
Qualitative Spatial Query

Processing

Towards Cognitive Geographic Information Systems

Rami Al-Salman

Dissertation

zur Erlangung des Grades eines Doktors der

Ingenieurwissenschaften

— Dr.-Ing. —

Vorgelegt im Fachbereich 3 (Mathematik & Informatik)

Universität Bremen

August 2014

Datum des Promotionskolloquiums:

Gutachter: Prof. Christian Freksa, Ph.D. (Universität Bremen)
Prof. Christian S. Jensen, Ph.D. (Aalborg University)

Abstract

For a long time, Geographic Information Systems (GISs) have been used by

GIS-experts to perform numerous tasks including way-finding, mapping, and

querying geo-spatial databases. The advancement of Web 2.0 technologies

and the development of mobile-based device applications present an excellent

opportunity to allow the public —non-expert users— to access information

of GISs.

However, the interfaces of GISs were mainly designed and developed based

on quantitative values of spatial databases to serve GIS-experts, whereas

non-expert users usually prefer a qualitative approach to interacting with

GISs. For example, humans typically resort to expressions such as “the

building is near a riverbank” or “there is a restaurant inside a park” which

qualitatively locate the spatial entity with respect to another. In other

words, the users’ interaction with current GISs is still not intuitive and not

efficient. This dissertation thusly aims at enabling users to intuitively and

efficiently search spatial databases of GISs by means of qualitative relations

or terms such as left, north of, or inside. We use these qualitative relations

to formalise so-called Qualitative Spatial Queries (QSQs).

Aside from existing topological models, we integrate distance and directional

qualitative models into Spatial Data-Base Management Systems (SDBMSs)

to allow the qualitative and intuitive formalism of queries in GISs. Further-

more, we abstract binary Qualitative Spatial Relations (QSRs) covering the

aforementioned aspects of space from the database objects. We store the

abstracted QSRs in a Qualitative Spatial Layer (QSL) that we extend into

current SDBMSs to avoid the additional cost of the abstraction process when

dealing with every single query. Nevertheless, abstracting the QSRs of QSL

results in a high space complexity in terms of qualitative representations.

Hence, we apply two data reduction strategies so the QSL memory overhead

is drastically reduced: (1) reduction by clustering and (2) reduction by a

converse operation. The first strategy applies clustering approach to reduce

the total space complexity compared to the original size of the QSL. The

second strategy applies the converse operation of a qualitative model, to

exploit symmetry in the QSL and thus to reduce the size of the QSL.

We consider the spatial query-answering problem as a sub-graph isomorphism

matching problem which is NP-complete. To cope with the complexity of a

sub-graph isomorphism matching problem, we propose five novel database

indexing approaches. The first approach is called Hybrid Interpretation Tree

and B+-Tree (HITBT) and aims to reduce the time complexity of processing

QSQs. As applying HITBT brings a high dimensionality problem in terms

of database indexing, we propose Qualitative Hash Table Indexing (QHTI).

QHTI concatenates the labels of pairs of objects with their relations and then

stores them in a hash table. As space demands of QHTI are high, we propose

Qualitative Hash Table Compression (QHTC) as an extension of QHTI. QHTC

processes QSQs even quicker than QHTI and at the same time saves space

by aggregating the multiple recurrences of data sets induced by QHTI. We

develop QHTC of Qualitative Models and QHTC of Object Pairs as variants of

QHTC to increase the possibility of find recurring sets induced by QHTI.

We develop QualEnabler system that combines the aforementioned compo-

nents of our work such as QSL, clustering, indexing, etc. In addition, we

show the applicability of our system by implementing two prototypical query

systems.

Based on QualEnabler, we conduct two types of evaluations on real-world

and synthetic datasets to evaluate space and time scalability of our ap-

proaches. Regarding space scalability, the results of the experiments and

their analyses suggest that the data reduction strategies have an ability

to reduce the amounts of qualitative representations of QSL significantly.

Regarding time scalability, the results of our experiments suggest that QHTI

and QHTC are the most scalable approaches in comparison to others to process

QSQs.

Zusammenfassung

Geographische Informationssysteme (GIS) werden seit geraumer Zeit von

Experten zur Bewältigung verschiedener Aufgaben eingesetzt, darunter

insbesendere zur Beantwortung von Anfragen auf Geodatenbanken. Die

rasante Entwicklung der Web-2.0-Technologien in den letzten Jahren und der

technische Fortschritt mobiler Geräte ebneten den Weg für neue GIS-basierte

Anwendungen, die nun für jedermann verfügbar sind.

Die Schnittstellen von GIS wurden in erster Linie für GIS-Experten ent-

worfen und entwickelt und basieren daher hauptsächlich auf den quantita-

tiven Werten aus den Geodatenbanken. Gewöhnliche Benutzer bevorzu-

gen allerdings eher den qualitativen Ansatz, anstatt mit einem GIS direkt

zu interagieren. Beispielsweise verwenden Menschen Ausdrücke, wie “das

Gebäude ist in der Nähe des Flussufers” oder “es gibt ein Hotel innerhalb

des Parks”, die verschiedene Geo-Objekte in Relation zueneinder setzen.

Dementsprechend ist die Benutzer-Interaktion bei traditionellen GIS Syste-

men noch nicht intuitiv und leistungsfähig. Im Rahmen dieser Dissertation

soll die beschriebene Lücke geschlossen werden, indem einem Nutzer des

GIS die Möglichkeit gewährt wird, Anfragen auf Geodatenbanken intuitiv

mit Hilfe von qualitativen Beziehungsbeschreibungen - ausgedrückt durch

Relationsdeskriptoren wie “links”, “nördlich”, oder “innen” - zu spezifizieren.

Diese qualitativen Deskriptoren können verwendet werden, um sogenannte

Qualitative räumliche Anfragen (Qualitative Spatial Queries, QSQs) zu

formalisieren.

Neben den bereits bestehenden topologischen Modellen, integrieren wir auf

Distanz und Richtung basierende qualitative Modelle in das Spatial-Database-

Management-System (SDBMS). Desweiteren extrahieren wir binären qualita-

tive räumliche Deskriptoren (Qualitative Spatial Relation, QSRs), welche die

obengenannten räumlichen Aspekte der Datenbankobjekte umfassen. Die

abstrahierte QSRs wird in einer Qualitativen räumlichen Ebene (Qualitative

Spatial Layer, QSL) gespeichert und dient als Erweiterung der aktuellen

SDBMSe, mit der der zusätzliche Aufwand der Abstraktion jeder einzelnen

Anfrage umgangen wird.

Das Ablegen der qualitativen Informationen in QSL ist sehr speicherintensiv

und deshalb werden zwei Datenreduktionsstrategien vorgestellt, die den

Speicheraufwand erheblich reduzieren: (1) Reduktion durch Clustering und

(2) Reduktion durch Anwendung der Gegenoperation. Die erste Strategie

wendet ein Clusteringverfahren an, um die Größe der QSL zu reduzieren.

Die zweite Strategie erreicht dies durch die Anwendung der gegenteiligen

Operation und nutzt damit die Symmetrieeigenschaft von QSL.

Wir betrachten eine räumliche Anfrage auf ein GIS als die Lösung des

Subgraph-Isomorphismus-Übereinstimmungsproblems, welches NP-vollständig

ist. Um dennoch auf akzeptable Berechnungszeiten zu kommen, stellen wir

fünf neue Datenbankindexierungsmethoden vor. Der erste Ansatz wird als

Hybrid-Interpretation-Tree und B+-Tree (HITBT) bezeichnet und verfolgt in

erster Linie die Reduktion der Zeitkomplexität der QSQs-Verarbeitung. Da

die Anwendung von HITBT das Problem der hohen Dimensionalität bezogen

auf die Indexierung mit sich bringt, stellen wir als zweites das Qualitative-

Hash-Table-Indexing (QHTI) Verfahren vor. QHTI konkateniert die Bezeichner

von Objektpaaren mit ihren qualitativen Deskriptoren und legt diese an-

schließend in einer Hashtabelle ab. Da QHTI besonders speicherintensiv ist,

wird Qualitative-Hash-Table-Compression (QHTC) entwickelt, ein Verfahren

basierend auf einer komprimierten Hashtabelle, welche eine Erweiterung

von QHTI darstellt. QHTC benötigt nicht nur weniger Speicher, sondern auch

weniger Rechenzeit für die Berechnung von QSQs durch Aggregation von

häufig auftretenden Datenwerten erzeugt durch QHTI. Wir haben sowohlt

die QHTC von qualitativen Modellen als auch die QHTC von Objektpaaren als

Varianten von QHTC entwickelt, um die Wahrscheinlichkeit zu erhöhen, dass

wiederkehrende Datenwerte gefunden werden.

Wir stellen das QualEnabler-System vor, welches die zuvorgenannten Kom-

ponenten dieser Arbeit, wie QSL, Clustering, Indexierung, etc., umfasst.

Zusätzlich zeigen wir die Praxistauglichkeit unseres Systems durch Imple-

mentierung zweier prototypischer Anfragesysteme.

Es wurden zwei Arten von Evaluationen auf einer realen und einer synthetis-

chen Datenmenge durchgeführt, um die Zeit- und Speicherplatzskalierbarkeit

des Ansatzes zu ermitteln. Bezogen auf den Speicherplatzverbrauch, haben

die Experimente und deren Analysen gezeigt, dass die Datenreduktionsver-

fahren die Fähigkeit haben die Datenmenge der qualitativen Representation

von QSL signifikant zu verkleinern. Hinsichtlich der Zeitkomplexität, haben

QHTI und QHTC sich als die effizientesten Verfahren zur Berechnung von

QSQs erwiesen.

viii

To my mother and father for their love and support. All is due to their

hard work and sacrifice...

Acknowledgements

All praise is due to ALLAH (GOD) for pursuing this Ph.D. degree among

other endless blessings on me.

I am grateful to acknowledge the European Commission Initial Training

Network geocrowd (FP7 - People Marie Curie Actions) and the German

Research Foundation (DFG) via the Transregional Collaborative Research

Center on Spatial Cognition SFB/TR8 for the financial funds which allow

me to pursue my Ph.D. studies.

I would like to thank Prof. Christian Freksa for supervising my dissertation

and for giving me the freedom to select my Ph.D. topic and to develop my

research ideas. Thank you very much Christian for your very constructive

comments and guidelines without them I could not have done my dissertation.

