk]E[(bj - bj - )(bj - b j H + 3.0.

A 2(3.34)

Y= 2,jAk -(1 cos ) +

where the relationship E[(bi - b -)) (bj - b -)H -)(1 - COS m) for a large

system has been derived in appendix A. Again, this SIR can be simplified in the case

of perfect power control as

SIRPIc,(i) 1(335)2#Pe(-1)(1 - cos N) +
M)+2A 2

where Pe(z-) is the average symbol error rate of all users in stage i - 1.

Similarly, for our proposed detector, i.e. the weighted PIC (WPIC) with MMSE

feedback cancellation, the SIR for the kth user at stage i after weighted MAI cancel-
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lation can be found as

SIRWPIC,(i)

where W) =3,3

A E[p? ,kE[(bj - W4)b( -O)(b -1)Nb H

A 2
~k

A (1 - (Wj, )2) +

j=1, A Pe>(1 - cos -)(2 - (1 - cos + 9

1 + (cos2 - 1)Pe ~0. Simplification at the second step comes from

the approximation that E[(b, - W<]b )(b- W J l)H] 1 - Too see

this is a valid approximation, we have

E[|bI - V ~i)|(i-)12] =E[(bj - W ) (bj.

=1 -- 2W)$ E [b 1)] + (W))2

~1 - 2W) - (W 3|)2

=1 - (W ])2

where the approximation in the last step assumes E[bib jl)] = 1 W and E[b> 1) b -')I =

1, which has been validated in the last section and appendix A. We see that in

this case, the interference power from the jth user is suppressed by a factor of

2 In the case of perfect power control, we can deduce the SIR of

all users to be

SIRWPICi -
1

Pe(i- 1)(1 - cos -)(2 - (1 - cos I)Pe(i-1)) +

The error probability for all three receivers can be calculated using classical Gaus-

sian approximation [17] as

Pe() = Q(sin S- SIR(i)).
M

(3.38)

We are interested in analyzing the convergence behavior of our proposed algorithm

105

- W 1) ) H
3,3 3

(3.36)

(3.37)



under Gaussian approximation in AWGN channel. Note that since SIRWPIC,(i) is a

function of PeWPIC,(i-1) through the weighting matrix A-(1), PeWPIC,(i) is then also

a function of PeWPIC,(i-1), i.e.

PeWPIC,(i) = H(PeWPIC,(i-1)) (3.39)

To find the error probability at which the receiver reaches convergence, we just need

to find when PeWPIC,(i) = PeWPIC,(i-1)

Figures 3-4 (a)-(f) show the convergence behavior of WPIC as a function of the

number of stages for small, large, and over-loaded systems with BPSK modulation

and signal-to-noise ratio (SNR = Eb/No) of 7dB. The convergence curve for PIC is also

plotted for comparison. We see that, in figures 3-4(a) and 3-4(b), which corresponds

to a system with load =_ 0.5 and 0.75, respectively, the error floor for WPIC and PIC

are essentially the same, except that it takes WPIC fewer stages to reach convergence.

In system with larger load, i.e. 3 = 1 and # = 1.25, which corresponds to figures

3-4(c) and 3-4(d), respectively, we see that the error floors of WPIC becomes better

than PIC, while WPIC also takes much fewer iterations to reach convergence. For

overloaded system, i.e. figures 3-4(e) and 3-4(f), which corresponds to / = 1.5 and

2, respectively, we see that both receivers perform poorly, with WPIC being slightly

better.

3.4.2 Simulation verification

The performance of (MMSE-based) WPIC is verified via simulation for an asyn-

chronous BPSK modulated and uncoded (i.e. no channel coding) system employ-

ing random spreading codes with a spreading gain of N = 128. The signal-to-

(background)noise ratio (SNR) for each user is 7 dB, which resembles perfect power

control. The IC operates on every frame of 800 data symbols, which includes 12

training symbols. For a system with more than 64 users, asymptotic approximation

is applied for WPIC. The performance of the WPIC and SWPIC in AWGN chan-

nels in one stage, two stages, and five stages are shown in figures 3-5(a), 3-5(b),
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and 3-5(c), respectively, where we plot the average BER vs. the number of active

users. The corresponding performances in a flat-fading channel are plotted in figures

3-6(a), 3-6(b), and 3-6(c), with the average SNR per user being around 20 dB. The

amplitude of each user in this case fades independently from symbol to symbol and is

modeled as a Rayleigh random variable. Error performance of the matched filter and

conventional PIC are also plotted in each figure for comparison. From these figures,

we see that the loss of 1.25 percent in throughput due to the use of training sequence

is negligible compared to the amount of capacity gain achieved by WPIC and SWPIC

over conventional PIC. For instance, for a two-stage IC in an AWGN channel, if we

impose a BER target of 10', the use of WPIC can accommodate about 65 users,

while the conventional PIC can only accommodate about 45 users. This corresponds

to 45 percent increase in the capacity.

Tradeoff between BER and Eb/No for the different receivers after 1, 2, and 5 stages

are shown in figures 3-7(a), 3-7(b) and 3-7(c), respectively, for a half loaded system

(64 users with a spreading gain of 128). We see that in all stages, the WPIC not only

exhibits a better tradeoff than the other algorithms but also yields a much lower error

floor and can converge more quickly than the others to reach the target error rate.

The SWPIC also exhibits a better tradeoff than the conventional PIC. Its behavior is

significantly worse than WPIC in later stages, however, due to the lack of disparate

weighting factor for each user, even though the simulations are done for the case of

perfect power control and random spreading codes.
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3.5 Multistage IC with both feedforward and decision-

feedback linear processing

So far, we have developed a class of multistage ICs using MMSE optimized feedback

matrix to achieve significant performance improvement over the conventional PIC.

Due to its complexity constraint (to be comparable to the conventional PIC), the

performance of our receiver is still worse than that of linear joint detectors and is

quite far from the single-user performance bound. For the rest of the chapter, we

introduce additional complexities to enhance the detector performance. Specifically,

we show that by adding a feedforward linear processing unit to the multistage IC

and by jointly optimizing the feedforward and the feedback matrix using the MMSE

criterion at every stage, we obtain a receiver whose performance not only surpasses

that of linear joint detectors but also approaches the single-user performance bound

in a few iterations.

3.5.1 Framework of multistage decision-feedback IC with feed-

forward matrix

Using vector notations developed in section 3.2.1, the structure of a multistage IC

with feedforward linear processing module is illustrated in figure 3-8. In the ith stage

Matched + 0)

r(t)- Filter M
Bank-

Fb

Figure 3-8: A general multistage interference canceller with feedforward processing
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of the receiver, the matched-filter output y is processed by the forward matrix M('),

while at the same time the feedback matrix FW reconstructs the MAI based on b0-l.

The cancellation output can be expressed as

z() = - F(6)--l (3.40)

The decision vector z(') is processed by minimum-distance (quantization) devices to

generate b(i)

Depending on design constraints for M and F, the formulation in figure 3-8 can

lead to different types of joint detectors. For instance, we can assign MW to be

the decorrelator or the MMSE detector at the initial stage (i.e. i = 1) and identity

matrix at subsequent stages, while letting F) - (Ra - I)A for i > 1, i.e. using full

cancellation in all subsequent stages. This yields a multistage IC with decorrelator

or MMSE front-end [75, 61]. The main purpose of this type of receiver is to enhance

the reliability of symbol estimates at the first stage so that MAI cancellation in

subsequent stages are more reliable than using just the matched filter front-end. The

drawback with this type of receiver, however, is that the error rate in later stages

may not be better than the initial stage, as have been shown in [75], mainly because

the cancellation process beyond the initial stage is performed based on the noisy

matched-filter output.

Other detectors based on figure 3-8 include MMSE and decorrelator decision feed-

back interference cancellers [75, 13, 31]. The key idea is to optimize M and F with

some constraints (such as letting F to be a lower triangular matrix) to minimize a

specific cost function in each stage. For the decorrelator-based decision feedback IC,

the goal is completely eliminate MAI at each stage, while for MMSE-based schemes,

the goal is to minimize the MSE between the transmitted and received symbols. In

addition, [7] derived a class of decision feedback multiuser interference cancellers with-

out assuming perfect MAI reconstruction. Its feedforward and feedback matrices are

designed with an attempt to maximize the SIR in every stage. By carefully working

out the algebra, this result actually turns out to be a special case of our solution when
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the weighting matrix Aa is constrained to be diagonal. The performance of these re-

ceivers, mostly illustrated through simulations, have been shown to exceed the linear

joint detectors in some extent. The assumption of perfect MAI reconstruction and

the constraints on M and F, however, still limits the performance of these detectors.

3.5.2 Multistage IC with MMSE-optimized feedforward and

feedback matrices

In this section, we present a multistage IC that is derived via unconstrained joint

MMSE optimization for the feedforward and feedback matrices at every stage. The

mean-squared error in the ith stage can be denoted as

MSE(Z) - E[(z') - Ab)H (z() - Ab)] (3.41)

where z(') is described in eq. 3.40. Using the fact that the choice of M) and

F(') that minimizes MSE) also minimizes the trace of the covariance matrix (i.e.

cov(z() - Ab)), we begin our derivation as follows and drop the superscript (') for

notational convenience:

cov(z(z) - Ab) E[(z - Ab)(z - Ab)H]

= E[((MRa - I)Ab - Fb + Mn)((MRa - I)Ab - Fb + Mn)H

- E[(MRa - I)AbbAH(MRa - i)H] + E[MnnH MH]

+E[FbbHFH] - E[(MRa - I)AbbHFH]

-E[FbbHAH(MRa - I)H

The simplification in the last step comes from the fact that the noise term is uncor-

related with the original symbols and the symbol estimates. To further simplify the

covariance matrix, we use the following assumptions that have been stated before,

i.e. E[bbH] = [, E[$bH] = I, E[nnH] = U2 Ra E[bH] = Aa, which can be used to
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further reduce the covariance matrix as

cov(z(2) - Ab) = (MRa - I)AAH(MRa - I)H + U 2 MRaMH + FFH

-(MRa - I)AAaFH - FAaHAH(MRa - I)H

= MRaURaHMH - MRaVH - VRaHMH + AAaFH + FAHAH

+FF+H + AAH

= MRaURaHMH - MRaUU~1VH - VU-1URaHMH

+VUlVH - VU-IVH + AAaFH + FAHAH + FFH + AAH

(MRa - VU-')U(MRa - VU-)H - VU-jVH + AAaFH

+FAaHAH + FFH + AAH

where

U

V

(3.42)

(3.43)

= AAH + A2RA

=AAH1 + FAHAH.

