191 research outputs found

    Qualitative Spatial Query Processing : Towards Cognitive Geographic Information Systems

    Get PDF
    For a long time, Geographic Information Systems (GISs) have been used by GIS-experts to perform numerous tasks including way finding, mapping, and querying geo-spatial databases. The advancement of Web 2.0 technologies and the development of mobile-based device applications present an excellent opportunity to allow the public -non-expert users- to access information of GISs. However, the interfaces of GISs were mainly designed and developed based on quantitative values of spatial databases to serve GIS-experts, whereas non-expert users usually prefer a qualitative approach to interacting with GISs. For example, humans typically resort to expressions such as the building is near a riverbank or there is a restaurant inside a park which qualitatively locate the spatial entity with respect to another. In other words, the users' interaction with current GISs is still not intuitive and not efficient. This dissertation thusly aims at enabling users to intuitively and efficiently search spatial databases of GISs by means of qualitative relations or terms such as left, north of, or inside. We use these qualitative relations to formalise so-called Qualitative Spatial Queries (QSQs). Aside from existing topological models, we integrate distance and directional qualitative models into Spatial Data-Base Management Systems (SDBMSs) to allow the qualitative and intuitive formalism of queries in GISs. Furthermore, we abstract binary Qualitative Spatial Relations (QSRs) covering the aforementioned aspects of space from the database objects. We store the abstracted QSRs in a Qualitative Spatial Layer (QSL) that we extend into current SDBMSs to avoid the additional cost of the abstraction process when dealing with every single query. Nevertheless, abstracting the QSRs of QSL results in a high space complexity in terms of qualitative representations

    Environment Perception Framework Fusing Multi-Object Tracking, Dynamic Occupancy Grid Maps and Digital Maps

    Full text link
    Autonomously driving vehicles require a complete and robust perception of the local environment. A main challenge is to perceive any other road users, where multi-object tracking or occupancy grid maps are commonly used. The presented approach combines both methods to compensate false positives and receive a complementary environment perception. Therefore, an environment perception framework is introduced that defines a common representation, extracts objects from a dynamic occupancy grid map and fuses them with tracks of a Labeled Multi-Bernoulli filter. Finally, a confidence value is developed, that validates object estimates using different constraints regarding physical possibilities, method specific characteristics and contextual information from a digital map. Experimental results with real world data highlight the robustness and significance of the presented fusing approach, utilizing the confidence value in rural and urban scenarios

    Methods for fast and reliable clustering

    Get PDF

    An Effective Approach to Predicting Large Dataset in Spatial Data Mining Area

    Get PDF
    Due to enormous quantities of spatial satellite images, telecommunication images, health related tools etc., it is often impractical for users to have detailed and thorough examination of spatial data (S). Large dataset is very common and pervasive in a number of application areas. Discovering or predicting patterns from these datasets is very vital. This research focused on developing new methods, models and techniques for accomplishing advanced spatial data mining (ASDM) tasks. The algorithms were designed to challenge state-of-the-art data technologies and they are tested with randomly generated and actual real-world data. Two main approaches were adopted to achieve the objectives (1) identifying the actual data types (DTs), data structures and spatial content of a given dataset (to make our model versatile and robust) and (2) integrating these data types into an appropriate database management system (DBMS) framework, for easy management and manipulation. These two approaches helped to discover the general and varying types of patterns that exist within any given dataset non-spatial, spatial or even temporal (because spatial data are always influenced by temporal agents) datasets. An iterative method was adopted for system development methodology in this study. The method was adopted as a strategy to combat the irregularity that often exists within spatial datasets. In the course of this study, some of the challenges we encountered which also doubled as current challenges facing spatial data mining includes: (a) time complexity in availing useful data for analysis, (b) time complexity in loading data to storage and (c) difficulties in discovering spatial, non-spatial and temporal correlations between different data objects. However, despite the above challenges, there are some opportunities that spatial data can benefit from including: Cloud computing, Spark technology, Parallelisation, and Bulk-loading methods. Techniques and application areas of spatial data mining (SDM) were identified and their strength and limitations were equally documented. Finally, new methods and algorithms for mining very large data of spatial/non-spatial bias were created. The proposed models/systems are documented in the sections as follows: (a) Development of a new technique for parallel indexing of large dataset (PaX-DBSCAN), (b) Development of new techniques for clustering (X-DBSCAN) in a learning process, (c) Development of a new technique for detecting human skin in an image, (d) Development of a new technique for finding face in an image, (e) Development of a novel technique for management of large spatial and non-spatial datasets (aX-tree). The most prominent among our methods is the new structure used in (c) above -- packed maintained k-dimensional tree (Pmkd-tree), for fast spatial indexing and querying. The structure is a combination system that combines all the proposed algorithms to produce one solid, standard, useful and quality system. The intention of the new final algorithm (system) is to combine the entire initial proposed algorithms to come up with one strong generic effective tool for predicting large dataset SDM area, which it is capable of finding patterns that exist among spatial or non-spatial objects in a DBMS. In addition to Pmkd-tree, we also implemented a novel spatial structure, packed quad-tree (Pquad-Tree), to balance and speed up the performance of the regular quad-tree. Our systems so far have shown a manifestation of efficiency in terms of performance, storage and speed. The final Systems (Pmkd-tree and Pquad-Tree) are generic systems that are flexible, robust, light and stable. They are explicit spatial models for analysing any given problem and for predicting objects as spatially distributed events, using basic SDM algorithms. They can be applied to pattern matching, image processing, computer vision, bioinformatics, information retrieval, machine learning (classification and clustering) and many other computational tasks