Thanks a lot for reserving time for me to do meetings and discussions,

although your time was always tight. Every single word you said to me,

has had a big impact on my research and communication skills. You were

always ready to support me and to push me forward to continue my Ph.D.

studies. All these favors and memories will reside in my heart and mind

forever. Many thanks also to my co-supervisor Prof. Christian S. Jensen for

his valuable comments and suggestions which make my dissertation work

more professional. From you I learned how to develop my ideas in a very

professional and critical way.

Dr. Frank Dylla your comments were very harshly on me during my Ph.D.

studies, but at the same time they were (and they are still) very helpful

and significant to develop my thinking way and ideas that led to write this

dissertation. Every single meeting we had, it adds in a way something to

my research skills and to my dissertation. I learned from you how to be

picky in analyzing and discussions, to write academic papers, and to do the

research in a very professional way. How many thankful words I would give

to you, they are still not enough for your great efforts in making me a real

researcher. It was really a great pleasure to work with you.

Many thanks go to my graduate seminar reviewers, especially Dr. Thomas

Barkowsky and Dr. Carl Schultz who were always giving me very valuable

comments regarding my research and dissertation.

I would love to thank all reviewers who have reviewed the chapters of my

dissertation namely: Dr. Thomas Barkowsky, Dr. Carl Schultz, Dr. Holger

Schultheis, Dr. Frank Dylla, Dr. Mohammad Friwan, and Dr. Jae Hee Lee.

Special thanks go to Dr. Sadet Alcic for his support and great efforts in

revising the German abstract of this dissertation.

I am very thankful to geocrowd people who I spent very nice summer schools,

meetings, and workshops with them. I have really enjoyed a lot being with

you and sharing with you my ideas and thoughts.

Now it is a time to thank my friends who I have spent a lot of my time with

them: Dr. Zoe Falomir Llansola, Chunyuan Cai, Ahmed Loai Ali, Dr. Paolo

Fogliaroni, and Dr. Giorgio de Felice.

The turn of my family comes. Thank you a lot my mother and father for

your sacrifice and unlimited supports to me. I cannot find enough words to

thank you, but be sure that I will be supporting for you until the rest of

my life. My sister Areen, my brother Mahmoud, my little brother Mostafa,

you gave a lot of your support and happiness that pushed me to finish my

dissertation. So, thank you very much.

Marianna Sakharova, I have to thank you very much for your endless supports

and your encouraging words which helped me a lot to write my dissertation.

Without such a great support I cannot imagine that this dissertation can be

done.

In the end, I would like to ask everyone who I did not mention here to

forgive me; all of you are important to me. But do not worry, although the

text space is limited, my heart is big enough to include you all.

Contents

List of Figures xi

List of Tables xv

List of Algorithms xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Application Scenarios . 6