Since the correlation matrix Ra is symmetric and positive semi-definite, U is also a

positive semi-definite matrix. Therefore, we see that for any feedback matrix F, the

choice of feedforward matrix M that minimizes the mean-squared error is:

M = MoPt -VU-R-1

=(AAH + FAHAH)(AAH + o 2 R)R 1

=(FAa + A)A~'(R + .2 (AHA)-)

(3.44)
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Now, with M = M"Pt , we proceed to find the optimal F that leads to the minimum

MSE. The covariance matrix now becomes

cov(z - Ab) = AAaFH + FAHAH + FFH + AAH

-(FAaH + A)(I + U 2 A-Ral(AH)-1)-(FAaH H A)H

- AAaFH + FAHAH + FFH AAH - (FAaH + A)G- 1 (FAaH + A)H

= F(I - AaHG--Aa)FH + A(I - G 1 )Aa(I - AaHG-lAa) 1

(I - AaHGlAa)FH + F(I - AaHG-Aa)(I - AaHGlAa) 1

AaH(I - G- 1)A" + A(I - G-1 )Aa(I - AaHG-Aa) lAaH(I - G- 1)AH

+A(I - G-1)(I - Aa(I - AaHGlAa)-AaH(I - G 1 ))AH

- (F - A(I - G-1 )Aa(I - AaG'1Aa) 1 )(I - AaHGlAa)

(F - A(I - G-')Aa(I - AaHG-lAa) 1 )H

+A(I - G- 1)(I - Aa(I - AaHGlAa)~lAaH(I - G- 1))AH

where

G = I + aA- Ra (AH)--

Since Ra is positive semi-definite, o2A-Ral~(AH)- 1 is clearly positive semi-definite.

Therefore, all eigenvalues of G is greater than or equal to 1, which means that (I -

AaHG-Aa) is also positive semi-definite. The optimal choice of F that minimizes

the trace of cov(z - Ab) (and thereby the mean-squared error) can be found as

F = FOPt A(I - G')Aa(I - AaHG-lAa)

A(I - (I + U 2A-lRa l(A)-1)-)Aa

(I - AaH(I + 2 A-Ral(A H) 1)1Aa)l

(3.45)
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The minimum mean-squared error in this case is

MSE tr(A(I - G - Aa(I - AaHGlAa) AaH(I - G- 1 ))AH)

= tr(A((I - G')- 1 + Aa(I - AaHAa)-AaH)l1AH)

= tr(A(I+ O2 AHRaHA +Aa(I - AaHAa)AaH -A H)

= tr(A((I - AaHAa) 1 + 2 AHRaHA)-A H)

where the simplifications in steps 2, 3, and 4 all uses the matrix inversion lemma

introduced in [63]:

(A + BCD)- 1 = A- 1 + A- 1B(C- 1 + DA- 1 B)DA-'

This completes our derivation.

To summarize, we have obtained the following results from the MMSE optimiza-

tion of feedforward and feedback matrices:

1. For any feedback matrix F), the choice of M(') that minimizes the MSE in

stage i is

M('),oPt - (F(i)Aa(Z1 ) + A)A(-) (, 2 A HA-' + Ra) (3.46)

2. With M) - M),OPt, the choice of F that minimizes the MSE in the ith stage

is

F() F('),oPt - A(I - (I + 72A~lRal(A H)-1 )-1)Aa) ()

(I - Aa(i-l)H J +2 -lRal(A)-l)-1Aa( ))

To gain some insights about this detector, which we name the MMSE Multistage IC

with feedforward Processing (MMSEMIC), we look at the initial stage, i.e. i = 1. In

this case, Aa.0  = 0 (since there are no previous symbol decisions) and thus FM1 = 0.

This gives M(M - (U2 A- 2 + R) 1 , which is exactly the linear MMSE joint detector.

This makes sense, since the MMSE linear joint detector is indeed the feedforward
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matrix that minimizes the MSE when there is no feedback cancellation. As the

number of stages increases, the symbol estimates become more accurate and AaZ

approaches the identity matrix, we expect the performance of this receiver to surpass

that of linear MMSE joint detector.

To implement the proposed receiver in a practical system, we carry out the fol-

lowing procedures at each stage:

1. Estimate the error probability for each user in the last stage either via SIR

approximation or interleaved training sequences.

2. Compute Aaf 1 0 for the current stage (i.e. stage i).

3. Compute feedback matrix F() based on Aa(i-) and reconstruct the MAI using

b(-1) from the last stage.

4. Calculate feedforward matrix MWG based on F().

5. Apply M(W to linearly transform the matched-filter output and subtract the

reconstructed MAI from the transformation output. Send cancellation output

to quantization devices to generate symbol decisions for the current stage.

6. Repeat steps 1 through 5 at subsequent stages until BER target is reached.

Note that the main complexity of the algorithm comes from the matrix inversion

process involving Aa i 1 0 at every stage.

3.5.3 Alternative solutions with reduced complexity

Since the proposed receiver already achieves the performance of a standard linear

MMSE detector in the initial stage, we expect its performance to exceed all linear

joint detectors in later stages. Its complexity, however, also exceeds that of the joint

detectors and grows in proportion with the number of stages, primarily due to the

fact that matrix inversion, which has a complexity on the order of O((LK) 3 ), has to

be performed at every stage. To lower the complexity, in this section we introduce
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two suboptimal solutions that have lower complexities and yet may still outperform

the linear joint detectors.

Since the complexity at each stage mainly lies in matrix inversion, we design the

suboptimal solution so that the inversion is only performed once throughout the entire

cancellation process. One sensible choice is as follows:

M (R+ (AAH)- 1 2 1  if 1 (3.48)
if i > 1

F(- (R - I)AAa0 1 ) (3.49)

In intuitive terms, the resulting receiver, which we call MMSE-Feedback Multistage

IC (MMSEFIC), is a weighted multistage IC with linear MMSE detector at the ini-

tial stage. In subsequent stages, the MAI are reconstructed and subtracted from

the matched-filter output. The cancellation weights are adjusted at each stage to

minimize the MSE. In this way, the complexity of the system is similar to that of

conventional PIC with MMSE first stage.

In addition, if we do not have estimates for the background noise (which contains

thermal noise and intercell interferences) power ready, we may also use the decorre-

lator at the initial stage instead, which gives the following specification for MWz and

F('):

M( W R if i = 1 (3.50)
I if i > I

F(') = (R - I)AAa( 10 (3.51)

This suboptimal receiver, which we call MMSE-Feedback Multistage IC with decor-

relating first-stage (MMSEFICD), has a complexity that is similar to the PIC with

decorrelating first stage.
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3.6 Performance of MMSE multistage IC with for-

ward and feedback matrices

3.6.1 Asymptotic analysis

In this section we calculate the asymptotic error probability of the proposed MMSE

multistage IC with feedforward and feedback matrices for a large system with perfect

power-control and random spreading codes. This means that we assume A1 (1) =

A2(1) = .=Ak(l)= Ak+1(l)= ... =AK(L) =A, K-+ oo, N--oo and 4=K .

We first look at the minimum MSE of each stage under MMSEMIC, which can

be found as

MSE(2) = E[tr(A((I - AaHAa)1 + U 2 AHRaHA)-AH)]
K

I LK 
+ G2H ) ' ~= E[Z Ak(A((I - AaHAa, + UAHRaH AA)

k=1

1
A 2 (1 - (A(')) 2 )E [ A2 1(l _A )-

1+ A2 Ak(Ra)

where Ak(Ra) is the kth eigenvalue of Ra. Simplification in the third step is based

on the perfect power control and random spreading codes assumption, in which all

users should have very similar error performance and thereby all diagonal entries in

Aa() equals to the constant A('.

Now, to further simplify MSE(), we use a convergence theorem proved in [75],

which shows that for a DS-CDMA system with random spreading codes, correlation

matrix R and =
N

liK1,E F1 X1(-2

limK-+E[1 + X2Ak(R) 4 1(X,1 (3.52)

where

F(u, v) - ( U(1 + v V)2 + 1 + U(1 - v-)2 + 1)2.
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Thus, we see that as K -+ 00,

2(1 ~o2 A 2(1 _ (A('))2)
AMISE~i( -+ A2(1 - -)2)(1 -) F( -(a i )

a ~4 A2(1 - (A('))2) 92-M

To find the signal-to-interference ratio from MSE(), we note that it has been shown

in [76] that for a perfectly power-controlled system using MMSE detector, if MSE =

E[(z - Ab)H(z - Ab)] has the following form:

2 A2
MSE = A2 A F( (1- u A 2 )4/A~se~ s/)

then the resulting signal-to-interference ratio is

A2  A2

SIR = MSE- A2sE

By careful observation, we recognize that our MSECW is exactly in the form of 3.53

with AMSE A 1 - (A())2. Hence, the asymptotic signal-to-interference ratio of

MMSEMIC can therefore be found as

A A2  A2

SIRMMSEMIC,(i) - A 2

MSE(W A2(1 - (A('))2)

A2 ( 1-1)
A2 (1 - (A)2) 1 _- 2 F( 2 (-(Aa) 2 ) ()

4#A2(1-(AMi)2) 0'2

1 A2(1 - (Ai) )2) 1 A 2 (1 - (Ai) )2)

1 - (A))2 0.2 4 .2

A 1 A 2 (1 - )2)
F( A ))

O.2 4(1 - (A('))2) .2 7

where simplification in the third step has been shown in [75]. The second term in the

last step is basically how far the asymptotic performance of MMSEMIC is from the

single-user bound.

The asymptotic error probability of MMSEMIC in stage i can then be approxi-
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mated using the standard Gaussian approximation:

PeMMSEMIC,(i) - Q(sin IR MMsEMIC(i)). (3.53)
M

We next analyze the convergence behavior of MMSEMIC using error probabilities

calculated based on Gaussian approximation. Since SIRMMSEMIC,(i) is a function of

PeMMSEMIC,(i) through ASP, PeMMSEMIC,(i) is also a function of PeMMSEMIC,(i-1)

such that PeMMSEMIC,(i) _ ft(peMMSEMIC,(i-1)). To find the error probability at

which MMSEMIC reaches convergence, we just need to find out when PeMMSEMIC,(i) -

PeMMSEMIC,(i-1)

Figures 3-9, 3-10, and 3-11 show the convergence behavior of MMSEMIC as a

function of the number of stages for small, large, and over-loaded systems, respec-

tively, assuming BPSK modulation and a signal-to-noise ratio (SNR) of 7dB. The

convergence curve for WPIC (i.e. weighted PIC with MMSE optimized feedback

matrix) is also plotted for comparison. We see that, in figures 3-9(a) and 3-9(b),

which corresponds to a system with load / = 0.5 and 0.75, respectively, the error

floor for MMSEMIC and WPIC are essentially the same, except that it takes MM-

SEMIC fewer stages to reach convergence. In system with larger load, i.e. 3 = 1

and / = 1.25, which corresponds to figures 3-10(a) and 3-10(b), respectively, we see

that the error floors of MMSEMIC starts to be significantly better than WPIC, while

MMSEMIC also takes noticeably fewer iterations to reach convergence than WPIC.