    Clustering uncertain data using voronoi diagrams and R-tree index

    Get PDF
    We study the problem of clustering uncertain objects whose locations are described by probability density functions (pdfs). We show that the UK-means algorithm, which generalizes the k-means algorithm to handle uncertain objects, is very inefficient. The inefficiency comes from the fact that UK-means computes expected distances (EDs) between objects and cluster representatives. For arbitrary pdfs, expected distances are computed by numerical integrations, which are costly operations. We propose pruning techniques that are based on Voronoi diagrams to reduce the number of expected distance calculations. These techniques are analytically proven to be more effective than the basic bounding-box-based technique previously known in the literature. We then introduce an R-tree index to organize the uncertain objects so as to reduce pruning overheads. We conduct experiments to evaluate the effectiveness of our novel techniques. We show that our techniques are additive and, when used in combination, significantly outperform previously known methods. © 2006 IEEE.published_or_final_versio

    LiDAR Based Object Detection and Tracking in Stationary Applications

    Get PDF
    This thesis investigates dense Light Detection and Ranging (LiDAR) sensors as a method for object detection and tracking in stationary infrastructure-like applications. A literature review of existing works is conducted, with discussion and comparisons for other sensing technologies. Additional discussions are made for geometric feature-based methods and end-to-end learning methods for object detection from pointcloud data. Subsequently, theoretical pointcloud spacing models for multi-beam 360 deg LiDAR sensors are developed, with analysis on placement strategies and LiDAR configurations. The thesis continues with an implementation of a geometric feature based object detection method, primarily for vehicles. Several algorithm designs are presented for pointcloud background removal, clustering, orientation detection, tracking, and filtering. Detection and tracking metrics are then established to observe the system's performance on both experimental and simulation datasets. Two datasets collected with a Velodnye VLP-16 sensor on both a highway and urban road segment are utilized for experimentation, while scenarios of light traffic and stop-and-go traffic on a highway are developed in the CARLA simulator to further validate tracking performance