1.2.1 Daily Life . 6

1.2.2 Disaster Management . 6

1.3 Dissertation Hypotheses and Contributions 7

1.4 Organization of the Dissertation . 8

2 Qualitative Spatial Representation and Reasoning 9

2.1 Qualitative Spatial Representations . 10

2.1.1 Qualitative Spatial Calculi and their Operations 11

2.2 Aspects of Qualitative Spatial Calculi 12

2.2.1 Topology . 12

2.2.2 Direction and Orientation . 14

2.2.3 Distance . 17

2.2.4 Other Aspects of Qualitative Spatial Calculi 18

2.3 Qualitative Constraint Networks . 18

2.4 Conceptual Neighbourhood-Based Reasoning 19

v

CONTENTS

2.5 Consistency and Relaxations . 20

2.6 Summary . 20

3 Spatial Information Management and Systems 21

3.1 Spatial Data-Base Management Systems 21

3.1.1 Spatial Queries . 22

3.1.1.1 Spatial Data Models . 22

3.1.1.2 Spatial Query Languages 26

3.1.2 Spatial Indexing . 27

3.1.2.1 B-trees . 27

3.1.2.2 R-trees . 31

3.1.2.3 Hashing . 32

3.1.3 Indexing Applications for Spatial Databases 33

3.2 Clustering . 35

3.2.1 Grid-Based Clustering . 36

3.2.2 Density-Based Clustering . 38

3.2.3 Approaches for Clustering Qualitative Data 39

3.3 Integrating Qualitative Spatial Reasoning with GISs 40

3.3.1 Approaches for Intuitive Interactions 40

3.3.2 Approaches for Matching Geo-Spatial Information 41

3.4 Summary . 42

4 Querying, Reducing, and Matching Qualitative Information 45

4.1 Qualitative Spatial Queries . 45

4.2 Enabling Qualitative Spatial Queries in GISs 47

4.3 Extending a Qualitative Spatial Layer into GISs 50

4.3.1 Multi-Graph Representations . 53

4.3.2 Matching a Qualitative Spatial Layer 54

4.4 Qualitative Data Reduction . 56

4.4.1 Qualitative Data Reduction by Clustering 56

4.4.1.1 Enclosing Clusters . 60

4.4.1.2 Qualitative Spatial Relations Between Clusters 62

4.4.1.3 Abstracting a Qualitative Spatial Layer From Clusters 66

4.4.1.4 Matching the Qualitative Spatial Layer of Clusters . . . 67

vi

CONTENTS

4.4.2 Qualitative Data Reduction By a Converse Operation 69

4.5 Summary . 72

5 Optimizing Indexing Approaches for Spatial Databases 73

5.1 A Hybrid Interpretation Tree and B+-Tree 73

5.1.1 Index Construction-HITBT . 74

5.1.2 Search-HITBT . 75

5.1.3 Delete-HITBT . 76

5.1.4 Discussion . 76

5.2 Qualitative Hash Table Indexing . 77

5.2.1 Index Construction-QHTI . 78

5.2.2 Search-QHTI . 79

5.2.3 Delete-QHTI . 80

5.2.4 Discussion . 80

5.3 Qualitative Hash Table Compressing . 82

5.3.1 Index Construction-QHTC . 82

5.3.2 Search-QHTC . 85

5.3.3 Delete-QHTC . 85

5.3.4 Discussion . 86

5.4 Qualitative Hash Table Compressing of Qualitative Models 88

5.4.1 Index Construction-QHTCM . 88

5.4.2 Search-QHTCM . 90

5.4.3 Delete-QHTCM . 90

5.4.4 Discussion . 91

5.5 Qualitative Hash Table Compressing of Object Pairs 92

5.5.1 Index Construction-QHTCP . 92

5.5.2 Search-QHTCP . 92

5.5.3 Delete-QHTCP . 94

5.6 Summary . 95

6 Implementation and Applications 97

6.1 PostGIS: A Spatial Layer . 97

6.1.1 Integrating Qualitative Spatial Models into PostGIS 98

6.2 A Qualitative Spatial Layer . 100

vii

CONTENTS

6.3 DBSCAN Clustering Implementation . 100

6.4 Indexing Approaches Implementation . 102

6.4.1 A Hybrid Interpretation Tree and B+-Tree 102

6.4.2 A Qualitative Hash Table Indexing 103

6.4.3 Qualitative Hash Table Compression 104

6.4.4 The QHTC of Qualitative Models 104

6.4.5 The QHTC of Object Pairs . 105

6.5 Client-Side Interfaces . 105

6.5.1 Web-Based Interfaces . 106

6.5.2 Android-Based Interfaces . 109

6.6 System Evaluation . 110

6.7 Summary . 112

7 Empirical Evaluation 115

7.1 Clustering Experiments . 115

7.1.1 The Experimental Settings of Clustering 116

7.1.2 Filtering Clustering Candidates 117

7.1.3 Selecting Clustering Candidate 123

7.2 Indexing Approaches Experiments . 128

7.2.1 The Experimental Settings of Indexing Approaches 128

7.2.2 Qualitative Data Reduction . 131

7.2.3 Varying the Number of Queries 132

7.2.4 Varying the Number of Pairs . 135

7.2.5 Varying the Number of Objects 138

7.3 Synthetic Data Evaluation . 141

7.3.1 Clustering Experiments on a Synthetic Data 141

7.3.2 Indexing Approaches Experiments on a Synthetic Data 145

7.3.2.1 Qualitative Data Reduction 146

7.3.2.2 Varying the Number of Queries 147

7.4 Summary . 149

viii

CONTENTS

8 Conclusions 151

8.1 Summary . 151

8.2 Future Directions . 154

8.2.1 Qualitative Spatial Clustering Reasoning 154

8.2.2 Conceptually Neighboring Qualitative Spatial Queries 154

8.2.3 Approximate Qualitative Spatial Query Matching 155

8.2.4 Indexing for Qualitative, Spatial, and Keywords Queries 155

8.2.5 Supporting Individuals of Qualitative Spatial Queries 155

8.2.6 Parallelism of Hash-Based Indexing Approaches 156

References 157

Appendix A Own Publications 167

A.1 Within the Scope of this Dissertation . 167

A.2 Out of the Scope of this Dissertation . 169

ix

CONTENTS

x

List of Figures

1.1 Examples of results provided in order to answer the qualitative spatial

query “find a restaurant inside a park and near a riverbank”. 4

2.1 Interior, boundary, and exterior of two regions A and B. 13

2.2 the eight distinct topological relations from two points sets (A,B) em-

bedded in D2 with their matrix values. 14

2.3 (a) the cone-based and (b) the projection-based models. 15

2.4 A 3x3 matrix is used to represent the binary directional relation(s)

between A and B. 16

2.5 B1 {[NW]}A and B2 {[W,NW,N]}A. 16

2.6 Two levels of granularity of distance model, adapted from (Hernández

et al., 1995). 18

3.1 The geometry object model, from (Open Geospatial Consortium (OGC)

Inc., 2011). 24

3.2 Example of B-tree and B+-tree of order P = 3. The values are inserted

in the order {1, 2, 3, 4, 5, 6, 7, 8}. 29

3.3 An example of an R-tree for 2D geometric objects. 32

3.4 An example: DBSCAN. 39

4.1 An example: qualitative spatial query formalism. 47

4.2 An example: verbal descriptions of a QSQ are translated to SQL. 48

4.3 The distance model with four relations. 50

xi

LIST OF FIGURES

4.4 A logical view of the qualitative database layer extension. 51

4.5 Example: a qualitative spatial layer that represents all the binary qual-

itative spatial relations (per each one of the three qualitative models

including topology, direction, and distance) among four geometric objects. 52

4.6 The QCND using three qualitative models T, D, and S. 53

4.7 Matching GQ against GD: the first subset is exactly matched by users

query, the second subset is partially matched, where the pairs {(A, C),

(A1, C4)}, {(B, C), (B2, C4)} differ by a directional relation. 55

4.8 Matching the Itree to the unary and binary constraints of GQ. 56

4.9 A clustering of the objects of Bremen inner city using DBSCAN(MinPts=2,

Eps=300). 59

4.10 Examples of qualitative data clustering and reduction by DBSCAN: (a)

all objects are grouped into a single cluster, (b) all objects are grouped

into two clusters, and (c) all objects are grouped into four clusters. . . . 60

4.11 An example: the MBR, CH, and CCH of a cluster. 61

4.12 An example: computing disjoint relations between clusters based on

three cluster representations the MBR, CH, and CCH, where the yellow color

presents the non-disjoint relations. 63

4.13 (a) shows the transitive relation NE between the reference cluster Ci and

the primary cluster Cj , (b) shows the non-transitive relation N between

the reference cluster Ci and the primary cluster Cj 67

4.14 An example: pruning half of QCND space based on symmetry. 70

5.1 An example: the index construction of the first level of TB of HITBT. . . 74

5.2 Architecture of Qualitative Hash Table Indexing (QHTI) and Compression

(QHTC). 78

5.3 An example: the index construction of the first level of T. 79

5.4 Example of structuring and matching a query against the second level of T. 82

5.5 An example: the index construction of the first level of TC 85

6.1 An overview of system architecture. 98

6.2 Qualitative spatial layer database schema design. 100

xii

LIST OF FIGURES

6.3 A snapshot of DBSCAN analyzer; the user needs to specify two parame-

ters: (1) the minimum number of points (MinPts) within a cluster and

(2) the radius of a cluster (Eps). 101

6.4 DBSCAN database schema design. 103

6.5 QHTI database schema design. 104

6.6 QHTC database schema design. 105

6.7 QHTCM database schema design. 106

6.8 QHTCP database schema design. 107

6.9 The system architecture of the Qualitative Spatial Management System. 108

6.10 A snapshot of the graphical user interface of QSMS. 109

6.11 A snapshot of the Android Sketching and Querying Tool. 110

6.12 System evaluation database schema design. 111

7.1 A snapshot of the real dataset of Bremen inner city. 116

7.2 Snapshots of DBSCAN(MinPts, Eps=v), v: the radius of clusters varied

from 50 to 490 meters incremented by 10 meters. 119

7.3 Snapshots of DBSCAN(2, Eps): Eps ∈ {50, 100, 290, 300, 310, 490}. . . . 120

7.4 A snapshot of the CCHs: DBSCAN(2, 300) v.s. DBSCAN(3, 300). 125

7.5 A snapshot of the MBRs: DBSCAN(2, 300) v.s. DBSCAN(3, 300). 126

7.6 SQL code: a single pair query with its three spatial relations. 131

7.7 The space reduction rates of GD by QHTC, QHTCM , and QHTCP 131

7.8 Varying the number of single pair queries. 133

7.9 Varying the number of double pairs queries. 136

7.10 Comparing our approaches by varying the number of object pairs. . . . 137

7.11 Comparison: varying the number of objects of the database (cardinality). 140

7.12 A snapshot of a synthetic dataset. 142

7.13 Snapshots of DBSCAN(MinPts, Eps=v), v: the radius of clusters varied

from 1 to 30 degrees incremented by 1. 143

7.14 Varying the number of single pair queries. 148

xiii

LIST OF FIGURES

xiv

List of Tables

2.1 Thirteen spatial relations from (Freeman, 1975). 12

3.1 Three kinds of spatial operations are provided: (1) basic operators, (2)

topological set operators, and (3) spatial analysis operators, from (Open

Geospatial Consortium (OGC) Inc., 2011). 25

3.2 The types of spatial queries, the possible spatial operations, spatial

queries, and their spatial indexing methods. 28

3.3 Comparison between eight categories of clustering methods. 37

4.1 The distance decisive and indecisive relations. 65

4.2 Eight binary relations of 9-Intersection-Model and their inverses from

(Egenhofer, 1994a). 70

4.3 Comparison between the three matching approaches. 72

5.1 Comparison between the five indexing approaches. 96

6.1 The predicates and their descriptions from http://postgis.net/docs/

manual-2.0/. 99

7.1 DBSCAN Parameter settings. 117

7.2 r and p-value for MinPts with other variables. 122

7.3 The clustering candidates of DBSCAN experiments. 122

7.4 Generating the CCHs of clusters using α. 124

xv

LIST OF TABLES

7.5 The reduction rates for the topological, directional, and distance relations

as well as their average reduction. 126

7.6 The first level of the constructed trees and their index construction time. 130

7.7 The number of abstracted relations of the CR and GC
D. 130

7.8 Parameter settings. 131

7.9 The minimum, maximum, average, and standard deviation (σ) execution

time measured by seconds for the spatial queries. 134

7.10 Four spatial queries and their cardinalities as well as their numbers of

the retrieved results. 139

7.11 r and p-value for MinPts with other variables. 144

7.12 The clustering candidates of DBSCAN experiments. 144

7.13 The reduction rates for the topological, directional, and distance relations

as well as their average reduction. 145

7.14 The first level of the constructed trees and their index construction time. 146

7.15 The number of detected unique tuples of QHTC, QHTCM , and QHTCP as

well as their new and reduced graph size. 147

xvi

List of Algorithms

1 AbstractDataBaseGraph(Objects OD, ObjGeometries FD) 52

2 Qualitative Layer Matcher(DBgraph GD, Query GQ) 57

3 Abstract Relations Clusters(Clusters C, GeomtryClusters F) 68

4 DBSCAN Matcher(GC
D, C

R, Clusters C, Query GQ) 69

5 IndexConstruction HITBT(DBgraph GD, TreeLevel �) 75

6 Match HITBT(B+-trees TB, QueryGraph GQ) 76

7 Delete HITBT(B+tree TB, Object o) . 77

8 IndexConstruction QHTI(DBgraph GD) 80

9 Search QHTI(QHTI tree T, Query GQ) 81

10 Get(Hash List HList, Hash Key QHash) 81

11 Delete QHTI(QHTI tree T, Object o) . 83

12 IndexConstruction QHTC(QHTI tree T, GeomDB FD) 84

13 Search QHTC(QHTC tree TC , Query GQ, DBPointers DBh, GeomDB FD) . 86

14 Delete QHTC(QHTC tree TC , DBPointers DBh, Object o, GeomDB FD) . . 87

15 IndexConstruction QHTCM (QHTI tree T) 89

16 Search QHTCM (QHTCM tree TM , Query GQ) 90

17 Delete QHTCM (QHTCM tree TM , Object o) 91

18 IndexConstruction QHTCP (QHTI tree T) 93

19 Search QHTCP (QHTCP tree TP , Query GQ) 94

20 Delete- QHTCP (QHTCP tree TP , Object o) 95

21 Auto Queries Generator(GD, T
C , Min, Max, Unq, nq) 112

xvii

LIST OF ALGORITHMS

xviii

Chapter 1
Introduction

In this chapter, we give the motivation of the work presented in this dissertation (Section

1.1). Afterwards, we describe two real life application scenarios (Section 1.2). The

dissertation hypotheses and contributions are given in Section 1.3. The last section

describes the outline of the dissertation (Section 1.4).

1.1 Motivation

Geographic Information Systems (GISs) are computer systems designed to represent,

maintain, and analyze spatial data (Worboys and Duckham, 2004). As such, they usually

have to cope with huge data sources which must be managed as efficiently as possible

and are typically maintained in spatial databases. In particular, spatial databases

represent spatial data based on quantitative values which are encoded in either vector

or raster format. Efficient methods and algorithms for handling database queries based

on these quantitative values were developed. In general, proposed methods focus on

two types of queries: (1) path queries (Chen and Xu, 2000; Egenhofer, 1993)(e.g., “find

me the shortest path between location A and location B”) and (2) location-based or

geo-referenced queries (Jensen et al., 2004a), in which geographic locations are usually

given. For instance, in a location-based query such as: “from my location: find a

restaurant within a distance of 400 meters”, 400 meters is a quantitative value

related to the distance of the restaurant .

Conversely, humans usually prefer to use qualitative descriptions to communicate

geographical information (Mark et al., 1999) such as distance, location, or topology.

1

1. INTRODUCTION

For example, humans typically resort to expressions such as “the building is near a

riverbank” and “there is a restaurant inside a park” qualitatively locate a spatial

entity with respect to another. Thus, the opportunity to query spatial databases in a

qualitative and natural language manner is more intuitive to humans. We therefore

need to relate the quantitative data of a given spatial database to qualitative relations

used by humans.

Knowledge about spatial configurations can be represented by qualitative spatial

relations such as near, far, etc. for the dimension of distance, and left, ahead, etc. for the

dimension of direction. Other dimensions are, for example, size and topology (Falomir

et al., 2013). In the simplest case, these are binary relations that reflect spatial properties

for pairs of objects. These relations can be exploited to formalize Qualitative Spatial

Queries (QSQs). For instance, in the query “Find a restaurant near a riverbank”, near

is a qualitative binary distance relation that holds between some object restaurant and

some object riverbank. The research area of Qualitative Spatial representation and

Reasoning (QSR) deals with such sets of binary relations, reasoning operations, and

their mathematical properties.

In contrast to other types of queries, here we focus on QSQs which are non-geo-

referenced queries (e.g., query by natural language or query-by-sketch (Egenhofer, 1997)),

in which geographic locations are usually not given. Additionally, QSQs are limited

to query categories or classes of objects (e.g., rivers) rather than individuals (e.g., the

“Weser” river). Moreover, we only consider objects of atomic categories such as river or

building, and no higher order ontological categories such as state or country, which may

summarize several atomic objects. Even though QSQs do not usually have geographic

locations such as 53◦5′N, 8◦48′E, their nature is geographic, spatial, and qualitative.

Such queries occur in everyday life and have several applications such as urban planning,

disaster management, and services to find locations.

The interaction of users with GISs is not efficient and not intuitive. When users

submit their QSQs that contain several binary spatial relations, GISs may fail to answer

them efficiently. Consider the following examples in Bremen city: even though there are

restaurants in Bremen that are inside park(s) and near riverbank(s), Figure 1.1 shows

2

1.1 Motivation

that the three geographic spatial search engines; Google1, OpenStreetMap2, and Bing3

fail to answer the query “find a restaurant inside a park and near a riverbank”. Such

queries are not answered satisfactorily due to one or more of the following four reasons:

1) the qualitative spatial representations (e.g., cardinal directions) need to be inte-

grated into Spatial Data-Base Management Systems (SDBMSs) to enable the statement

of QSQs in GISs. Hence, in this dissertation we address the following two research

questions:

What are the appropriate qualitative spatial representations that need to be integrated

into SDBMSs of GISs?