For overloaded system, i.e. figures 3-11(a), 3-11(b), and 3-11(c), which corresponds to

# = 1.5, 2, and 4, respectively, we see that while WPIC performs poorly, WLIC still

exhibits a very low error-rate floor (except for extremely high load, i.e / = 4), even

though its convergence rate has slowed down significantly compared to the earlier

cases.

3.6.2 Simulation verification

The performance of the proposed MMSE multistage IC with feedforward and feedback

matrix and its suboptimal variations are verified via simulation for an asynchronous

122



10
Error Probability of Weighted PIC and MMSEMIC, SNR = 7 dB, beta = 0.5

-e- MMSEMIC
10'

to -' - 0 .

10'2- 10 2

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of iterations Number of iterations

(a) (b)

Figure 3-9: Error probability convergence based on Gaussian approximation for MM-
SEMIC and WPIC for systems with loading (a) 3 = 0.5 and (b) # = 0.75

BPSK modulated and uncoded DS-CDMA system using random spreading codes

with a spreading gain of N = 128. The receiver operates on every frame of 800 data

symbols, including 12 training symbols for error-rate estimation.

We first look at the bandwidth efficiency of the proposed algorithms. Figures 3-12

(a)-(c) show the bit-error rate (BER) of MMSEMIC, MMSEFIC and MMSEFICD

as a function of the number of users in the AWGN channel after two, three and

five stages, respectively. The BER of the matched filter, the decorrelator, the linear

MMSE detector and the single-user performance bound are also plotted for compar-

ison. The amplitude of each user is fixed such that the individual E is 7 dB, whichNowhc

resembles perfect power control. To simulate a more realistic channel, the corre-

sponding performances in the frequency non-selective Rayleigh fading channel with

average -E= 10dB are shown in figures 3-13(a)-(c) for two-, three- and five stage

performances, respectively.

From these plots, we observe that the proposed algorithms (including the sub-

optimal techniques) clearly outperforms the linear joint detectors. Furthermore, we

observe that after three stages, the BER of the MMSEMIC is very close to the single-

user performance bound. What else is interesting is that after three stages, the
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Figure 3-10: Error probability convergence based on Gaussian approximation for
MMSEMIC and WPIC for systems with loading (a) # = 1.0 and (b) 3 = 1.25

performance of the MMSEMIC becomes somewhat insensitive to the MAI, as the

error rate does not seem to increase proportionally with the number of users in the

system. The BER gap between the MMSEMIC and the single-user bound may be

contributed by the background noise enhancement caused by the linear transforma-

tion procedure at every stage. In addition, note that at early stages the performances

of the proposed suboptimal schemes (MMSEFIC and MMSEFICD) are far from that

of MMSEMIC. At later stages, however, the BER of these schemes, particularly MM-

SEFIC, approaches that of the MMSEMIC and the single-user bound.

We next look at the energy efficiency of the proposed algorithms. Figures 3-14(a)-

(c) show the BER vs. - for the proposed algorithms in a system with 75% loadNo

(96 users). We see that the energy efficiency of the proposed algorithms significantly

outperforms the linear joint detectors. After 3 stages, the performance of MMSEMIC

is very close to the single-user bound. Among the proposed suboptimal techniques,

the power efficiency of MMSEFIC becomes very close to that of MMSEMIC and

single-user bound at later stages.
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3.7 Chapter summary

In this chapter, we have presented two effective multistage parallel interference can-

cellation algorithms that are derived using stage-by-stage MMSE optimization. The

key difference between our detection schemes and the conventional approaches is that,

instead of assuming the symbol estimates in previous stages to be completely accu-

rate, we incorporate a weighting matrix into the detection process. The weighting

matrix is an approximate measure of the correlation between symbol estimates in

the previous stage and the true transmitted symbols. Our first algorithm applies

decision-feedback to cancel the MAI and has a complexity that is comparable to that

of the conventional PIC. Its performance significantly surpasses that of conventional

and partial PIC for both AWGN and fading channels. Our second algorithm uses

both feedforward and feedback matrices to suppress MAI, and its complexity is on

the same order as that of linear joint detection. The performance of this detector

not only surpasses that of our first scheme and the linear joint detectors but also

approaches the single-user performance bound in a small number of iterations.
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Figure 3-11: Error probability convergence based on Gaussian approximation for
MMSEMIC and WPIC for systems with loading (a) # = 1.5, (b) 3 = 2, and (c)
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Figure 3-12: Error probability of multistage MMSE IC vs. the total number of users
in AWGN channel: (a) 1 stage, (b) 2 stages, (c) 5 Stages
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Performance of MMSE-based ICs in Flat Fading Channel, Sp Factor = 128, 2-Stage
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Figure 3-13: Error probability of multistage MMSE IC vs. the total number of users
in flat-fading channel: (a) 1 stage, (b) 2 stages, (c) 5 stages
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Performance of MMSE-based ICs in AWGN Channel, Sp Factor = 128, 96 users, 2-Stage
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Chapter 4

A Dual-mode Linear Multiuser

Receiver

In this chapter, we investigate the detection problem in receiver design for the uplink

a direct-sequence code-division multiple access (DS-CDMA) system. The design ob-

jective is to minimize the system computational complexity while meeting the quality

of service (QoS) requirements (such as bit-error rate(BER), throughput, and delay

constraint) of the users. Specifically, we focus on linear joint detection. We intro-

duce a dual-mode multiuser detector that dynamically switches its detection mode

between matched filter and decorrelator operations based on the channel characteris-

tics. This detector significantly reduces the overall computational requirement while

maintaining similar performance as that of the decorrelator. The switching mecha-

nism of our dual-mode detector is designed by exploiting the performance-complexity

tradeoff between the decorrelator and the matched filter.

4.1 Motivations and background

The spectral efficiency of a conventional DS-CDMA system that employs single-user

matched-filter detection suffers from multiple-access interference (MAI), or user-to-

user interference caused by non-zero cross-correlation between the spreading code

waveforms of different subscribers. Multiuser joint detector has emerged as a promis-
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ing technique to suppress MAI. Unlike the single-user detector that performs detection

for each user individually and treats other users' signals as additive white noise, the

joint detector incorporates the information of other subscribers into consideration

while recovering data for the desired user.

The multiuser detector that leads to jointly optimal error probabilities for all users

was proposed by [74] using a maximum likelihood sequence estimation approach. The

complexity of this detector, however, grows exponentially with the number of users

and is thus unsuitable for practical implementation. Since then, most of the research

efforts in joint detection focus on the design of suboptimal algorithms that yield good

performance-complexity tradeoff [33, 42, 24, 46, 75, 84, 85]. There are grossly two

classes of suboptimal joint detectors: linear and non-linear detectors. The linear

detectors basically perform a linear transformation on the matched-filter output to

tune out the interferences, but the nonlinear detectors typically employs decision-

feedback interference cancellation.

In this chapter, we consider the class of linear multiuser detectors, which has been

shown to perform significantly better than the matched filter and is yet much simpler

to implement than a maximal likelihood (ML) detector [55, 75] (which is optimal in

terms of performance). In particular, we focus on a specific linear multiuser detector

called decorrelator, the operations of which do not require accurate estimation of the

amplitudes of the users' received signals and the background noise power. The asymp-

totic performance of the decorrelator has been extensively studied in the context of

asymptotic multiuser efficiency, bit-error rate (BER), effective bandwidth, and user

capacity [32, 54, 67, 76].

Previous studies have demonstrated that the decorrelator in general is more effec-

tive than the single-user matched filter in suppressing MAI. Its performance, however,

may not exceed that of the matched filter in certain cases due to its inherent noise

enhancement problem [76]. In particular, when the background interferences, such

as intercell interferences and thermal noise, are excessively high compared to the

MAI, the decorrelator is likely to perform worse than the matched filter. Moreover,

the decorrelator has a much higher computational complexity than the matched fil-
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ter [34]. Even though these facts are well-known, little seem to have been done to

incorporate them into system design considerations. By exploiting this performance-

complexity tradeoff between the decorrelator and the matched filter, we propose a

new design for implementing a decorrelator-based multiuser receiver.

The main feature of our dual-mode detector is that it dynamically switches be-

tween the decorrelator and the matched-filter operations based on the interference

characteristics. Our receiver is capable of significantly reducing the consumption of

computational resources while maintaining similar performance as that of the decor-

relator. A key element in this technique is the switching criterion, i.e. when to

switch from one mode to the other. We obtain this switching criterion by compar-

ing the analytical performance between the decorrelator and the matched filter. The

effectiveness of our dual-mode detector is illustrated via simulations.

This chapter is organized as follows. We begin by briefly introducing the basic

models and structures of the decorrelator and the matched filter in section 2. We

propose our dual-mode detector in section 3 and then derive the switching threshold

in section 4 by comparing the signal-to-interference ratio of the decorrelator and

the matched filter. We present simulation results in section 5 to verify the receiver

performance. Chapter summary is given in section 6.

4.2 System model

We begin with a mathematical description of a single-cell DS-CDMA system. As-

suming K users employing antipodal signals for transmission over a frequency non-

selective additive white Gaussian noise (AWGN) channel, the received baseband signal

can be expressed as

K

r(t) = E Aksk(t - Tk)dk(t - Tk) + n(t), (4.1)
k=1

where Ak and Tk are the received amplitude and delay of user k, respectively. The

function dk(t) denotes the user data waveform, where dk(t) = _'=- dk,irect(t - iT),
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with T being the symbol interval, dk,i E {-1, 1} being the ith transmitted symbol of

user k, and rect(t) being the rectangular pulse of width T and unit amplitude. The

background additive white Gaussian noise (AWGN) with one-sided density power

density 2Np is denoted by n(t), which consists of thermal noise as well as intercell

interference, i.e. interferences from users in other cells. The function Sk(t) denotes

the spreading signature waveform of user k and can be expressed as

oo N

Sk(t ckJg(t - jT - iTb), (4.2)
i=-oo j=1

where Ck,j E {-1, 1} is the value of the jth chip of user k's spreading sequence; N

is the spreading factor; Tc is the chip interval, i.e. T = NTc; g(t) is the chip pulse,

which is assumed to be rectangular for the convenience of analysis and simulation;

The energy of g(t) has been normalized such that fTb ISk(t)!2dt = 1.

