92 research outputs found

    Packet Video Error Concealment With Gaussian Mixture Models

    Full text link

    Transmission of variable bit rate video over an Orwell ring

    Get PDF
    Asynchronous Transfer Mode (ATM) is fast emerging as the preferred information transfer technique for future Broadband Integrated Services Digital Networks (BISON), offering the advantages of both the simplicity of time division circuit switched techniques and the flexibility of packet switched techniques. ATM networks with their inherent rate flexibility offer new opportunities for the efficient transmission of real time Variable Bit Rate (VBR) services over such networks. Since most services are VBR in nature when efficiently coded, this could in turn lead to a more efficient utilisation of network resources through statistical multiplexing. Video communication is typical of such a service and could benefit significantly if supported with VBR video over ATM networks. [Continues.

    Concealment algorithms for networked video transmission systems

    Get PDF
    This thesis addresses the problem of cell loss when transmitting video data over an ATM network. Cell loss causes sections of an image to be lost or discarded in the interconnecting nodes between the transmitting and receiving locations. The method used to combat this problem is to use a technique called Error Concealment, where the lost sections of an image are replaced with approximations derived from the information in the surrounding areas to the error. This technique does not require any additional encoding, as used by Error Correction. Conventional techniques conceal from within the pixel domain, but require a large amount of processing (2N2 up to 20N2) where N is the dimension of an N×N square block. Also, previous work at Loughborough used Linear Interpolation in the transform domain, which required much less processing, to conceal the error. [Continues.

    Statistical characterisation and stochastic modelling of 1-layer variable bit rate H.261 video codec traffic

    Get PDF
    The Integrated Services Digital Network(ISDN) is under re-design to provide flexibility which will ensure efficient network utilisation in the provision of broadband services. The main broadband services envisaged for provision on the Broadband ISDN(B-ISDN) are : Videophone; Videoconferencing; Television and High Definition TV. The B-ISDN will be a packet switched network where the packets(cells) will be transferred by the Asynchronous Transfer Mode(ATM) concept. Unlike voice and data services, the impact video services will have on the BISDN is unknown and hence loss of information is difficult to predict. Present videophone terminals are based on the CCITT H.261 Video Coding standard hence the picture quality is variable because video codec traffic is transmitted at a constant rate. To maintain a constant quality picture the codec output data must be transmitted at a variable rate or alternatively, for constant rate video codecs extra information must be made available to achieve constant picture quality. This latter technique is 2- Layer video coding where the first layer transmits at a constant rate and the second layer at a variable rate. The ATM B-ISDN promises constant picture quality video services, therefore to achieve this aim the impact variable rate video sources will have on the network must be determined by network simulation, thus variable rate video source models must be derived. To statistically characterise and stochastically model 1-Layer VBR(Variable Bit Rate) H.261 Video Codec traffic, here a videophone sequence is analysed by two alternative strategies : Talk-Listen and Motion Level. This analysis also found that 2-Layer H.261 Video Codec traffic can be stochastically modelled via a 1-Layer VBR H.261 Video Codec traffic model. Numerous hierarchical stochastic models with the ability to capture the statistical characteristics of long video sequences, in particular the short-term and long-term autocorrelations, are presented. One such model was simulated and the resulting simulated traffic was analysed to confirm the advantage hierarchical stochastic models have over non-hierarchical stochastic models in modelling video source traffic

    DSL-based triple-play services

    Get PDF
    This research examines the triple play service based on the ADSL technology. The voice over IP will be checked and combined with the internet data by two monitoring programs in order to examine the performance that this service offers and then will be compared with the usual method of internet connection.This research examines the triple play service based on the ADSL technology. The voice over IP will be checked and combined with the internet data by two monitoring programs in order to examine the performance that this service offers and then will be compared with the usual method of internet connection.

    Content-based MPEG2 Structuring and Protection

    Get PDF

    Error Correction and Concealment of Bock Based, Motion-Compensated Temporal Predition, Transform Coded Video

    Get PDF
    Error Correction and Concealment of Block Based, Motion-Compensated Temporal Prediction, Transform Coded Video David L. Robie 133 Pages Directed by Dr. Russell M. Mersereau The use of the Internet and wireless networks to bring multimedia to the consumer continues to expand. The transmission of these products is always subject to corruption due to errors such as bit errors or lost and ill-timed packets; however, in many cases, such as real time video transmission, retransmission request (ARQ) is not practical. Therefore receivers must be capable of recovering from corrupted data. Errors can be mitigated using forward error correction in the encoder or error concealment techniques in the decoder. This thesis investigates the use of forward error correction (FEC) techniques in the encoder and error concealment in the decoder in block-based, motion-compensated, temporal prediction, transform codecs. It will show improvement over standard FEC applications and improvements in error concealment relative to the Motion Picture Experts Group (MPEG) standard. To this end, this dissertation will describe the following contributions and proofs-of-concept in the area of error concealment and correction in block-based video transmission. A temporal error concealment algorithm which uses motion-compensated macroblocks from previous frames. A spatial error concealment algorithm which uses the Hough transform to detect edges in both foreground and background colors and using directional interpolation or directional filtering to provide improved edge reproduction. A codec which uses data hiding to transmit error correction information. An enhanced codec which builds upon the last by improving the performance of the codec in the error-free environment while maintaining excellent error recovery capabilities. A method to allocate Reed-Solomon (R-S) packet-based forward error correction that will decrease distortion (using a PSNR metric) at the receiver compared to standard FEC techniques. Finally, under the constraints of a constant bit rate, the tradeoff between traditional R-S FEC and alternate forward concealment information (FCI) is evaluated. Each of these developments is compared and contrasted to state of the art techniques and are able to show improvements using widely accepted metrics. The dissertation concludes with a discussion of future work.Ph.D.Committee Chair: Mersereau, Russell; Committee Member: Altunbasak, Yucel; Committee Member: Fekri, Faramarz; Committee Member: Lanterman, Aaron; Committee Member: Zhou, Haomi

    New Network and ATM Adaptation Layers for Interactive MPEG-2 Video Communications: A Performance Study Based on Psychophysics

    Get PDF
    In this paper, we present new Network and ATM Adaptation Layers for interactive MPEG-2 video communications. These layers provide reliable transmission by applying per-cell sequence numbering combined with a selective Forward Error Correction (FEC) mechanism based on Burst Erasure codes. We compare the performance of the proposed scheme with a transmission over AAL5 by simulating the transport of an MPEG-2 sequence over an ATM network. Performance is measured in terms of Cell Loss Ratio (CLR) and user perceived quality. The proposed layers achieve significant improvements on the cell loss figures obtained for AAL5 under the same traffic conditions. To evaluate the impact of cell losses at the user level, we apply a perceptual quality metric to the decoded MPEG-2 sequences. According to the computational metric and subjective rating, the proposed multimedia AAL (MAAL) achieves a graceful quality degradation. The application of a selective FEC achieves an even smoother image quality degradation with a low overhea

    Perceptual quality based packet dropping for generalized video GOP structures

    Full text link
    corecore