How can the appropriate qualitative spatial representations be integrated into SDBMSs

of GISs?

2) a qualitative abstraction of the quantitative data of spatial databases is crucial

to achieve real-time performance. In order to answer QSQs, GISs need to abstract (or

compute) qualitative spatial relations in a database at run time, which is computation-

ally infeasible and impractical. To solve this issue we introduce a Qualitative Spatial

Layer (QSL) that covers suitable qualitative spatial models (or features) which can first

be abstracted, and then extended to the SDBMSs of GISs. Consequently, GISs will

avoid the additional cost of the abstraction process every time when answering QSQs.

Unfortunately, abstracting the QSL results in a high space complexity in the amounts of

qualitative data to be considered when answering QSQs. However, by applying spatial

data mining (e.g., clustering) techniques and QSR operations (e.g., composition), the

amount of qualitative data in the QSL can be reduced. Based on this discussion, we

address the following question:

How can spatial data mining techniques and QSR operations reduce the amounts of

qualitative data in the QSL?

1Google: https://maps.google.com
2OpenStreetMap: http://www.openstreetmap.org
3Bing: http://www.bing.com/maps

3

1. INTRODUCTION

(a) Google Maps: returns empty result.

(b) OpenStreetMap: returns empty result.

(c) Bing Maps: returns empty result.

Figure 1.1: Examples of results provided in order to answer the qualitative spatial query

“find a restaurant inside a park and near a riverbank”.

4

1.1 Motivation

3) qualitative spatial descriptions and queries can be inaccurate and ambiguous

(Wasow et al., 2005) and may lead to misinterpretations. For example, in a spatial

query such as “Find a restaurant near a riverbank”, the term near needs context

(Freksa, 1981, pp. 112). It may be interpreted as a distance less than 500 meters,

two kilometers, or kilometers depending on the means of transportation (e.g., by

foot, bike, or car) and different reference system of each user. Furthermore, the term

restaurant needs grounding in the quantitative data in order to determine its location

and extent. The term restaurant needs grounding with respect to the qualitative

data to understand/define the meaning of the concept, for example by means of an

ontology. Resolving the ambiguity of qualitative descriptions is beyond the scope of

this dissertation.

4) answering QSQs in large spatial databases results in a high space and time

complexity (Wallgrün et al., 2010). In order to answer queries, for each object pair

contained a separate join operation needs to be processed in the database. However,

join operations are expensive, as the operation is quadratic in the number of objects

(Böhm et al., 2000). Given a database table DB, a join operation requires projecting all

rows of DB onto all rows of a copy of DB. Therefore, there is a reasonable motivation

to develop methods to speed-up matching of QSQs against databases. Hence, this

dissertation addresses the following research question:

How can QSR and database indexing methods be applied to spatial databases in order

to speed-up answering QSQs?

In summary, there is a need for methods which connect the qualitative terms/concepts

of a user and the quantitative data stored in the spatial database of GISs. To facilitate

the intuitive and quick handling of QSQs in GISs, this dissertation aims at: (1)

integrating qualitative spatial representations into GISs for enabling qualitative and

intuitive formalism of queries in GISs and (2) developing novel database indexing and

qualitative data reduction approaches for accelerating the interaction between GISs and

their users.

5

1. INTRODUCTION

1.2 Application Scenarios

In this section, we present two kinds of application scenarios: (1) daily life and (2)

disaster management.

1.2.1 Daily Life

Very often visitors are interested in visiting a new city which has characteristics that

differentiate it from other cities. In addition, visitors are looking for some places in

the destination city that have some specific features. For example, they may want to

find restaurants that are: inside a park and near a riverbank. Bremen is a historical

city, which attracts many visitors from different countries every year. Hence, it would

be beneficial to develop a system that enables visitors to quickly search for interesting

places in Bremen using qualitative terms (e.g., they can formulate QSQs intuitively).

1.2.2 Disaster Management

Every year, thousands of people are killed and hundreds of thousands more are displaced

due to natural disasters such as earthquakes or floods. However, immediately after

natural disasters such as the earthquakes in Sendai/Japan (2011) and Sulawesi/Indonesia

(2012)1, fast response and recovery capabilities of Emergency Management Systems

(EMS) play a crucial role in saving lives. Especially after large natural disasters, where

precise data (in general from satellite images) is usually not available within the first

24 hours2. In addition, people have only a good chance to survive if they are rescued

within 72 hours—the so-called “Golden 72 hours”(Jang et al., 2009). Thus, a major

challenge to EMS is to respond to the QSQs of Emergency Managers (EMs) as fast as

possible.

The ability to handle a QSQ such as “Find me: areas that are near the main street,

but far away from damaged buildings, and far away from a riverbank” will help EMs

to save the lives of many people (Al-Salman et al., 2013a). For instance, EMs can

formulate queries to better direct rescue and aid distribution crews.

1See www.emdat.be for details
2According to RapidEye www.rapideye.com: satellite images can be available in 24-48 hours,

(14.01.2014)

6

1.3 Dissertation Hypotheses and Contributions

1.3 Dissertation Hypotheses and Contributions

Hypotheses:

• Spatial databases can be qualitatively, intuitively, and easily queried using quali-

tative descriptions.

• Qualitative spatial query processing is scalable in terms of space and time.

Based on these hypotheses, the main contributions of this dissertation are:

1. A theoretical framework that allows for integrating the appropriate qualitative

spatial models into Spatial Data-Base Management Systems (SDBMSs). This

framework enables the qualitative and intuitive formalism of queries in Geographic

Information Systems (GISs).

2. The abstraction and administration of a Qualitative Spatial Layer (QSL) that

covers the aspects of distance, topology, and direction in SDBMSs of GISs to

enhance the processing time of QSQs.

3. Reducing the amount of qualitative data in the QSL by applying two strategies:

(a) Applying Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN) to group the database objects that are near to each other into clusters,

and then identifying the inferable relations among clusters. Based on the

identified inferable relations, we are able to avoid computing and storing

some spatial relations in the QSL.

(b) Applying a converse operation to the qualitative models to exploit symmetry

in the QSL, and thus reduce the size of the QSL.

4. Developing five optimization approaches to accelerate qualitative spatial query

processing. These approaches combine QSR with database indexing approaches

which are based on hash-tables and/or B+-trees data-structures or a combination

of them.

5. QualEnabler, a practical system that combines the components of our work such

as clustering and indexing.

7

1. INTRODUCTION

6. Innovative applications to enable intuitive and easy interactions with GISs.

7. Empirical studies using real-world and synthetic datasets to evaluate the proposed

qualitative data reduction and indexing approaches.

1.4 Organization of the Dissertation

In this chapter, we have given a brief overview of the dissertation, then we have discussed

the open problems and how this dissertation contributes to solving these problems. This

dissertation is structured as follows:

Chapter 2 gives an overview of Qualitative Spatial representation and Reasoning

(QSR) with a focus on the qualitative spatial calculi. Chapter 3 presents the state

of the art in the Spatial Data-Base Management Systems (SDBMSs) and Geographic

Information Systems (GISs).

Chapter 4 describes approaches for querying, reducing, and matching qualitative

information. First, we integrate qualitative spatial models into SDBMSs. Then, based

on the integrated models, we abstract the Qualitative Spatial Layer (QSL). Subsequently,

we show how qualitative data reduction methods can be used to reduce the amounts of

qualitative data in the QSL, since the space demands of the QSL are high.

Chapter 5 presents optimized indexing approaches for speeding-up answering QSQs

in spatial databases. We show how B+-trees and interpretation trees can be com-

bined to form a new indexing approach. Afterwards, we combine qualitative spatial

representations and hash-tables to develop hash-based indexing approaches.

In Chapter 6, we describe our practical system that we call QualEnabler. We

elaborate on the implementation of the components of QualEnabler as well as its

applications. Empirical studies carried out on real-world and synthetic datasets are

reported in Chapter 7. Chapter 8 summarizes and discusses the results of this dissertation

and gives future perspectives for SDBMSs and QSR research.

8

Chapter 2
Qualitative Spatial Representation and

Reasoning

In everyday life, humans tend to rely on qualitative knowledge or abstractions rather

than on measurements or prior quantitative knowledge to interact with the physical

world and to reason about space and time (Cohn and Renz, 2008). For instance, we

usually describe a person with the term tall, not by their precise value “172.9 cm”.

We can additionally describe the order of people as short < tall in different situations

without relying on any measurement. In spite of the great successes that have been

achieved by systems and machines (e.g., super computers can do billions of calculations

per second), they are not able to solve many real life problems as humans do. To do

so, they should be able to rely on qualitative knowledge like humans (Cohn and Renz,

2008).

Dealing with common-sense knowledge qualitatively instead of quantitatively is

an active research topic in several fields, including Geographic Information Systems

(GISs), urban planning, and robot navigation (Wolter and Wallgrün, 2012). Qualitative

reasoning, in turn, is a research area that aims to deal with common-sense knowledge

using qualitative information. In order to cope with common-sense knowledge, one

needs to first represent or abstract it using symbols or spatial relations. Qualitative

reasoning particularly tries to deal with common-sense knowledge in a human-like

manner. Additionally, it creates the possibility of coping with knowledge even when it

is incomplete.

9

2. QUALITATIVE SPATIAL REPRESENTATION AND REASONING

Qualitative Spatial representation and Reasoning (QSR) is a sub-field of qualitative

reasoning. It aims at developing and applying qualitative spatial calculi and their

operations, that can be used to abstract knowledge as relations instead of measurements.

For example, the Region Connection Calculus (RCC-8) (Cohn et al., 1997) is a binary

qualitative topology calculus that can be used to abstract the topological relations of a

given geometry. These relations are then used to reason about the space and time of

common-sense knowledge (Cohn and Renz, 2008). QSR is valuable due to the fact that

it allows for reasoning about space and time even if precise quantitative knowledge is

not available, or if knowledge is incomplete.