First we look at linear joint detection for a symbol-synchronous DS-CDMA system,

i.e. Tk is zero for all k. This model applies to the uplink with very tight timing control,

an example of which is the time-division synchronous CDMA (TD-SCDMA) system

developed for 3rd generation wireless system in China [66]. To detect the ith symbol

of the kth user, the receiver first performs matched filtering for user k over the interval

[iTb, (i + 1)T]. The detection for the ith symbol for all users is thus equivalent to

passing r(t) through a bank of matched filters. The output of this filter bank, which

we denote as y = [Y1 Y2 ... yKIT, forms a set of sufficient statistics for the detector

decision on the received symbols. Each element of y can be found as

Yk i1)Tb r(t)sk(t)dt
JiTb

K (4.3)
=Akdk,i ± ) Pk,jAjdj,i + nk,

j=1 ,j~k

where nk is the projection of n(t) on Sk(t) and Pk, = f(i±1)T sk(t)sj(t)dt is the cross-

correlation between the kth and jth users' signature waveforms. The middle term

of y is the MAI from other users on user k, which is clearly caused by the nonzero
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cross-correlations between the users' signature waveforms. Furthermore, we see that

y = RAd + n, (4.4)

where R is a K-by-K correlation matrix with elements Rkj - Pk,, A is a diagonal

matrix with Ak,k = Ak, d = [di,j d2 ,i ... dK,i ]T is the data vector, and n = [n, n2 ...

nK ]T is the noise vector.

With linear multiuser detection and hard-limited decision, the output decision for

user k's symbol is made as dk,i = sgn(zk) where

z = Ly, (4.5)

L is a linear transformation matrix depending on the type of detector that is used.

For the conventional matched-filter detector, L is a K by K identity matrix. For the

decorrelator, L = R+, where R+ denotes the Moore-Penrose pseudo-inverse of R.

When R is nonsingular, R+ equals to R-1 . The decorrelator essentially performs a

linear transformation with the intention to completely eliminate MAI. It has been

shown that the decorrelator achieves the optimal near-far resistance as long as R is

nonsingular, i.e. user signature waveforms are linearly independent of each other [75].

We now develop a similar model for an asynchronous CDMA network, which is

applicable to the uplink of a cellular system without timing control. In contrast to the

symbol-synchronous case, user k's delay, Tk, is no longer zero but a real number that

is distributed between zero and T and is independent of the timing of other users.

To minimize the decision delay, we look at one-shot detectors, which means that the

detection of the ith bit of user k is based only on the received signal over the interval

[Tk + iTb, Tk + (i + 1)T]. The one-shot detection is optimal for the matched-filter

detection but suboptimal for the decorrelator detection [75].

Without loss of generality, we consider the detection of the ith bit of user 1, and we

assume that T1 = 0. We therefore want to look at interval [iT, (i + 1)T] for di,,. Due

to the assumed asynchronism, the interference caused by each user may contribute in

multiple dimensions. We subsequently rewrite r(t) over the time interval of interest
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2K-1

r (t) = E Akdk,isk(t),
k=1

where d1,i = d1,j, 1 1(t) = s1(t), and for k 0 1

= dk,i1, d2k+1,i = dk,i

Sk(t-Tk) t E [ib, iTb Tk

0 otherwise

Sk(t - Tk), t E [iTb + Tk, (i + I)Tb]

0 otherwise

A set of sufficient statistics for the one-shot detection over the interval [iTb, (i +

1)Tb] is 9 = [ l Y2 ... Y2K-1]T where

k = /(i+1)T
k iTb

We see that, similar to the synchronous case,

y =R Ad + n, (4.7)

where now R is a (2K - 1) by (2K - 1) correlation matrix with elements Rkj =

Pkj = f(i+s)Tb Sk(t)Sj(t)dt.

The estimate of the ith symbol of user 1 is obtained as d1,j= sgn(zij) where

(4.8)

where L is an identity matrix for the matched-filter detection, and L = R+ for the

decorrelator. Here, again, we see that the decorrelator can completely eliminate MAI

for user 1 as long as the one-shot cross-correlation matrix R is nonsingular.
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d2k,i

s2k(t)

s2k+1

T(t)§k(t)dt.

z = Ly ,



4.3 Architecture of the dual-mode detector

Even though the decorrelator is able to effectively suppress MAI, its performance

suffers from a problem known as noise enhancement. The reason is that during

the linear transformation process, the noise component in the received signal is also

being scaled by the inverse of the correlation matrix. This has been shown to result

in a greater noise power [75]. Consequently, in the case where the background noise is

stronger than MAI, the decorrelator is likely to perform worse than the matched filter.

In particular, [76] showed that for a DS-CDMA system with random spreading codes

and an optimal choice of spreading gain, the spectral efficiency of the decorrelator

is greater than that of the matched filter only if the average E of all users in the

system exceeds 5.2 dB.

In terms of computational complexity, the decorrelator operation requires signif-

icantly more computational resources beyond the matched filtering. It is shown in

[34] that for a standard implementation of the full-decorrelator in an asynchronous

CDMA system, the total number of operations required beyond the matched filtering

is at least on the order of cubic of the number of users. It is therefore inefficient to

apply the decorrelator in an environment where it does not significantly outperform

the matched filter.

These observations prompt us to propose a dual-mode multiuser detector that

dynamically switches the detection mode between the decorrelator and the matched-

filter operations. The overall architecture and operations of this dual-mode detector

can be easily understood by examining figure 1. The receiver first processes the

incoming signal with a bank of matched filters. Next, it performs certain necessary

estimations using the output of the matched filter. These estimates are then used

to decide whether to perform multiuser detection (MUD). If so, the decorrelator

transformation will be performed. Otherwise, the receiver bypasses the decorrelator

operations, and the output of the matched filter is used for the symbol decision. The

detection mode is decided on a symbol-by-symbol basis for each user.

The key idea here is that the decorrelator operation for all users will be performed
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Figure 4-1: Structure of the dynamic dual-mode linear multiuser receiver

only if the MAI dominates other background interferences for a significant number of

users. Note that in a realistic cellular system, the background interferences for each

user come not only from the thermal noise but also from other sources such as inter-

cell interferences, which can be quite strong at times. Also, due to multipath fading,

the amplitude of the received signal of each user may vary over time significantly. We

thus expect that there would be a significant portion of time during which the decor-

relator does not outperform the matched filter. The use of this dual-mode detector

therefore has the potential of significantly reducing the computational requirement

while maintaining similar performance as that of the decorrelator, if not better.

4.4 Switching criterion

In this section, we describe how to make decisions about the detection mode, which

is the key element of this dual-mode receiver. We first analyze and compare the

performance of the one-shot decorrelator and the matched filter, based on which

we then decide our design parameters for the switching block that determines the

detector mode.

We first look at the performance of the decorrelator, which has been extensively

studied[32, 67, 72, 75, 76, 77]. Most of the existing works focus on the asymptotic

behavior of the decorrelator by letting the spreading factor N and the number of

users K go to infinity while fixing the ratio between N and K at a finite value. Here,
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instead of analyzing the asymptotic behavior, we derive a performance bound on

the output signal-to-interference ratio (SIR) of the one-shot decorrelator detector for

finite K and N.

We first look at a two user synchronous system. In this case, the matched-filter

output for users 1 and 2 can be explicitly expressed as

y1 = Aibi+A 2pb2 +ni

Y2 = A2b2 + A1pb2 + n2

where we let P = P1,2 to denote the cross-correlation between the spreading codes of

users 1 and 2. If we express the matched-filter output into vector form y = RAb + n,

the correlation matrix is

R = P

p 1

The inverse of R can be found as

R-1 2 -P

1 - p2 
-

The output of the decorrelator transformation is z = R-ly [ziz 2 ]T, the elements

of which can be found as

zi = Alb, + ni -pn2
1 - p

Z2 = A2b2 + n2 -

1 - p2

Without loss of generality, we look at the performance of user 1. We see that

before decorrelator, the signal-to-interference ratio (SIR) of user 1 is

IR A2
SIR, = 1 (4.9)

Al2+NP
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After decorrelator, the SIR becomes

A112
SIR ecorr - I

E[("n2 )2]

A (1 -p 2 )2

E[n,~ + Elr2]P - 2pE[niri2] (4.10)
A (1 - p2 ) 2

N

The tradeoff here is that even though the MAI has been eliminated, the back ground

noise has been enhanced by a factor of 1 - p2 . Or equivalent, we can say that the

user pay a penalty of 1 - p2 in the signal power for using decorrelator.

If we compare SIR'f and SIR1eco", we see that the decorrelator will benefit user

1 in terms of SIR only if

A2 (1- p 2 ) A 2

Np A p2 +N

Or equivalently

A2 1

p p2

which means that the decorrelator outperforms matched filter in terms of SIR only if

the signal-to-background-noise ratio (SNR) of user 2 exceeds 11P2*

Using similar procedure, we can show that user 2 will benefit from decorrelator

detection only if

A 1> 1
N 1 - p2

We now extend the analysis to a system with K users. Without loss of generality

and for notational convenience, we again analyze the SIR for user 1. We state our

main results in this section and present the proof in appendix B. Let us first consider

a synchronous CDMA system with nonsingular correlation matrix R. The soft output
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of the decorrelator detector for user 1 in this case is

K

z= Adi + ZR--ikn, (4.11)
k=1

where nk is the kth element of the noise vector. The following theorem gives a lower

bound on the SIR of any user:

Theorem 4.1 Let SIR dco denote the output SIR of the decorrelator receiver for

user 1 in a symbol-synchronous CDMA system where the spreading sequences of all

users are linearly independent of each other. Then

A 26r (R)SIR decorr > I min(RI N (4.12)

where crmzn(R) is the minimum singular value of R, the correlation matrix of the user

signature sequences, and Np is the noise power.

Similarly, for an asynchronous CDMA system using the one-shot decorrelator

detection, we obtain the following corollary:

- decorr
Corollary 4.1 Let SIR1  denote the output SIR of the one-shot decorrelator

receiver for user 1 in an asynchronous CDMA system. Assuming that the one-shot

correlation matrix R is nonsingular, then

dccorr A 2a (
SIR1  N / " (4.13)

The interpretation of theorem 4.1 and corollary 4.1 is that even though the decor-

relator has eliminated MAI completely, its performance is now limited by the noise

enhancement, and the worst-case noise enhancement factor is the inverse of the min-

imum singular value of the cross-correlation matrix.

So far, we have assumed that the cross-correlation matrix involved in the de-

tection process is nonsingular. This condition can be maintained for a synchronous
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CDMA system as long as the number of users is less than the spreading factor.

For an asynchronous CDMA system, however, the non-singularity of the one-shot

cross-correlation matrix is not guaranteed even if the number of users is less than

the spreading gain [75]. This is because each user in such a system is capable of

contributing interferences in multiple dimensions. Theorem 4.2 subsequently gives

a lower bound for the decorrelator SIR in the case where the one-shot correlation

matrix is singular.

decorr
Theorem 4.2 Let SIR1  denote the SIR of the one-shot decorrelator receiver

for user 1 in an asynchronous CDMA system with singular one-shot correlation matrix

R. Then

decorr AlMi
R Y1 M 2 A 2 (Np) (4.14)

Ej2 MJ A +-i

where &min(R) is the minimum nonzero singular value of R. Mij - vi'vj, where vi'

is the transpose of vi, which is a length-L vector that contains the first L components

of the ith right singular vector of f 1, where L is the number of nonzero singular

values in k.