    Searching and mining in enriched geo-spatial data

    Get PDF
    The emergence of new data collection mechanisms in geo-spatial applications paired with a heightened tendency of users to volunteer information provides an ever-increasing flow of data of high volume, complex nature, and often associated with inherent uncertainty. Such mechanisms include crowdsourcing, automated knowledge inference, tracking, and social media data repositories. Such data bearing additional information from multiple sources like probability distributions, text or numerical attributes, social context, or multimedia content can be called multi-enriched. Searching and mining this abundance of information holds many challenges, if all of the data's potential is to be released. This thesis addresses several major issues arising in that field, namely path queries using multi-enriched data, trend mining in social media data, and handling uncertainty in geo-spatial data. In all cases, the developed methods have made significant contributions and have appeared in or were accepted into various renowned international peer-reviewed venues. A common use of geo-spatial data is path queries in road networks where traditional methods optimise results based on absolute and ofttimes singular metrics, i.e., finding the shortest paths based on distance or the best trade-off between distance and travel time. Integrating additional aspects like qualitative or social data by enriching the data model with knowledge derived from sources as mentioned above allows for queries that can be issued to fit a broader scope of needs or preferences. This thesis presents two implementations of incorporating multi-enriched data into road networks. In one case, a range of qualitative data sources is evaluated to gain knowledge about user preferences which is subsequently matched with locations represented in a road network and integrated into its components. Several methods are presented for highly customisable path queries that incorporate a wide spectrum of data. In a second case, a framework is described for resource distribution with reappearance in road networks to serve one or more clients, resulting in paths that provide maximum gain based on a probabilistic evaluation of available resources. Applications for this include finding parking spots. Social media trends are an emerging research area giving insight in user sentiment and important topics. Such trends consist of bursts of messages concerning a certain topic within a time frame, significantly deviating from the average appearance frequency of the same topic. By investigating the dissemination of such trends in space and time, this thesis presents methods to classify trend archetypes to predict future dissemination of a trend. Processing and querying uncertain data is particularly demanding given the additional knowledge required to yield results with probabilistic guarantees. Since such knowledge is not always available and queries are not easily scaled to larger datasets due to the #P-complete nature of the problem, many existing approaches reduce the data to a deterministic representation of its underlying model to eliminate uncertainty. However, data uncertainty can also provide valuable insight into the nature of the data that cannot be represented in a deterministic manner. This thesis presents techniques for clustering uncertain data as well as query processing, that take the additional information from uncertainty models into account while preserving scalability using a sampling-based approach, while previous approaches could only provide one of the two. The given solutions enable the application of various existing clustering techniques or query types to a framework that manages the uncertainty.Das Erscheinen neuer Methoden zur Datenerhebung in räumlichen Applikationen gepaart mit einer erhöhten Bereitschaft der Nutzer, Daten über sich preiszugeben, generiert einen stetig steigenden Fluss von Daten in großer Menge, komplexer Natur, und oft gepaart mit inhärenter Unsicherheit. Beispiele für solche Mechanismen sind Crowdsourcing, automatisierte Wissensinferenz, Tracking, und Daten aus sozialen Medien. Derartige Daten, angereichert mit mit zusätzlichen Informationen aus verschiedenen Quellen wie Wahrscheinlichkeitsverteilungen, Text- oder numerische Attribute, sozialem Kontext, oder Multimediainhalten, werden als multi-enriched bezeichnet. Suche und Datamining in dieser weiten Datenmenge hält viele Herausforderungen bereit, wenn das gesamte Potenzial der Daten genutzt werden soll. Diese Arbeit geht auf mehrere große Fragestellungen in diesem Feld ein, insbesondere Pfadanfragen in multi-enriched Daten, Trend-mining in Daten aus sozialen Netzwerken, und die Beherrschung von Unsicherheit in räumlichen Daten. In all diesen Fällen haben die entwickelten Methoden signifikante Forschungsbeiträge geleistet und wurden veröffentlicht oder angenommen zu diversen renommierten internationalen, von Experten begutachteten Konferenzen und Journals. Ein gängiges Anwendungsgebiet räumlicher Daten sind Pfadanfragen in Straßennetzwerken, wo traditionelle Methoden die Resultate anhand absoluter und oft auch singulärer Maße optimieren, d.h., der kürzeste Pfad in Bezug auf die Distanz oder der beste Kompromiss zwischen Distanz und Reisezeit. Durch die Integration zusätzlicher Aspekte wie qualitativer Daten oder Daten aus sozialen Netzwerken als Anreicherung des Datenmodells mit aus diesen Quellen abgeleitetem Wissen werden Anfragen möglich, die ein breiteres Spektrum an Anforderungen oder Präferenzen erfüllen. Diese Arbeit präsentiert zwei Ansätze, solche multi-enriched Daten in Straßennetze einzufügen. Zum einen wird eine Reihe qualitativer Datenquellen ausgewertet, um Wissen über Nutzerpräferenzen zu generieren, welches darauf mit Örtlichkeiten im Straßennetz abgeglichen und in das Netz integriert wird. Diverse Methoden werden präsentiert, die stark personalisierbare Pfadanfragen ermöglichen, die ein weites Spektrum an Daten mit einbeziehen. Im zweiten Fall wird ein Framework präsentiert, das eine Ressourcenverteilung im Straßennetzwerk modelliert, bei der einmal verbrauchte Ressourcen erneut auftauchen können. Resultierende Pfade ergeben einen maximalen Ertrag basieren auf einer probabilistischen Evaluation der verfügbaren Ressourcen. Eine Anwendung ist die Suche nach Parkplätzen. Trends in sozialen Medien sind ein entstehendes Forscchungsgebiet, das Einblicke in Benutzerverhalten und wichtige Themen zulässt. Solche Trends bestehen aus großen Mengen an Nachrichten zu einem bestimmten Thema innerhalb eines Zeitfensters, so dass die Auftrittsfrequenz signifikant über den durchschnittlichen Level liegt. Durch die Untersuchung der Fortpflanzung solcher Trends in Raum und Zeit präsentiert diese Arbeit Methoden, um Trends nach Archetypen zu klassifizieren und ihren zukünftigen Weg vorherzusagen. Die Anfragebearbeitung und Datamining in unsicheren Daten ist besonders herausfordernd, insbesondere im Hinblick auf das notwendige Zusatzwissen, um Resultate mit probabilistischen Garantien zu erzielen. Solches Wissen ist nicht immer verfügbar und Anfragen lassen sich aufgrund der \P-Vollständigkeit des Problems nicht ohne Weiteres auf größere Datensätze skalieren. Dennoch kann Datenunsicherheit wertvollen Einblick in die Struktur der Daten liefern, der mit deterministischen Methoden nicht erreichbar wäre. Diese Arbeit präsentiert Techniken zum Clustering unsicherer Daten sowie zur Anfragebearbeitung, die die Zusatzinformation aus dem Unsicherheitsmodell in Betracht ziehen, jedoch gleichzeitig die Skalierbarkeit des Ansatzes auf große Datenmengen sicherstellen
    corecore