In this chapter, we first describe qualitative spatial representations. The definitions of

qualitative spatial calculi and their operations are then given in Section 2.1.1. Afterwards,

the relevant aspects of qualitative spatial calculi are described in Section 2.2. Section

2.3 defines Qualitative Constraint Networks (QCNs). Conceptual neighborhood-based

reasoning is described in Section 2.4. Finally, Section 2.5 sketches the consistency and

relaxation methods of QCNs.

2.1 Qualitative Spatial Representations

Knowledge about spatial configurations or situations can be represented by identifying

relationships between objects in space (Cohn and Renz, 2008). QSR assumes that quali-

tative representation or abstraction is done via a finite set of symbols B = {R1, . . . , Rm},
usually referred to as qualitative relations. Given a domain of interest D, a k-ary quali-

tative relation defined over D is a subset of the k-ary Cartesian product of the domain.

In other words R ⊆ Dk. The domain of interest in the scope of this dissertation is the

set of simple regions1 embedded in 2D space. Accordingly, D2 is the set of any possible

pairs of regions.

The relations in B are usually referred to as base (or atomic, basic) relations. In

general, they are Jointly Exhaustive and Pairwise Disjoint (JEPD), where B covers all

possible object pairs in the domain
⋃

Ri∈B = D2 (JE) and any domain object pair is

contained in one, and only one base relation Ri ∩Rj = ∅ ∀Ri, Rj ∈ B with i �= j (PD).

Base relations suffice for providing a crisp description of a spatial scene and uncertainty

1A simple region is a connected and hole-free region with crisp boundaries. This is topologically

equivalent to a closed disc (Egenhofer and Franzosa, 1995).

10

2.1 Qualitative Spatial Representations

can be addressed by considering the union of possible base relations which can be

held. In other words, we can consider the power-set 2B of B, i.e., the set of disjunctive

relations. In turn, the universal relation U = D×D is applied when no information is

known.

2.1.1 Qualitative Spatial Calculi and their Operations

The definition of relations suffices for representation purposes. For reasons of complete-

ness, we note that such a representation with a set of reasoning operations over the

relations, among them standard set operations such as union and intersection, defines a

so-called Qualitative Spatial Calculus (QSC). Based on such qualitative spatial calculi,

spatial relations can be abstracted from given quantitative values.

A QSC is typically defined over a set of relations of uniform arity k, in which case one

speaks of an k-ary calculus. In this dissertation, we will only consider binary calculi. If

a relation R holds between two regions (domain objects) x and y then we say (x, y) ∈ R

or simply xRy.

The relations in B of a QSC are defined as standard sets; therefore they inherit

set-theoretic operations such as union, intersection, and complement. For k-ary relations

R and S∈2B, union, intersection, and complement are formally defined as:

union: R ∪ S = {r|r ∈ R ∨ r ∈ S}
intersection: R ∩ S = {r|r ∈ R ∧ r ∈ S}
complement: R = {r|r ∈ U ∧ r �∈ R}
where r is a k-tuple and r ∈ D.

Additionally, a QSC provides a converse operation which is formally defined as:

Definition 1 (Converse�). Given a binary relation R∈2B, its converse operation is

defined as:

R �={(x, y)|(y, x) ∈ R}
Qualitative spatial calculi perform reasoning via a composition operation (see Defi-

nition 2) which is exploited from spatial relations.

Definition 2 (Composition (R ◦ S)). Given two binary relations R and S∈2B, their
composition is defined as:

R ◦ S={(x, z)|(∃y ∈ D) : ((x, y) ∈ R ∧ (y, z) ∈ S)}

11

2. QUALITATIVE SPATIAL REPRESENTATION AND REASONING

Nr Type of relation Relation

1 Direction LEFT OF

2 Direction RIGHT OF

3 Direction BESIDE

4 Direction ABOVE

5 Direction BELOW

6 Direction BEHIND

7 Direction IN FRONT OF

8 Distance NEAR

9 Distance FAR

10 Topology TOUCHING

11 Topology BETWEEN

12 Topology INSIDE

13 Topology OUTSIDE

Table 2.1: Thirteen spatial relations from (Freeman, 1975).

The composition of binary relations can be obtained from a precomputed lookup

table called a composition table.

2.2 Aspects of Qualitative Spatial Calculi

During the last several decades, multiple categories of formal qualitative spatial calculi

(e.g., directional calculi) for qualitative relations have been proposed. Freeman (1975)

has proposed the thirteen spatial relations reported in Table 2.1, which are beneficial

for developing several real life applications, including Geographic Information Systems

(GISs). These relations cover the spatial aspects (or features) of topology (Section 2.2.1),

distance (Section 2.2.3), and direction (Section 2.2.2). In addition, orientation (Section

2.2.2) has been shown to be an important aspect of space (Zimmermann and Freksa,

1996).

2.2.1 Topology

The 9-Intersection Model (9IM) is proposed in (Egenhofer and Franzosa, 1995). It

differentiates eight Jointly Exhaustive and Pairwise Disjoint (JEPD) relations between

two simple convex regions without holes: equal, disjoint, meets, overlaps, contains,

covers, inside, and coveredBy. Although the underlying definition of regions in the

12

2.2 Aspects of Qualitative Spatial Calculi

A B

Interior Interior

Boundary Boundary

B

Interior

Boundary

A

Interior

Boundary

Exterior-A

Exterior-B

Figure 2.1: Interior, boundary, and exterior of two regions A and B.

Region Connection Calculus (RCC-8) differs from the one in the 9IM, it uses the same

eight base relations (Cohn et al., 1997). The 9IM differs from RCC-8 in considering

interior, boundary, and exterior (or complement) point sets of every simple region. In

particular, the binary relation between two regions A and B embedded in R2, can be

expressed based on the intersection of A’s interior (A◦), boundary (ϕA), and exterior

(A−) with B ’s interior (B◦), boundary (ϕB), and exterior (B−) (see Figure 2.1). Ac-

cordingly, the spatial relations between region pairs can be expressed by a 3 x 3 matrix

the so-called 9-intersection matrix (see Equation 1). Each intersection in the matrix

returns 1 to indicate that two object parts intersect, or 0 if they do not. Therefore,

29 = 512 combinations can be generated. However, only eight of them are meaningful

as spatial relations, since they are JEPD.

Equation 1 (9IM). 9IM(A,B)=

⎧⎪⎨
⎪⎩

A◦⋂B◦ A◦⋂ϕB A◦⋂B−

ϕA
⋂

B◦ ϕA
⋂

ϕB ϕA
⋂

B−

A−⋂
B◦ A−⋂

ϕB A−⋂
B−

⎫⎪⎬
⎪⎭

As depicted in Figure 2.2, the 9IM distinguishes the eight distinct topological

relations from two regions embedded in D2.

The Dimensionally Extended 9-Intersection Model (DE-9IM): is proposed

(Clementini et al., 1993) as an extension to the 9-Intersection Model, where the dimen-

sions of intersected parts between two regions A and B are explicitly considered. For

example, -1 value is given for the dimension of empty sets ∅, while non-empty sets ¬∅

13

2. QUALITATIVE SPATIAL REPRESENTATION AND REASONING

Disjoint Meet Overlap Covers

A B A B B B

B BB

A A

A A A=B

CoverdBy Contains

A

Inside Equal

()
1 1 1

0 0 1

0 0 1

()
0 0 1

0 0 1

1 1 1

()
1 0 0

1 0 0

1 1 1 ()
1 0 0

0 1 0

0 0 1

()
0 0 1

0 1 1

1 1 1 ()
1 1 1

0 1 1

0 0 1

()
1 0 0

1 1 0

1 1 1

()
1 1 1

1 1 1

1 1 1

Figure 2.2: the eight distinct topological relations from two points sets (A,B) embedded

in D2 with their matrix values.

are given values; 0 for intersected points, 1 for intersected lines, and 2 for intersected

areas. However, the simplest version of the DE-9IM maps the values of empty sets ∅
(-1) to FALSE and non-empty sets ¬∅ (0,1, and 2) to TRUE.

2.2.2 Direction and Orientation

The direction relation between a pair of objects can be determined using three elements:

a reference object, a primary object, and a Frame Of Reference (FOR) (Levinson, 1996).

When the FOR depends on a fixed environment, it is called an extrinsic FOR. For

example, the cardinal directions (N orth, East, W est, and South) can be viewed as an

extrinsic FOR to define a direction relation between a reference and a primary object.

Furthermore, if an extrinsic FOR1 is given, then the direction calculi can be expressed

by the binary qualitative spatial relations. Given a reference object (A) and a primary

object (B), the cardinal direction calculus differentiating nine cardinal directions: South,

1Sometimes in the literatures the extrinsic FOR is called an absolute FOR and accordingly a

direction relation is called an absolute direction relation.

14

2.2 Aspects of Qualitative Spatial Calculi

North

South

North-EastNorth-West

West East

South-EastSouth-West

A

EastWest

North

South

North-EastNorth-West

South-EastSouth-West

(a)

A

(b)

Figure 2.3: (a) the cone-based and (b) the projection-based models.

SouthW est, W est, N orthW est, N orth, N orthEast, East, SouthEast, and Equal was

introduced in (Frank, 1992).

Frank (1992) particularly proposes two different partition schemes for point-based

objects: (1) the projection-based model and (2) the cone-based model. Given the

reference object (A), the projection-based model uses horizontal (from W to E) and

vertical lines (from S to N) crossing A to slice the space into eight directional relations

(see Figure 2.3(b)). The cone-based model, in turn, slices the space around A into eight

45◦ partitions (see Figure 2.3(a)). The main difference between the aforementioned

direction models is that the projection-based requires exact quantitative values to

capture some directional relations (e.g., N), whereas cone-base is still able to capture

any directional relation even when quantitative values are not exact.

The cardinal direction model, which can be used to abstract directional relations

for extended objects, is proposed in (Skiadopoulos and Koubarakis, 2004). Based

on the Minimum Bounding Rectangle (MBR) of the reference object (A) the space is

partitioned into nine regions connected to the nine directions in the Cardinal Direction

Model (CDM). The primary object (B) may be completely contained in one of the

nine regions, called ‘single tile relation’. However, as the model deals with extended

objects, a primary object may cover more than one region (partially or totally), which

leads to 512 ‘multi-tile’ or conjunctive direction relations with respect to a reference

object. In (Skiadopoulos and Koubarakis, 2004) 218 consistent and JEPD relations out

15

2. QUALITATIVE SPATIAL REPRESENTATION AND REASONING

Eq

N

S

EW

NENW

SESW

A

A A

AA

A

AAA

CDM (A,B) =

NW
A

B N
A

B NE
A

B

W
A

B Eq
A

B E
A

B

SW
A

B S
A

B SE
A

B

reference object (A)

Figure 2.4: A 3x3 matrix is used to represent the binary directional relation(s) between

A and B.

primary object (B1)

Eq

N

S

EW

NENW

SESW

reference object (A)

A

A A

AA

A

AAA

primary object (B2)

CDM (A,B1) =

1

0

0

0

0

0

0

0

0

CDM (A,B2) =

0

0

0

1

0

0

1

1

0

Figure 2.5: B1 {[NW]}A and B2 {[W,NW,N]}A.

of 512 possible direction relations are distinguished. In the CDM, the binary directional

relation(s) between A and B can be represented using a (3 x 3) matrix (see Figure 2.4).