The bound in theorem 4.2 leads to another fundamental insight on the decor-

relator. It shows that when the correlation matrix is singular, the decorrelator's

performance suffers not only from the noise enhancement but also from the resid-

ual MAI and an attenuation on its own signal power. It is widely believed that the

decorrelator generally performs worse than the matched filter in this case [76].

We now look at user l's SIR if only the matched-filter detection is used. This SIR

can be expressed as

A 2
SIR7n - (4.15)

1 2j A? + Np

1 The ith right singular vector refers to the ith row of V, where R = VEVT is the singular
decomposition of R.
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for synchronous user transmissions and

SI ' = 2 A- (4.16)
1 =K2 ,jA? + Np

for an asynchronous system.

The question is: when does the decorrelator perform significantly better than

the matched filter? The answer varies from user to user and depends on a wide

variety of factors such as the correlation properties of the user signature sequences,

the propagation environment, and the strength of the background interferences. We

use the criteria that the decorrelator significantly outperforms the matched filter for

each user only if 1) the cross-correlation matrix is nonsingular, and 2) the worst case

SIR of the decorrelator is greater than the SIR of the matched filter. Even though

these criteria seem to favor the use of the matched filter over the decorrelator, they

nonetheless simplify the process of deciding the switching method for the dual-mode

detector.

Using the above specified criteria, the decorrelator detection is favorable for user

1 only if

A 2
1 > SIR± N (4.17)

K2 A? + Np

for synchronous systems and

1 > SIR = 2K-1 1 +N (4.18)
Ej2 P ,jAj + N

for asynchronous systems. Equations 4.17 and 4.18 can be further reduced to eq. 4.19

and 4.20 below, respectively.

Np K

r2 R)Aj +2. (4.19)
min (P) j=2
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N 2K-1

2 ~ 1 2'Aj + . (4.20 )
min(R) j=2

Eqns. 4.19 and 4.20, together with the non-singularity constraint on the correlation

matrix, can subsequently be used for our switching criteria so that the decorrelator

detection will be performed only if the corresponding criteria are met. The intuition

here is that the decorrelator detection should be performed only if the worst-case

noise enhancement incurring from the decorrelator operation is less than the total

interferences before the decorrelator detection.

There is, however, one problem for using eqs. 4.19 and 4.20 as the switching

criteria. As mentioned before, this decision somewhat favors the use of the matched

filter over the decorrelator, as we are comparing the worst case SIR of the decorrelator

with the exact SIR of the matched filter. To address this problem, we modify eqs.

4.19 and 4.20 by replacing the minimum singular value of the correlation matrix with

reciprocal of the average of all singular values of R-'. This average can be computed

as the average of the reciprocals of the singular values of the correlation matrix R.

Since R is symmetric and positive semi-definite, singular-value decomposition here is

identical to eigen decomposition [63]. The average singular value of R- 1 can therefore

be found by averaging over the reciprocals of the eigen-values of the correlation matrix

R. Eqns. 4.21 and 4.22 show the modified criterion that we eventually use for our

dual-mode detector in synchronous and asynchronous CDMA systems, respectively.

Np(trace(R-1)) 2  K

K 2  N A , (4.21)
j=2

Np(trace(R-1 )) 2  2K-i

(2K - 1)2 < P A + N, (4.22)
j=2

where trace(R-') is the sum of all diagonal elements in the inverse of R, which can
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be found as

rank(R) 1
trace(R-1 ) (R), (4.23)

where rank(R) is the rank of matrix R and Aj(R) is the ith eigenvalue of R.

Even though the average eigenvalue of correlation matrix can be readily estimated

with the knowledge of the spreading waveforms and the transmission delays of all

users, the process is as complicated as finding R-1 or Rl- 1. This defeats the purpose of

the dual-mode detector. Fortunately, we can use the following proposition to further

simplify our decision process for a system with random spreading codes, which apply

to realistic DS-CDMA system using long pseudorandom spreading codes, such as in

the IS-95 and CDMA2000 reverse link. This proposition has been proved in [6] and

can be stated as:

Proposition 4.1 Suppose that K users employ direct-sequence spread-spectrum

waveforms with N chips per symbol. Let

K
lim - = E (0, 0)

K->oo N

Suppose that the choice of signature sequences is completely random: the sequences

assigned to each user are independent, and all binary sequences are equally likely.

Then, the percentage of the K eigenvalues of R that lie below x converges (as K -+ oc)

to the cumulative distribution function of the probability density function

bW 1[+x(x) + [x-a]+[b - x]+ffl(x) = [1 - #2]+(x)x

where

[z]+ = max{0, z},
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and

a =(1 - /)2

b =

Moreover, if 0 < 1, the smallest eigenvalue converges almost surely to a.

Using this lemma, we proceed to simplify the process of finding average eigen-

values of R for # < 1 in a large system as follows:

E[R] - 00 1f(x)dx
Ai(R) fo X

f[ b {x - a)(b - x)

a 27rx 2  dx
1

1-#3

where the explicit express for the definite integral can be verified using [22] for / < 1.

Hence, for a system using pseudorandom (PN) spreading code that has period

longer than the spreading factor, we consider decorrelator operation to be desirable

for user 1 if

K
1 2 <ZPE2 ±N

Sj=2 < ( pjAj + N(4.24)

for synchronous system and

1 2K-1

Np( )2 ] 2' Ai + (4.25)
j=2

for one-shot detection in asynchronous system, where = K

Furthermore, for a system with random spreading codes, we have shown earlier

in chapters that Z 2 E pkk] = K1 for all j y4 k in a synchronous system and that

2K21 E[p,2] = K-1 for all j :A k for a symbol asynchronous but chip synchronous

system. In addition, if we employ perfect power control, we have A1 = A2
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AK = A. In this case, i.e. with perfect power control and random spreading, we can

further simplify our threshold for performing decorrelator to be

N 1 K - 1
N(_)2 < A2 +N ~A2 +N

A 2  2 - A (4.26)

NP (1 - 1)2

for both synchronous and asynchronous system. This threshold actually echoes with

our results for the two-user system earlier. It means that decorrelator detection should

be performed only if the signal-to-background-noise ratio of each user is larger than

a certain threshold, in which case the noise enhancement does not create as much

degradation as MAI. In addition, the non-singularity constraint on the correlation

matrix, which translates to 0 < 1, should also be satisfied for performing decorrelator

detection.

In addition to the average eigenvalue, two additional parameters may need to be

estimated for the dual-mode detector: the total MAI and the background interference

power, which includes thermal noise and intercell interferences. Assuming that we

have a method to obtain a rough estimate of the signal amplitudes for each user (such

as via a pilot signal [2]), MAI and background interference powers can be estimated

as follows. Since the receiver knows the pair-wise cross-correlations among all users,

we can use these correlation values and the amplitude estimates to calculate the total

MAI power for the user of interest. We can also find the total interference powers

at the output of the matched filter by using our amplitude estimates. Then, we can

subtract the the MAI power from the estimated overall interference power to estimate

the background interference power. Note that in order to decide the detection mode,

we do not need very high accuracy in the estimation of amplitudes and interferences.

To summarize, for a system with imperfect power control and random spreading

codes, we can use eqs. 4.24 and 4.25 to decided if decorrelator detection is suitable for

a particularly user. For a perfect power controlled system, eq. 4.26 can be employed

for both synchronous and asynchronous systems. If the receiver finds that decorrelator

detection is favorable for over half of the user population, then its operation will be
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performed. Otherwise, the symbol decision for each user will be based on the matched

filter output.

4.5 Performance verification

Numerical simulations have been performed for an uncoded system (i.e. no channel

coding) with BPSK modulation to verify that the proposed detector with our de-

rived decision criterion can achieve similar performance as that of a full decorrelator

detector while minimizing the overall complexity. We use a frequency-nonselective

and slow-fading channel model, which means each user's signal arrive at the receiver

via a single-path with Rayleigh distributed attenuation. We also assume that the

receiver for every user has perfect knowledge of the signature waveforms, delays, and

amplitudes of all users in the system. All users are spread by a factor of 64 with ran-

dom spreading codes. The background interferences are modeled as additive white

Gaussian noise with varying power over time such that the nominal signal-to-noise

ratio for every user is uniformly distributed between 0 and 12 dB. The variations in

the background interference power mainly intend to model the intercell interferences

from the neighboring cells with different loadings over time.

Figures 4-2 and 4-3 compare the error performances between the dual-mode de-

tector, the one-shot decorrelator, and the matched filter for synchronous and asyn-

chronous CDMA systems, respectively. The bit-error rate (BER) averaged over all

users is plotted against the number of users in the system. Each point is averaged

over 1000 trials, and within each trial each user transmits 100 symbols continuously.

We see that the performance of the dual-mode detector is very close to that of the

decorrelator using our decision criterion. Also, for the asynchronous case, because

the one-shot correlation matrix occasionally becomes singular, the dual-mode detec-

tor actually performs much better than the decorrelator in some cases. Furthermore,

it is worth noting that throughout the entire simulation, the dual-mode detector

only operates in decorrelator mode 40% of the time, which is a significant saving in

processing power.
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BER of the Dual-mode Detector, the Decorrelator, and the Matched Filter for a Synchronous CDMA System

2 4 6 8 10
Number of active users

12 14 16

Figure 4-2: Comparison of BER between the dual-mode detector,
and the matched filter in a synchronous CDMA system

the decorrelator

BER of the Dual-mode Detector, the Decorrelator, and the Matched Filter for an Asynchronous CDMA System
0.11 1

122 4 6 8 10
Number of active users

Figure 4-3: Comparison of BER between the dual-mode
and matched filter in an asynchronous CDMA system
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Nonetheless, we note that there are still small differences between the BER curves

of the dual-mode detector and the decorrelator. This gap may be further narrowed by

using a switching method that favors more decorrelator operations. The subsequent

performance increase, however, will come at the expense of higher computational

complexity.

4.6 Chapter summary

In this chapter, we designed a dual-mode linear joint detector that dynamically

switches its detection mode between the matched filter and the decorrelator. Our

switching criterion is obtained by comparing the error performance of the decorre-

lator with that of the matched filter. We showed through simulation that the error

performance of the proposed receiver is capable of approaching the bit-error rate of

the decorrelator while only performing the decorrelating operation 40% of the time.
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Chapter 5

Summary and Future Research

Directions

Overall, this thesis has addressed three topics. First, we have analyzed and com-

pared the error performances of two promising variable-rate DS-CDMA transmission

techniques, namely MCD- and VSG-CDMA for AWGN, flat- and multipath-fading

channels. Second, we have derived a class of parallel multistage interference cancellers

that exhibits superior performance under the given complexity constraints. Third, we

have presented a dual-mode linear multiuser detector that achieves the performance

of a decorrelator while consuming significantly less processing power. In this chapter,

we briefly summarize the results and point out future research directions for each of

the three areas.