As depicted in Figure 2.5, B1 is in the (single) relation NE with A, and B2 is in a

conjunctive relation [W,NW,N] with A.

Orientation calculi are developed based on intrinsic FOR, where an orientation

relation can be determined based on the properties of a primary object or a reference

object (e.g., an intrinsic front of an object). For example, the Oriented Point Relation

Algebra (OPRAm) (Dylla and Moratz, 2004; Moratz and Ragni, 2008) correlates the

pairs of points with each other based on their relative orientation and location in a

2D-space.

16

2.2 Aspects of Qualitative Spatial Calculi

2.2.3 Distance

Distance is an important and complex aspect of space. Gahegan (1995) points out that

the notion of distance is context-dependent, and humans perception of distances can

be mainly influenced by three factors: (1) the effect of scale, (2) the “attractiveness”

of objects, and (3) the effect of reachability. For instance, what might be regarded as

close at one scale, could be called far away at another scale. For example, the following

sentences are not contradictory:

1. Bremen is near Hanover, but far from Dubai.

2. Bremen is near Dubai, but far from the Moon.

The “attractiveness” of objects is also an important factor regarding our perception

of distances. For example, being near to the shopping center of Bremen is not necessarily

interpreted the same by all people.

Reachability is a crucial factor as well. For example, the street network of a city

might constrain the movements between objects by different means of transportation

(e.g., train, car, or bike).

Distance calculi can be divided into two categories: absolute and relative. In the

absolute distance calculi, distance relations can be derived based on the used absolute

scale of space. In such calculi, distance relations can be abstracted with a linear

Euclidean distance, where the maximum line of Euclidean distance is divided into

several intervals, such as near or far.

In turn, the relative distance calculi can be used to abstract the distance relations by

comparing the relative distance to a given reference distance. For example, Hernández

et al. (1995) proposes a distance model that can be used to abstract distance relations

based on distance intervals and three elements: a reference object, a primary object,

and the Frame Of Reference (FOR). Three operators >,=,< can be used for comparing

distances. In the distance model, a reference object splits its surrounding space into a

number of ordered distance relations Q = {q0, ..., qn}, where q0 is the shortest distance

to a reference object and qn is the longest. The acceptance areas of distance relations

are represented as the monotonic increasing intervals δn: (δ0 ≤ δ1 ≤ ... ≤ δn−1 ≤ δn).

In order to deal with uncertainty, the distance model may have different levels of

granularity, which allows one to move to the next coarser level when no decision can be

17

2. QUALITATIVE SPATIAL REPRESENTATION AND REASONING

vc
cl

cm
fr

vf

cl
md

fr

vc : very close

cl : close

cm : commensurate
md : medium

fr : far

vf : very far

(a)

(b)

Figure 2.6: Two levels of granularity of distance model, adapted from (Hernández et al.,

1995).

made at the present level. Figure 2.6 shows the two variants of the distance model, one

on a coarse level (Figure 2.6(b)), and the other on a finer level (Figure 2.6(a)).

2.2.4 Other Aspects of Qualitative Spatial Calculi

Aside from the aforementioned calculi, other qualitative calculi that combine two calculi

are proposed. For example, the Ternary Point Configuration Calculus (TPCC) that

models the relative position between two objects as points (a reference object and a

primary object) is presented in (Moratz et al., 2003). In this approach, the qualitative

distance and direction relations are combined to represent the relative position (e.g.,

front-close) of a primary object with respect to a reference object.

2.3 Qualitative Constraint Networks

Spatial knowledge about qualitative spatial relations and objects can be given in the form

of constraints. Generally speaking, such constraints can be formalized as a Constraint

Satisfaction Problem (CSP), where a CSP contains a set of domain objects (or variables)

O and k-ary spatial relations (k-ary constraints). The CSP can be formalized as a

labelled graph: the-so-called Qualitative Constraint Network (QCN), QCN=(O,C),

where O is a set of domain objects, and C is a set of constraints over O. A formal

definition of a QCN is given as follows:

18

2.4 Conceptual Neighbourhood-Based Reasoning

Definition 3 (Qualitative Constraint Network). A Qualitative Constraint Network

(QCN) over a qualitative calculus ζ is a pair (O,C) where:

• O = {o1, . . . , on} is a set of domain objects,

• C : O ×O → Rζ is a function mapping each pair of objects from O to a relation

of ζ, where C(oi, oj) = Rij ∈ Rζ such that relation Rij has to hold for the values

assigned to oi and oj,

• for all i ≥ 1, j ≤ n, C(oi, oi) = id and C(oi, oj) = C(oj , oi)
�, where id is the

identity relation of ζ.

Representing a set of objects and their spatial relations as a QCN allows for applying

qualitative spatial reasoning operations to several applications. Such techniques can be

used to forward-prune the search space of spatial databases, thus speeding-up query

answering. In addition, such representation allows methods such as algebraic closure

(Mackworth, 1977) to check the consistency of QCNs.

2.4 Conceptual Neighbourhood-Based Reasoning

Freksa (1991, 1992) proposes a conceptual neighborhood-based reasoning approach

that is based on Allen’s interval algebra (Allen, 1983). According to Freksa (1991),

“Two relations between pairs of events are conceptual neighbors, if they can be directly

transformed into one another by continuously deforming (i.e., shortening, lengthening,

moving) the events in a topological sense”. For instance, assume we have two cars X

and Y in a race.

Then we can distinguish several temporal relations between X and Y during the

race, such as at times t0 (X < Y), t2 (X = Y), and t3 (X > Y). In this case, the relations

(X < Y) and (X = Y) are conceptually neighbored because it is possible to directly and

continuously move from t0 to t1. However, since it is not possible to continuously move

from t0 to t2, (X < Y) and (X > Y) are not conceptually neighbored. The concept

of events-neighborhood has been adapted to spatial entities by (Dylla and Wallgrün,

2007), where the authors represent the spatial relations of qualitative spatial calculi as

Conceptual Neighborhood Graphs (CNGs).

19

2. QUALITATIVE SPATIAL REPRESENTATION AND REASONING

2.5 Consistency and Relaxations

Due to imprecise data coming from sensors, qualitative spatial relations which are

abstracted from sensor data may lead to inconsistent QCNs. In this case, one needs to

apply algorithms such as algebraic closure (van Beek, 1992) to check the consistency of

QCNs. Two approaches are presented in (Egenhofer, 1994a; Wallgrün et al., 2010), and

use algebraic closure to check whether the constraints of QCNs of a spatial query are

free of contradiction (or conflict). One of the approaches to cope with inconsistency

is to relax the constraints of QCNs. For example, Dylla and Wallgrün (2007) propose

a relaxation function to obtain coarse relations from the base relations of original

QCNs. This function is based on a conceptual neighborhood structure of QCNs called

Conceptual Neighborhood Graphs (CNGs). Accordingly, a distance function that finds

the minimal relaxations of QCNs based on CNGs is proposed. Such an approach could

be very helpful in real-life applications, such as, in GIS, where spatial queries could be

inconsistent, and thus the relaxation can be applied to find the conceptually neighboring

spatial queries.

2.6 Summary

In the context of Qualitative Spatial representation and Reasoning (QSR), we have

first described qualitative spatial representations, qualitative spatial calculi, and their

operations in Section 2.1. We have focused on reviewing the aspects of qualitative spatial

calculi that are more related to this dissertation. We have mainly explained the topology,

distance, and direction calculi in Section 2.2. Qualitative constraint networks have been

elaborated in Section 2.3. Lastly, we have described conceptual neighborhood-based

reasoning (Section 2.4) and consistency and relaxations (Section 2.5).

20

Chapter 3
Spatial Information Management and

Systems

“Geographic Information Systems (GISs) are computer-based information systems that

are used to capture, model, store, retrieve, share, manipulate, analyze, and present

geographically referenced data” (Worboys and Duckham, 2004). GISs usually rely on

spatial database management systems to manage huge amounts of spatial data which

are stored in spatial databases (see Section 3.1).

In the context of Qualitative Spatial representation and Reasoning (QSR), cluster-

ing techniques are typically used with spatial database to reduce qualitative spatial

information that are stored within them (see Section 3.2).

In order to enable an intuitive and efficient interaction between GISs and their users,

the techniques of QSR are integrated with GISs (see Section 3.3).

3.1 Spatial Data-Base Management Systems

At the heart of every geographic information system, Spatial Data-Base Management

Systems (SDBMSs) are usually used to manage and retrieve huge amounts of geographical

information which are stored in spatial databases. In order to enable querying the spatial

databases, queries need to be supported by SDBMSs (see Section 3.1.1). SDBMSs do

not only use appropriate data-structures and spatial data types for storing spatial data

efficiently, but they also apply indexing methods (see Section 3.1.2) to efficiently handle

spatial queries.

21

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

3.1.1 Spatial Queries

Traditional Data-Base Management Systems (DBMSs) are typically developed to handle

non-spatial queries such as: “In the employee database table, list the names of all

employees who have a salary >10000 dollar”. To answer this query, DBMSs use

relational algebra operators such as projection (e.g., salary >10000). To accelerate

processing such queries, DBMSs usually apply B-trees and hash-based indexing on the

numeric and non-numeric attributes of database tables.

However, in order to be able to process spatial queries such as, “Find all cities in

North Rhine-Westphalia”, DBMSs must have three additional elements: (1) a spatial

data model, (2) a spatial query language (e.g., SQL3), and (3) a spatial indexing

method such as R-trees, which are usually applied to the spatial data types attributed

to database tables. The three elements can be viewed as a spatial extension to DBMSs

which inherits algebraic set operations (e.g., union or intersection). Furthermore, the

spatial extension does not change the functionality of the original DBMS. In this case,

DBMSs can be called Spatial DBMSs (SDBMSs).

3.1.1.1 Spatial Data Models

A spatial data model aims to give a high level description of spatial data. Güting

(1994) points out that a successful spatial data model should meet three properties: (1)

Spatial Data Types (SDTs) (e.g., lines, points or polygons) should store spatial data

or geometric entities, (2) be simple data structures, and (3) be spatial operators (e.g,

inside(park, Bremen), the whole part of a park is inside Bremen) that can be performed

over SDTs.

Several approaches have been proposed to model and manage spatial data, and

they can be divided into two categories (Manolopoulos et al., 2005): (1) GIS-centric

and (2) DBMS-centric. In the first category, the approaches are proposed to deal with

raster data or map layers. In (Johnston and Redlands, 2004; Tomlin, 2012), a map is

represented as 2D grids or cells, where each grid has a property (e.g., temperature).

In order to have more than one property for the grids of a map, the map needs to be

duplicated into several map layers, where the number of layers equals the number of

properties, and the grids of each layer have a distinct property. Additionally, a set

22

3.1 Spatial Data-Base Management Systems

of spatial operations such as fusion, can be applied on a map which will lead to the

generation of a new map.

In the DBMS-centric category, many approaches have been proposed to handle

vector-based data (e.g., geometries). Güting and Schneider (1995) propose the RObust

Spatial Extension (ROSE) algebra, a general independent data model which provides

abstractions for points, lines, and regions. ROSE provides spatial operations over two

sets (GEO = {points, lines, regions}, EXT = {lines, regions}). Traditional algebraic
operations (e.g., intersection) as well as some topological relations (e.g., inside), can be

performed over the sets.

Egenhofer and Franzosa (1991) propose the four-intersection model that can be

used to compute the binary topological relations among the pairs of simple regions

(without holes). In this model, the interiors and boundaries of the interested region

pairs are used to capture the topological relations. Later, the model was extended

to the nine-intersection model (Egenhofer and Franzosa, 1995), in which the interiors,

boundaries, and exteriors were used to capture the topological relations of the intersected

regions. Some other relational approaches, such as (Güting, 1988), consider storing

spatial data in relations, where the data is stored as atomic values, and satisfies the

First Normal Form (1NF). However, the mentioned works did not address the spatial

data modeling issues.

In order to address the spatial data modeling issues, object-oriented models have

been proposed (Cheng and Gadia, 1994; Clementini and Di Felice, 1993; Günther and

Riekert, 1993). The models satisfy the 1NF and inherit the properties and capabilities

of object-oriented models, in which spatial data types, data structures, and spatial

operators are encapsulated in a class.

The Geometry Object Model (GOM)1 has also been developed (International Organi-

zation for Standardization (ISO) (ISO/IEC, 2002) and (Open Geospatial Consortium

(OGC) Inc., 2011)) as a standard object relational model.

The model is already used by several spatial database vendors (e.g., ORACLE2) and

open source suppliers (e.g., PostgreSQL3). It provides spatial operators for most spatial

data types and supports R-tree spatial indexing. As shown in Figure 3.1, the model is

1In the literature it is also called OGIS spatial data model.
2ORACLE: www.oracle.com/
3PostgreSQL: www.postgresql.org/

23

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

Geometry
ReferenceSystems::

SpatialReferenceSystem

Point Curve Surface GeometryCollection

MultiSurface MultiCurve MultiPoint

MultiPolygon MultiLineString

LineString

Line LinearRing

Polygon PolyhedralSurface

ReferenceSystems::

MeasureReferenceSystem

TINTriangle

+spatialRS

1
+mesureRS

0..1

+element0..*

+element

0..*

+v ertex
2..*

+ring

1..*

+patch1..*

+patch 1..*

Figure 3.1: The geometry object model, from (Open Geospatial Consortium (OGC) Inc.,

2011).

described by the Unified Model Language (UML) and has a super Geometry class with

subclasses: Point, Curve, Surface, and GeometryCollection. The model also describes

the relationships between the subclasses, and incorporates a spatial reference system

to determine the position (space coordinate) of each geometric object. Aside from

the traditional algebraic set operators, the GOM provides a rich set of spatial operators

over geometric objects. Table 3.1 lists three categories of spatial operations: (1) basic

operators, (2) topological set operators, and (3) spatial analysis operators. The first

category contains general and unary operations to get information (e.g., features) about

a geometric object. The second category represents the eight topological predicates that

are developed based on the Dimensionally Extended 9-Intersection Model (DE-9IM)

(Clementini et al., 1993). The last category contains the algebraic set, distance-based,

and convex hull operators. In this category, convex hull and buffer are unary operators.

In this dissertation, we will use the GOM, as it is a stable and extendable model.

24

3.1 Spatial Data-Base Management Systems

Table 3.1: Three kinds of spatial operations are provided: (1) basic operators, (2) topo-

logical set operators, and (3) spatial analysis operators, from (Open Geospatial Consortium

(OGC) Inc., 2011).

Basic Operators

SRID () Returns the Spatial Reference System ID for this geometric object

Envelope () The minimum bounding box for this Geometry, returned as a Geometry

IsEmpty () Returns true if this geometric object is the empty Geometry

IsSimple () Returns true if this geometric object has no anomalous geometric points

IsMeasured () Returns true if this geometric object has m coordinate values

Boundary () Returns the closure of the combinatorial boundary of this geometric object

Topological/ Set Operators

Equals Returns true if this geometric object is spatially equal to another Geometry

Disjoint Returns true if this geometric object is spatially disjoint from another

Geometry

Intersects Returns true if this geometric object spatially intersects another Geometry

Touches Returns true if this geometric object spatially touches another Geometry

Crosses Returns true if this geometric object spatially crosses another Geometry

Within Returns true if this geometric object is spatially within another Geometry

Contains Returns true if this geometric object spatially contains another Geometry

Overlaps Returns true if this geometric object spatially overlaps another Geometry

Spatial Analysis Operators

Distance Returns the shortest distance between any two Points in the two geometric

objects as calculated in the spatial reference system of this geometric object

Buffer Returns a geometric object that represents all Points whose distance from

this geometric object is less than or equal to distance

ConvexHull Returns a geometric object that represents the convex hull of this geometric

object

Intersection Returns a geometric object that represents the Point set intersection of this

geometric object with another Geometry

Union Returns a geometric object that represents the Point set union of this

geometric object with another Geometry

Difference Returns a geometric object that represents the Point set difference of this

geometric object with another Geometry

SymDifference Returns a geometric object that represents the Point set symmetric difference

of this geometric object with another Geometry

25

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

3.1.1.2 Spatial Query Languages

A Structured Query Language (SQL) is a high-level declarative language that allows its

end-users to query DBMSs without knowledge about how to execute and optimize a

query. SQL is based on relation set algebra operators, including select, project, union,

cross-product, difference, and intersection. Additionally, SQL provides three query

languages: (1) a data definition language (e.g., for creating a relation of schema), (2) a

data manipulation language (e.g., for inserting rows into a database table), and (3) a

data control language (e.g., for granting permissions on relations of database schema).

SQL was designed to support conventional DBMSs but not spatial ones. Hence, SQL

needs to be extended in order to support spatial data.

Several approaches have been proposed to extend the capabilities of SQL so that

it can deal with spatial data in spatial databases. For example, Query-By-Example

(Zloof, 1977) and Query-By-Pictorial-Example (Chang and Fu, 1980) use SQL, where

spatial data such as the centroids of geometric objects are stored as floating point values

while other spatial data is stored as strings. However, in these approaches, the users are

required to be completely aware of the implementations of spatial data. Additionally,

several spatial operations such as the topological operations inside and overlap cannot

be performed since they require representing and storing the geometries (or at least

their approximations such as the MBRs) of spatial objects.

In (Aref and Samet, 1991; Roussopoulos and Leifker, 1985; Samet and Aref, 1995),

SQL has been extended to perform spatial operations and manipulate spatial data in

spatial databases. In the proposed extensions, the structure of SQL is preserved, with

the addition of spatial data types and operations. In (Egenhofer, 1994b), a spatial

SQL has been proposed as a comprehensive spatial extension of SQL. In particular, the

spatial SQL preserves the original SQL structure and concepts, incorporates spatial

relations and operations, and involves spatial data types. The spatial SQL consists of

two languages: (1) a spatial query language that allows users to submit spatial queries

to retrieve spatial information and (2) a presentation language that allows users to

specify how to display the retrieved spatial information (e.g., presenting results on a

map).

Indeed there is a direct connection between spatial data models and the spatial

query languages. Without a complete and practical spatial data model it is not possible

26

3.1 Spatial Data-Base Management Systems

to provide an intuitive and efficient spatial query language. Thus, the Geometry Object

Model (GOM) has been extended to SQL and termed OGIS/SQL (Open Geospatial

Consortium (OGC) Inc., 2010), where the users can define spatial data types and perform

spatial operations. Again, OGIS/SQL preserves the structure and the capabilities of

the original SQL. Therefore, spatial, non-spatial queries, or a combination of them can

be performed using OGIS/SQL. Güting (1994) and Rigaux et al. (2002) list out several

kinds of spatial queries that can be performed by OGIS/SQL. Table 3.2 shows the types

of spatial queries, spatial operations, spatial queries, and spatial indexing methods that

can be applied to the spatial data types.

In this dissertation, we will use OGISs/SQL due to its capability of providing a rich

set of functionalities to interact with SDBMSs.

3.1.2 Spatial Indexing

Indexing is a data-structure designed to accelerate the retrieval of (spatial) data in

(S)DBMSs. For instance, spatial indexing aims at speeding-up the retrieval of spatial

data. In this section, three types of commonly used indexing in (S)DBMSs are described:

B-trees (see Section 3.1.2.1), R-trees (see Section 3.1.2.2), and Hashing (see Section

3.1.2.3). Afterwards, the applications of indexing for spatial databases are explained

(see Section 3.1.3).

3.1.2.1 B-trees

B-trees are widely and commonly used data structures that aim to provide direct access

methods on secondary storage devices (Comer, 1979). The main idea of a B-tree is

to keep entities sorted in a balanced tree structure, even when the number of indexed

entities grows and shrinks.