5.1 Multirate DS-CDMA transmission techniques

5.1.1 Summary

In this thesis, we compared the error performance of multicode (MCD) and variable-

spreading gain (VSG) transmission in the uplink of a DS-CDMA system for a dual-

rate system with one high-rate user and multiple low-rate users. We showed that

for AWGN channel, at moderately high signal-to-noise ratio, the VSG high-rate user
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has a lower error probability than the MCD user when the number of low-rate users

is small. In a flat-fading channel, however, VSG and MCD high-rate users exhibit

identical error rate, since fading smoothes their interference distributions. For a

multipath fading channel, we showed that if the delay spread of the channel is small,

then the SIR of the VSG user is worse than that of the MCD user. The reverse is

true for channels with large delay spread. We also showed that while for a two-path

channel the SIR is a good indication of tradeoffs in error probability, in channels

with three or more paths a better SIR does not imply a lower bit-error rate. This

phenomenon is mainly due to the asymmetric distribution of the correlated multipath

interferences in channels with more than three paths.

5.1.2 Potential follow-up studies

There are a number of future research possibilities to follow-up our study. First, we

did not make a definite conclusion on the exact difference between the bit-error rates

of MCD and VSG user for channels with three or more paths. Instead we observed

that in this case the Gaussian approximation of error probability using SIR may

significantly deviates from the exact error probability in some cases. A derivation for

the general expression of the exact error rate of MCD and VSG user in multipath

channels would nicely complement our research.

Second, in the thesis, we assumed that the user signature sequences are random.

The comparison outcomes can significantly change if this assumption has been mod-

ified. For instance, it has been shown that if the MCD user only uses Walsh codes

but no random code scrambling, its performance in multipath channels will be sig-

nificantly worse due to the poor autocorrelation property of Walsh codes [18]. It

is also possible that the use of certain deterministic sequences with better auto- and

cross-correlation properties, such as the ones proposed in [64], can provide MCD users

better performance than VSG users.

Third, we assumed the user interferences from other cells to be additive back-

ground noise and did not consider interactions between neighboring cells in detail. In

reality, a subscriber at cell edge would cause a lot more interferences to the neighbor-
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ing cells than one that is near the cell center. Thus, it would be interesting to study

the spectral efficiency of MCD and VSG for a general cellular network (i.e. from a

multicell perspective) by taking into account both large-scale and small-scale propa-

gation effects. In addition, our error-rate analysis can be extended to systems with

more than two rate classes, which is likely to happen in practical multirate CDMA

networks.

5.2 Multistage parallel interference cancellation

5.2.1 Summary

In the area of nonlinear multiuser joint detection, we presented two effective multi-

stage weighted parallel interference cancellation algorithms based on stage-by-stage

MMSE optimization. The first algorithm is equivalent to a conventional PIC con-

catenated with a weighting matrix and has a complexity that is on the same order as

that of a conventional PIC. Its error performance significantly surpasses that of the

conventional PIC, particularly for systems with large user population. The weighting

matrix provides an approximate measure on correlations between the previous-stage

symbol estimates and the true transmitted symbols. Our second algorithm is more

complex than the first technique such that it uses a feedforward matrix and a feedback

matrix to suppress the MAI together. Both matrices are derived to jointly minimize

the mean-squared cancellation error in each stage. We show that the performance

of this algorithm is not only significantly better than our first algorithm but also

approaches the single-user performance bound using just a few stages. Its complexity

is only on the order of what is required for linear joint detection.

5.2.2 Future research possibilities

While our first algorithm and its suboptimal variations are simple and can be read-

ily implemented in practice using today's technology, the complexity of our second

technique is still quite high for practical implementation. To reduce the complexity,
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adaptive algorithms can be used to derive the feedback and feedforward processing

parameters. However, simple adaptive algorithms, such as the well-known least-mean-

square (LMS) algorithm, have slow convergence and can become unstable when the

operating condition suddenly changes. For instance, we observed from simulations

that if the LMS algorithm is applied in the feedback, its robustness is very sensitive

to the number of users. If the coefficients of the LMS is tuned for a system with a

large number of users, then its performance will be poor when the number of users

becomes small (due to excessive background noise enhancement). The search for a

class of reliable and cost-efficient adaptive implementation for both feedforward and

feedback matrices is therefore an interesting topic to pursue.

Another interesting idea that can be explored is to apply multistage interference

cancellation to coded systems, in which case we can use the output from the channel

decoder as previous stage data estimates. In this case, the error probability of the

previous stage data bits may be smaller than the corresponding symbol error rate

in a uncoded system. A challenge here is to develop a solution that designs the

interference cancellation process and the decoder structure jointly to optimize the

error performance while maintaining a reasonable complexity.

In addition, we assume the symbol decision devices (after the joint detector) out-

put hard-decision symbols in each stage. It has been shown that using soft-decision

quantizers with partial PIC can gain significant performance improvement compared

to the coupling of partial PIC and hard-decision estimates[62, 811. For our proposed

receivers, we can also apply soft-decision quantizers to decide the symbol estimates in

each stage and use this condition to re-derive the MMSE feedforward and/or feedback

matrices to obtain further performance improvement.
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5.3 Dual-mode linear multiuser detector

5.3.1 Summary

Finally, this thesis introduced a dual-mode linear multiuser detector for the base-

station receiver that dynamically switches its detection mode between the matched

filter and the decorrelator. We derived a set of switching criterion and showed through

simulation that this receiver is capable of approaching the performance of a decorrela-

tor but using much less processing power. With firmware and DSP implementation,

this detector is capable of leading to efficient resource sharing at the base-station

receiver.

5.3.2 Future research possibilities

Two follow-up studies can be done for this dual-mode receiver. First, the threshold

that we used in this thesis is not necessarily optimal. It is possible to find other

simpler or more effective switching criteria that can push the performance of this

detector even closer to that of the decorrelator without significantly increasing the

complexity. Second, the same philosophy can be extended to other types of detec-

tors such as the linear MMSE detector or even the nonlinear interference cancellers

to reduce complexity. Furthermore, we can develop a nonlinear interference can-

celler that dynamically switches between successive interference cancellation (SIC)

and parallel interference cancellation (PIC) according to differences in the user's re-

ceived power to take advantage of both detection schemes. The benefit in this case

is error-performance optimization rather than complexity reduction.
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Appendix A

Derivation of the weighting matrix

for MMSE-based Multistage

Interference Cancellers

In this appendix, we derive the weighting matrix Aa(i) for a DS-CDMA system using

M-ary phase-shift-keying (M-PSK) modulation, where M is a power of 2. Following

our derivation of the MMSE feedback matrix in chapter 3, we see that at stage i, the

weighting matrix used in the cancellation process is

Aa(i-l) = E[b (i-1I)H ]. (A. 1)

where, as specified in section 5.2, b is the vector of transmitted symbols and b(- 1)

is the vector of the corresponding detected symbols at stage i - 1. We solve for the

diagonal and off-diagonal terms of Aai separately. First, assuming all symbols in the

M-PSK constellation are transmitted with equal probability, we evaluate the diagonal

terms, i.e. A,' (m, m), as follows:

M-1
A(' (m, in) = E = jE[bmbb)Hm e'W]

n=O
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To find E[bmbM)H bim = _ , we look at the decision regions for M-PSK constellation

as shown in figure A-1. For any transmitted symbol bm, if it is detected correctly,

mbm')H = 1. If a mistake is made, however, the detector output has most likely

moved into the decision regions of bm's closest neighbors. The symbol estimate b$~2

will therefore most likely be decoded as bme m or bmeJ-i. It is also possible for

0) to be decoded as other symbols besides bm, bme' , and bme' 3, but we assume

the probability of such event happening to be zero, since in reality, the probabil-

ity that the detector output falls outside the closest neighbors of bm is extremely

small. In addition, We assume that if an error is made, the detector falls into the

two closest (neighboring) decision regions with equal probability. Thus, we evaluate

E[bmb(')HlejT] as

[bm0)' H bm 2nrThLM~/I~ b~ , bHPT(b(i) bm) + bmbHeij r I Pr : bm)~ m 2
+b M bH - Mm22

=Pr(b() bm) + IPr #bm) (ei ti + e -i m

Cos/27re rL (m # bn)
= 1 - (1-

Since E[bbMs) bm = e M] does not depend on n, we see that

(i, M)
M-1

= Z:1E[bmb)Hb -e3 n-

I - (1 - cos -)Pr($Q $ bm)
n= M

= -( s )Pr( I b\)
M

Since Pr($(2 # bm) is basically the error probability for bm, we can estimate this term

on a user-by-user basis. Among the diagonal terms of Aa('), the first K terms measure

the reliability the first symbol estimate for users 1 through K, the second K terms

measure the accuracy of the users' second symbol estimates, and so on. Therefore,

if we let bk(l) denote the lth symbol transmitted by user k, we have A((m, m) =
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(i-1) Wi
E[bk(l)bk(l) ] for m = (K - 1)1 + k. It is reasonable to assume that Pr(bk(l)

bk(l)) = Pe for all 1, where Pe(') is the error probability of user k is stage i.k k

Subsequently, we find the diagonal terms of the weighting matrix as

A) (m, m) = 1 - (1 - cos -)Pe(, m = K(l - 1) + k, l, k c {1, 2, ... L}. (A.2)

or equivalently

diag (Aa) = [w i)wtiT ... ]

where w(') - 1 - (1 - cos Z)P(i) such that P() = [Pegi, Peg, ... Pe]T.

We proceed to derive the off-diagonal terms. To make the derivation process

clear, let's first consider a synchronous CDMA system where each user transmits one

symbol only, i.e. L = 1 and p(O ) - p. In this case, Aa(') becomes a K-by-K

matrix, and its diagonal vector equals to w(). Each off-diagonal term of Aa(i) can be

found as

AW (m, k) = E[bmbli)H1, m A k

which measures the effect of user m's symbol on user k's detector output. We see

that such effect is caused by the MAI from user m on user k. For i > 1, i.e. after

at least one cancellation, the effect of MAI becomes small for sufficiently accurate

symbol estimates. Thus, for i > 1, we approximate A()(m, k) to be 0 for all m y

k, km E {1, 2, ... K}. For the initial stage, i.e. stage 1, where the symbol decisions

are made solely based on the matched filter output, the effect of MAI can be quite

strong. In this case we choose to compute A1 (m, k) as follows.

First, we consider the case M = 2, i.e. a binary phase-shift-keying (BPSK)

modulated system. Assume the transmitted symbols are equally likely being 1 or -1,
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we have

A()(m, k) = E[bmb(l)H]
1 1

= 'E[bb('lbk = 1] + E[bmb(1 !bk = -1]2 k2 k

Due to symmetry in the constellation, E[bmb"1 jbk = 1] = E[bmbij)bk = 1] =

E[bmb()], it is therefore sufficient to evaluate E[bmb I|bk = 1], which can be expressed

as

E[bmb(bIbk = 1] E[b)b 1 b 1] E[b(1)lb - 1, bm = -1]k2 kM2 kk r

where we solve the first term on the right hand side as

E[b(01 b = 1, bm = 1] Pr(b1 ) = blb 1, bm = 1)
- b-bk = 1,bm 1

-Pr (b C) = -bkb = 1 bm = 1)

Ak + Anp(O
= 1-2Q( Ak±A(0)

1J2 + MAIk - (Apk)2

where

K

MAlk (( Am(l)po )2.

m=1,m:k

Note that in calculating the error probability for bk, we applied standard Gaussian

approximation to treat the MAI from all users other than user n as white Gaussian

noise, which is valid for a system with large spreading gain, perfect power control,

and random spreading codes. Similarly, we find that

E[Wb) Ibk = 1, bm = -1] = Pr(bW) = bk Ibk = 1, bm = -1)

-Pr(b C) = -bbk = 1, bm = -1)

Ak An p(
= 1-2Q( A)m

Or+ MAIk - (Anpk)2
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To put the terms together, we find that

A1 (i, k) = E[bm(b1)H] = E[bmb(') bk - 1]

Ak+ Ap(O)

2+ MAIk - (A p )2

Ak- A, p ()

2+ MAIk - (A p( )2

2

Ak+ Anpk
-Q( k)

0-2+ M AIk - ( AnPk)2

which completes our derivation for the weighting matrix for BPSK modulated systems

with synchronous transmission.

To extend the result to a general M-PSK system where M is a power of 2, we

evaluate Aa (' (m, k) as

A(') (n, k) = E[bmb(l)H1
M-1

E 1 E[bmb 1)H
M~ M

k 2kbke M eIw

An example of M-PSK constellation is shown in figure A-1 for M = 8. Due to sym-

Im

Re

Figure A-1: M-PSK signal constellation for M=8
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metry of the constellation and the conjugate symmetric product in the expectation,

we see that E[bmbI)H k ei ] is the same for all k E {0, 2, ... M - 1}. Thus,

without loss of generality, we evaluate E[bmb b)H _ = 1], which corresponds to k = 0

and can be evaluated as:

M-1

E[bm, b()HI bk =1] = es E [b(')Hbm ei , bk 1
m=m

M-1

~ ei (Prob[b1)H - bm = M bk = 11 (A.3)
m=O

+ eifPr ob[)H __1r bk 1]

+ e- MProb[b) - - bm = e bk = 11)

where the approximation in the second step assumes that, if a symbol error is made,

it is most likely for the received signal to fall into the decision regions of the two

closest neighboring constellations.

The key to evaluate E[bmb(l)Hbk = 1] lies in finding the three probability terms in

eq. (A.3). The first term, Prob[b l)H= 1bm = ei'v , bk = 1], is just the probability

of correct detection for user k. The second and third terms, i.e. Prob[b(" = 11bm
j2Mir 2mir

M1 , bk = 1] and Prob[b1) __ , bk = 1], are the probabilities that the

received signal for user k falls into the decision regions of upper and lower closest

neighbors, respectively. To evaluate these terms, we first review a fairly accurate

geometric approximation for calculating the probability of error for detecting M-PSK

signals in a single-user system using matched filter.

Let's consider a single-user communication system operating in an additive white

Gaussian noise (AWGN) channel. The matched filter output for each symbol can be

expressed as

y = Ab+ n =|fylej

where A is the signal amplitude, b is the current transmitted symbol, and n is the

noise term modeled as Gaussian random variable with variance U 2 ; E, and Oy are the
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amplitude and phase of matched filter output y. Assuming all symbols in the M-PSK

signal-set have equal probability of being transmitted, the probability of error using

minimum distance detection can be found as

M

Pe = ( Prob[errorlb = e M|
m=O
M--1 (2m + 1)w m

-(Prob[#h > m lb = ei M]

m=O

(2m - 1)7r b M

Due to symmetry in the constellation, Pr[errorlb = ei M ] is the same for all m E

{0, 1, ... M}. Therefore, without loss of generality, we consider the case b = 1, i.e.

m = 0, the error probability in which can be expressed as

Pr[errorlb = 1] Prob[#y > 7 ] + Prob[5, <

In order to obtain the exact value of these probability terms, we need to first find the

probability density function of y via integration in two-dimensional Gaussian field and

then integrate this density function over all possible phase values. This has been done

in a number of text books [58, 55, 75]. This procedure, however, gives tedious results

that do not yield clear insights. Here, instead of using such an analytical approach,

we calculate the error probability using an approximation based on signal-detection

geometry.

The geometric representation for detecting y given b = 1 is shown in figure A-2.

We see that if the signal-to-noise ratio is large enough, i.e. A > , the arc distance

from point A, which is the mean of the received signal, to the line corresponding to -

is approximately A sin The probability that the phase of y will be greater than '

given b = 1 is the same as the probability that the received signal will fall above the

line corresponding to - given the center of gravity is at Ab, which can be evaluated as

the error probability in one-dimensional Gaussian detection with minimum distance
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M

Origin A Re

M

Figure A-2: Geometric representation for M-PSK signal detection in AWGN channel

equals to A sin - and can be expressed as

gr A 7r
Prob[ > ] Q(- sin -).

M a M

Similarly, the probability that y will be smaller than - can be approximated in the

same way as

Prob[#y < ]z=Q( - sin-).
M o- M

The probability of error for M-PSK modulation in AWGN channel is then

PeM-PSK = 2Q( A sin 7 2Q(V/ sin 7)

-M M

where 7 =1- is the signal-to-noise ratio (SNR). This result has also been obtained

in an alternative method in [55] via approximations in numerical integration. The

accuracy of the approximation increases as M and 7 increases. The case where this

approximation leads to the most error is for BPSK modulation, i.e M = 2. Using

the approximation, we have Pe = 2Q(7f) whereas in reality, the error probability is

Pe = Q(v'57 ). They differ by a factor of 2 because in approximation, we assume each
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symbol has two closest neighboring constellations, while for BPSK modulation, there

is only one neighbor.

7T
M

Om

"Re

Figure A-3: Geometric representation for M-PSK signal detection with MAI in
AWGN channel

Now, we use the same technique to evaluate E[bmb 1j)H bk 1]. Recall from eq.

(A.3) that

M-1

E~bb~)Hbkk kE~mlHk 1] ~ M (Pr ob[b ' = 1|bm = M , bk = 1]
m=O

j .2M bk 1 (A.4)e-F e Prob[b = eim|br = e -,b=1 ) b =1]

+ e M Prob[b' = e-i |b b , bk = 1]

We first evaluate Prob[b(1 ) = e bm = 0 , bk= 1] by approximating MAI suffered

by user k from all other users, i.e. other than user m, as additive white Gaussian

noise. In this case, we note that detecting user k's data given bk = 1 and user m's

data bn = e m is equivalent to the following detection scenario in AWGN channel:

(0)2m 2mr
Ak + Amp,)(cos M + j sin M ) + i
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where ii is a circularly symmetric complex Gaussian random variable with variance

equal to MAIk - A(p ()2 + .2 . The geometric representation for the detection

process is shown in figure A-3. We see that this case differs from single-user detection

in AWGN such that the mean of the phase of y has been tilted by 0 m,k, where

-1 Ampi"(sin
0 m,k = tan' AmPks (A.5)

Ak(+ A p ( Cos (Ak m k,m MT

At the same time, the signal-to-noise ratio of y has become

(Ak + Amp os2m7r)2 + (Am0) Sin 2)2(Ymk + Amk,mco COM (APk,m sin 2

MAIk - A2(p) 2 + 02

A~ + A2(p(O) )2 CS2~
m+A km + 2AkAmp cos m

M AIk - A2(p) 2 + 6 2

A 2

instead of just I. Using this model and figure A-3, we can apply the same geometric

approximation to evaluate Prob[bW) = eHiibm = e32, bk 1] as in the M-PSK

single-user detection case:

Pr ob[ eAi ibm = eJ 2 , bk = 1] : Q(sin ( M - Om,k '/m,k)

Using similar method, we evaluate the second error probability term in A.4 as

2m~r 7
Prob[6b(' = e--il|bm = e ,bk =1] = Q(sin ( + 6 m,k) 7m,k)k M

Therefore, the probability of correct detection, i.e. Prob[W) = llb = e= li, bk =l,

can be approximated as

= Prob[W) = libm = eim7,bk = 1]

.2r~ .2r
~ 1 - Psb[ = e bm = H =/1])- Prob[) = - isin MIbm eJ- =b1]

I 1 Q (sin ( r- Om,k) -,fYmk) - Q (sin ( + Om k) mkM M

164



Now we are ready to evaluate E[bmb )'], which can be expressed as

E[bm b1)H] = E[bm(1)Hb_ = 1
M -1 1 j m-rr1 ___

e M (Prob[) = IIbm = e V ,bk = 1]
m=0

+e-i Prob[ l)H ebm , bk ~1

+eiHProb[bkH _ -lbm A 7 k 11)
M-1 j2r

M eM (1 Q(Sin (-Omk)Ym,k) - Q(sin + Om,k) /m,k)
m=0

+e- MQ(sin ( - Om,k)V/7m,k) + eL Q(sin (? + Om,k) ,/Ymk))M M

e m(Q(sin -Om,k) V/m,k)e -1)

m=O
7I 27r

+Q (sin (- + Orm,k)V'M)e -

where simplification in the first step is due to constellation and conjugate symmetry

and simplification in the last step is due to the fact that EZ =O e = 0.

The accuracy of the approximation is similar to that in M-PSK detection, i.e. the

larger the M and Ak are, the more accurate the approximation. Furthermore, let's

look at the accuracy of the approximation for the case of BPSK, i.e. M = 2. If we

assume that Ak > Amp , which is usually the case in a system with good power

control, we see from the expression in eq. (A.5) that 0 m,k = 0 since sin mr = 0. In

this case, the signal-to-interference ratio becomes:

( k+ (0)
Ak+AmPkm

MAIk--A2 (p0 )2+a2

Ymk Ak-Amp()

MAIk-A(p()2+ 2

ifM = 0

if M= 1

In this setting, we find E[bmb l)H] as

E[bmbil)H] (-4Q(Yo,k) + 4Q(71,k))

AQ - Amp"( Ak + Amp)
2(Q( k0 -Q 0

MAIk - A2 (p0) )2 + 02 MAIk - A2 (p() )2 + 0.2
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which is exactly a factor of 2 from the exact correlation value of E[bmb1)H] for BPSK,

which we calculated earlier in this section. This factor of 2 difference is again con-

tributed by the fact that we have considered two closest neighbors in the approxima-

tion rather than one.

Finally, we obtain the expression for the off-diagonal terms in Aal, i.e. Aali(m, k)

for n 0 k, as

A(' (m, k) = E[bm b1)H]
M-1

S e (Q(sin ( - Omk) 'Ymk)(e~ -1)
M=O M

7_ (e 27r
+Q(sin ( 7 + Om,k) Ymk)(e - 1))

The derivation of AI' for synchronous DS-CDMA system using multistage detection

is now complete.

To extend our derivation to the asynchronous case, we first take a look at the

structure of A(') that spans over L symbols, which can be expressed as

A(l)0(1) AM,1(1) 0 ... ... 0

Aa -1) A()-1(2) A(l) 0 (2) A(l) 0 (2) 0 ... 0

0 ... ... 0 A( 1)'(L) A(1)'0(L)

where

A(')'0 (l) = E[b(1)b(l)H (1)

A(')-'1) =E[b(l)b^(1)Hj _)

A('),' ( = E[b(l)b)H(l + 1)]

The zero terms in the matrix is due to the fact that E[b(j)P)H(k) = 0 for I - kI > 1

because for any pair of users, the current symbol of one user does not have an impact

through MAI on the symbol of the other user that is transmitted more than one

166



symbol interval before and after. In other words, each symbol of the desired user are

only going to be affected by two symbols from each of the other users, one in the

current symbol interval, and one either in the immediate past of future depending on

the delay offset.

Our remaining task is to evaluate A(')' 0 (l), A(')' 1 (l) and A(')'1(1). We first look

at A 1)'0 (l) = E[b(l)b(1)H(l)], which is a K-by-K matrix with off-diagonal entries

found using our approximation method as

A(''4(1)m,k =E[bm(l)6(l)H (1)]

e (Q(sin( - 0m,k())J m,k(l))(e - 1)

+Q(sin ( + Om,k(1)) VYm,k (1))(e( - 1)

where m # k and

0m,k (1)
Am(l)p~o (l)Sin(27r + Om - Ok)

=tan- ~
Ak(l) + Am(l)pk(l) cos ( + Om - kk)

Ak(1) 2 + Am(l)2( ()) 2 + 2Ak(l)Am(l)P (l)cos( k)

MAIk (l) - A2± (1)(p (1))2 + a.2

where

K

MAIk(l)= ((Am (1)p (0)())2

m=1,mAk

+ ( Am(1 - 1)pg5,) (1))2u(Tm - Tk) + (Am(1 + 1)p ())2( T

We next calculate AM''1(l) = E[b(l)b(1)H(l + 1)]. The diagonal entries of this

matrix, i.e. E[bm(l)bW (1 + 1)], are all zero because successive transmitted symbols of

the same user are independent. For off-diagonal terms, we see that E[bm(l)W)((l+ 1)] =
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0 for all Tm > Tk. For the case where rm Tk, we find that

E[bm(l)b$1 (l + 1)] ej l(Q(sin ( -- 9 m,k (l+ 1)) Vm,k (l + 1)) (e- - 1)
M E

+Q(sin ( + dm,k(1 + 1)) 1)m,k(l + )( - 1))

Am(l)p 1)(l + 1) sin (r + O m - Ok)

Ak(l +1) + Am(l~ (1 + 1) COS ( + Om - Ok)

Ak(l + 1)2 + Am l)2 (p(5) (I + 1))2 + 2Ak (l + 1)Am(l)p(j~)(l + 1) cos (' + Om

MAIk (l + 1) - A2 (1 + 1))2 + 0,
2

- Ok)

Thus, we can express the entries of A('C1 (1) as

- (Tm - k) Z
M=O

e (Q(sin (I - 6m,k (l)) 'm,k (l)(e~ - 1)
M

+Q(sin ( 7r + 6m,k (l)) m,k(l))(eM -- 1))

Using similar method, we can find the entries of A('),- 1 (1) as

= E[bm(l) W)(l - 1)]
IM--1

U(k -Tm) E
m=0

e (Q(sin (( -mk(l- - 1) (e 1

+Q(sin ( + Om,k(l -- 1) -ym,k(l - 1 ed - 1))

where

6m,k(l - 1)

Ym,k

= tan 1
Am(l)p() (l - 1) sin ( 2  + m - Ok)

Ak(l -1)+ Am(l)p 1 ) (l -1) COs ( + Om - 'k)

Ak(l - 1)2 + Am(l)2 () (1 _ 1))2 + 2Ak(l -1)Am(l)p( ( - 1) cos( 2 ' + Om - kk)

MAIk(l - 1) - A2(l)(p~) (1 - 1))2 + 0.2

To summarize, we have derived the weighting matrix Aa(1) to be used in multistage

interference cancellation with MMSE-based feedback matrix for K users (each of

168

where

= tan 1
dm,k(l + 1)
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which transmits L symbols) as

A.(') =

A (' 0 (1)

A W, - 1(2)

0

where

1 - (1 - cos 2 )

n E -j e7 (Q(sin (- - Om,k(l)) ym,k (l))(e - 1)

+Q(sin (R + Om,k (l)) 7mk(l))(ej - 1))

0

if k = m

if k $r m and i

if k $ m and i> 1

M - 1 -j 2 7

u(Tm - Tk)u(2 - i e M (Q(sin ( - m,k (l)) m,k (l))(e~ - 1)
m=0 M

+Q (sin (! + Om,k (l) m,k (l))(ej - 1))

= U(rk - rm) U(2 - i) e ' (Q(sin( - #m,k(1)) Ym,k ())(e - 1)

+Q(sin ( + Om,k (l)) Y,k(l))(e - 1))

where u(t) equals 1 if t > 0 and equals 0 otherwise. This completes our derivation

for Aai).

Now we look at the convergence behavior of Aa(i) in a system with random spread-

ing codes, perfect power control and stationary channel (i.e. A1 (1) = A 2 (1) = ... =

AK(L) = A) as K -+ oc and N -+ oo while keeping K- = 3. The expression for

the diagonal terms of Aaul) are clearly unaffected, since they only depend on the

modulation format and the error probability of each user in the previous stage. The

off-diagonal terms, however, are going to vanish, which we show next.
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A(z)'l (1)

A '0 (2)

0

A()' 0(2) 0

0

0

0 A('),-'(L) A('),O(L)

A(',' m,k =



We first examine the asymptotic behavior of 0 m,k (1). Due to perfect power control,

we have

Ap()sin2_"+0 k
Omk(l) = tan- Apm(1) sin( m m

A + Ap (1) cos (2, + Om - 4k)

tn (1) sin ( 2 + Om - $k)(tan-' +km -

+ p (1) Sin( (m7 + m - #)

For random spreading codes, it has been shown in [56] that E[pk0 m(l)] 0 and

E[(p(O (l))2] oc 9!. Therefore, as N -+ oo, p (l) converges to zero in mean-square

sense. This means that Om,k(l) -+ 0 as N -+ oo. Similar arguments can be made

to show that Om,k(l) and Om,k(l) also converge to zero in mean-square sense as the

spreading factor becomes infinitely large.

Next, we look at the asymptotic behavior of Yk,m(l). As K -+ oc, (Amp Po)2 is

going to be negligible compared to MAIk. We therefore can express 'Yk,m(l) as

7k,mn() -+

A 2 (1 + (p (l))2 + 2p 0 (l) cos (' + m - Ok))

MAIk(l) + G.2

A2

MAIk(1) +U 2

where the convergence in the second step is due to the asymptotic behavior of pM(l)

as N -+ o.

Using asymptotic behaviors of Om,k(l) and 7Ym,k, we see that

A(' (I)m,k = E[bm(l)b(j)H(1)1

I M-1m r,,7F A 2

~ ~~e M~sn(j 2~A 7re~ 1
~ n e (Q(sin ( ) MAI + 2)(

+(sin.(lr) MA 2  
M-1

= Qsin( )Y MAIk + o.2)(e +ei - 2) e

==0
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Using similar procedure, we can also show that

0

A(),-1) m,k ~ 0

Therefore, in a system with perfect power control and random spreading codes,

as K and N both approach infinity, Aa W can be approximated as

W() 0 0

0 W()

0

0

00 0

0 0 W(M

where W(') is a K-by-K diagonal matrix that can be evaluated depending on modu-

lation format of bk. For a M-PSK modulated system, we found previously that

W() (k, k) ~ 1 - Pei (I - cos 27r
k M
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Appendix B

Proof of Theorem 4.1 and 4.2

In this appendix, we derive theorems 4.1 and 4.2 by finding a lower bound on the

decorrelator SIR for a particular user (w.l.o.g. user 1) in terms of the singular value

of the correlation matrix. We first prove theorem 4.1, assuming linear independence

between the spreading codes of different users.

Following the decorrelator detector model in section 2, we express z, the soft out-

put vector that contains detection statistics for all users from decorrelator detection,

as follows:

z =R+y

SR- 1 (RAd + n)

= Ad + R--n

Since the detection decision for the data bit of user 1 is made as d, = sgn(zi), the

SIR for user 1 with decorrelator detection is

decorr -
1 E[j(R-1 n)1 2]

where (R-'n)1 is the first element in vector R-'n. The derivation of the lower bound



then proceeds as follows:

A42
pdecorr -

1

1 E[l(R- 1n)1i2]
A 2

Fil(I|R-11In), 12]

A 2

max (R--1)NP
A oin(R)

Np
7 1,sync,ind

where 1|R-'1H is the induced 2-norm of R- [12].

We now show that this lower bound is obtainable for some noise vector n. Suppose

that the singular decomposition of the symmetric matrix R is R = VEVT, the

worst case of noise amplification happens when n = Vk, where Vk is the singular

vector corresponding to the minimum singular value of R (or the singular vector

corresponding to the maximum singular value of R- 1 ). Also note that since R is

symmetric, its singular values equal to the eigen values. Since the noise is white,

any subspace orientation for the vector n is possible. Therefore the lower-bound in

theorem 4.1 is achievable. Hence the proof for theorem 4.1 is complete.

Now we use the same approach to prove theorem 4.2 by assuming that the one-

shot cross-correlation matrix R is singular. In this case, the expression of the output

vector i from decorrelator detection is then:

z = f+f kd+N+n

- -[ 1 o][ E OvT - -t=V 0 VTV VTA+R+n
0 0 0 0

=V I 0 VTkA l +n
0 0

=M .2+ f+n
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where V E 0 VT is the singular value decomposition (SVD) of A, with E, being

a L-by-L diagonal matrix containing the L non-zero singular values of f on the

diagonal, where L < 2K - 1. The matrix M has elements

I [ ,1 vi ,2  ... Vi,L-1 Vi,L j,1  Vj, 2  '. Vj,L-1 Vj,L

where vii is the lth element of the ith right singular vector of R. Note that because

V is a 2K - 1-by-2K - 1 orthogonal matrix, Mj is always less than or equal to 1.

Now we can express the SIR of decorrelator in this case as:

~decorr M A

2 M A + E[(-I1n)1|2
i[=2 M A± 1'-N

2.A? + Np
i=2 1mi (R&min

where the inequality follows from the same reason as in the proof of theorem 4.1. The

lower bound can be achieved by the same manner as in theorem 4.1. The proof for

theorem 4.2 is thus complete.
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