A B-tree is a balanced search tree and its worst case height is O(logn). As with

any tree data structure, B-tree of order P has three types of nodes: root, leaf, and

internal. Every internal node, has between M = P − 1 and m children, where M is the

maximum number of nodes and m ≤ �M/2� is the minimum number of nodes (Comer,

1979). Furthermore, every internal node is in the form of:

{Ptr1, <K1, Pd1>, Ptr2, <K2, Pd2>, ..., <Kz−1, Pdz−1>, Ptrz}, where Ki is a

key, Ptri is a tree (or child) pointer, Pdi is a data file pointer, and z is the number of

stored keys in the node. In particular, each internal node (Comer, 1979):

27

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

Table 3.2: The types of spatial queries, the possible spatial operations, spatial queries,

and their spatial indexing methods.

Type of Query Operation/Predicate Query Indexing

Containment Contains or Covers Find each object in the map that com-

pletely contains a search object O

R-trees

Region/Window Intersects Find each object in the map that in-

tersects a search object O or window

W

R-trees

Line Intersection Intersects Find each object in the map that inter-

sects a search line L

R-trees

Enclosure CoveredBy or Inside Find all objects in the map that are

contained by a given object O or window

W

R-trees

Clipping Intersects or Cov-

eredBy or Inside

Extract all the portions of objects in

the map that are covered by, inside or

intersect a search object O or window

W

R-trees

Spatial Join

(G,U)

Topological predi-

cates such Inter-

sects

Given two sets of geometric objects G

and U , find object pairs from G and U

so that they satisfy a join predicate(s)

B-trees

and/or R-

trees and/or

Hashing

Adjacency Meets Find all objects that are adjacent to a

search object O or window W

R-trees

Metric/Spatial

Range

Distance Find the minimum distance between ob-

jects O and O’

R-trees

Nearest Neigh-

bor

Distance and Buffer Find the closest objects to a search ob-

ject O

R-trees

Merge Union Return the geometric union of two ob-

jects O and O

R-trees

28

3.1 Spatial Data-Base Management Systems

4

2

1

6

5 73 8

Tree node pointer

Data file pointer

5

3

1

7

5 732 4 6

(a)

(b)

Internal node

Leaf node

Internal node

Leaf nodes

A B-tree of order P=3

A B-tree of order P=3
+

Figure 3.2: Example of B-tree and B+-tree of order P = 3. The values are inserted in the

order {1, 2, 3, 4, 5, 6, 7, 8}.

1. keeps keys strictly in ascending order(K1<K2, ..., Kz−1<Kz).

2. has a key Ki associated with a pointer Pdi to the data file block that contains

the key.

3. has a key Ki associated with leftmost Ptri and rightmost Ptri+1 tree (children)

pointers, which implies that each node (except leaf nodes) contains z + 1 pointers

to children nodes.

4. has a Ptri ranges that include all the keys of its corresponding subtree that are

less than or equal to Ki. In contrast, Ptri+1 ranges include all the keys of its

corresponding sub-tree that are greater than Ki.

In turn, each leaf node is in the form {<K1, Pd1>, ..., <Kz−1, Pdz−1>}. From the

form of the leaf nodes, we can recognize that they are the same as internal nodes, but

they do not have pointers to children nodes. In addition, all of the leaf nodes are located

at the same level. The root node, on the other hand may contain one or more keys, but

29

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

always have pointers to children nodes. In summary, the keys of the successor nodes are

always ordered by the keys of the predecessor nodes, which leads to logarithmic times

search, insert, and delete. A B-tree of order P = 3 is depicted in Figure 3.2(a).

Search: in order to find a specific key, the search operation of a B-tree traverses

the keys of each internal node. It uses a top-down paradigm from the root of the tree

arriving to the leaves. However, the keys are ordered and there is usually a possibility

for pruning some sub-tree branches.

Insert: B-tree must be kept balanced. Hence, when a new key is inserted into the

data file, the insert operation of a B-tree first checks the location of its index. Then it

searches for an empty space in the B-tree to place the key. If a free space is found, then

the key is simply inserted and there is no need to recursively reconstruct a B-tree (or

sub-branches of it). However, if a new key causes an overflow in an internal node, then

the node is partitioned equally into two nodes by a median (or pivot) key. Afterwards, a

new internal node that contains the median key, and points to the two sets of partitioned

nodes is created.

Delete: the delete operation is very similar to the insert function. After deleting a

key from the index of a B-tree, the number of keys of affected internal nodes are checked,

and finally a merge operation takes place if z<m. Otherwise, no action is taken.

B+-tree: is the most common variant of a B-tree, and is implemented in most

current SDBMSs (e.g., PostgreSQL1). B+-trees differ from B-trees in that, (1) each

internal node contains keys and tree pointers, but no data file pointers and (2) in

addition to a tree pointer to the next leaf node, leaf nodes of the tree store all the keys

associated with their data file pointers. Therefore, the structure of internal and leaf

nodes of B+-trees differs from the ones of B-trees. In a B+-tree, each internal node is

in the form of {Ptr1,K1, P tr2, ..., P trz−1,Kz−1, P trz}. Internal nodes do not need to

store data file pointers and they are capable of packing more entries. Hence, B+-trees

can have lower levels than B-trees, leading faster searches of B+trees. Each leaf node is

in the form

{<K1, Pd1>,<K2, Pd2>, ..., <Kz−1, Pdz−1>,PtrNEXT }. In addition, each leaf node

contains a tree pointer to the next leaf node, which allows traversing leaf nodes as a

linked-list. Moreover, some keys of internal nodes are duplicated and stored in leaf

nodes to guide the search. A B+-tree of order P = 3 is depicted in Figure 3.2(b). The

1PostgreSQL: http://www.postgresql.org/

30

3.1 Spatial Data-Base Management Systems

search, insert, and delete operations of B+-trees are quite similar to the ones of B-trees,

although the keys and their duplications are arranged differently.

We will use B+-trees indexing in this dissertation due to their abilities of faster

searches.

3.1.2.2 R-trees

R-trees (Guttman, 1983) have been proposed as an extension to B-trees to support

multi-dimensional data. R-trees support spatial access methods by indexing multi-

dimensional data (e.g., polygons or geo-coordinates), and are commonly implemented in

spatial databases of GISs. In general, constructing R-tree indices results in computing

the Minimum Bounding Rectangles (MBRs) of objects, which are then clustered into

groups in the next higher level of the tree, where the MBRs of all the objects contained

are calculated.

Formally, the leaves of R-trees reside on the same level and are structured as pairs

(ML, OL), where ML is the MBR of a spatial object OL. In the next higher level, the

parent or internal nodes of R-trees are formulated as pairs (MC, CP), where MC is the

MBR which contains all the MBRs of the children and CP is a child pointer. For instance,

R0 in Figure 3.3 is a root node and points to the MBRs of three nodes R1, R2, and R3,

while these nodes point to the MBRs of leaf nodes. Moreover, any parent node must have

between m and M children, where M is the maximum number of nodes (or objects

in the leaf-level) per MBR and m ≤ �M/2� is the minimum number of nodes per MBR.

In R-trees, splitting the space into MBRs is a critical and crucial method. Particularly,

the split function attempts to divide the space into MBRs to minimize the overlapping

between MBRs, so that the bounding rectangle of the whole space can be minimized as

much as possible. In order to guarantee the optimal division of space, the split function

would have to check every pair of objects, which requires an exponential number of

steps. Hence suboptimal linear and quadratic variants of the split function are often

used to split the space in a feasible time-frame.

R-trees provide efficient search, insert, and delete operations, which allows one

to easily update and integrate incoming data into the database. Search and insert

operations are described as follows:

Search : similar to B-trees, R-trees start at the root of the index (T) and traverse

all of the related nodes, up to leaves, in logarithmic time. Given a spatial query Q (e.g.,

31

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

A1

A0

B1

B0

C 0

C1

R0

R2

R3

R1

A2

R 0

C1C0 A1A0 A2 B1B0

R 2 R 3R 1

A0

C1

C 0

A2AA

A1

A0

B0

B1

Root

Nodes

Leafs

MBRs

Figure 3.3: An example of an R-tree for 2D geometric objects.

a region query), the search operation aims at finding all the MBRs of leaves that intersect

Q. If a node of T is an internal node, R-trees search every CP of MC that overlaps Q.

Once the leaves are reached, every OL is retrieved if its ML intersects Q.

Insert: the insertion (and similarly deletion) of new object NewObj requires locating

a leaf starting from T to insert NewObj. If there is a leaf that has an empty space,

NewObj is inserted into it. Otherwise, a split operation takes place and all MBRs changes

are propagated recursively (upwards-manner).

R+-trees: are proposed as a modified version of R-trees (Sellis et al., 1987). Unlike

R-trees, R+-trees prevent intersecting the MBRs at the same level of a tree that may

require including an inserted object1 in more than one MBR. In other words, although

each internal node can only be visited once, the same objects can be redundant in

different internal nodes, which may lead to an increase in the size and number of nodes.

R*-trees: are also proposed as a modified and very well received and accepted

version of R-trees (Beckmann et al., 1990). R*-trees have the advantage that they have

no limitation on the number of nodes. In addition, they attempt to minimize the unused

spaces between the MBRs by reinserting objects in the appropriate MBRs. R*-trees also

attempt to reduce the intersections between MBRs.

3.1.2.3 Hashing

Hash tables have successfully been adapted and applied to databases to allow direct

access to stored data. In databases, hash tables are known as hash files. These hash files

map records (tuples) of a data file of database into buckets. Each bucket is represented

1An object is identified by a unique id.

32

3.1 Spatial Data-Base Management Systems

as a linked-list that contains a number of records. If a hash file has M buckets, hashing

is done by a hash function h that converts the value of a record r into a fixed-size

number to map r to the bucket location of a hash file. One common and simple hash

function is h(r) = K mod M . However, since the number of possible hash keys is usually

much larger than M , several keys could be mapped to the same bucket, which leads to

a so-called collision. Collisions in databases can be handled by simply inserting r to

the first empty record in the bucket. When the bucket is full, new mapped keys to the

bucket cause overflow and can be handled by chaining, in which case the overflowed

keys are inserted into a new bucket that is connected via a pointer to the old one. This

type of hashing is known as a static hashing because it is bounded by a fixed number of

M buckets.

The other common type of hashing is called dynamic hashing. Linear hashing is

one of the most popular dynamic hashing methods, in which the size of hash file is

able to dynamically grow and shrink with its database. Linear hashing starts to map

records into buckets using h(r) = K mod M . When a bucket records an overflow, the

size of the hash file is doubled to 2M , and the records of the hash file are distributed

through 2M buckets using the new hashing function h′(r) = K mod 2M . Therefore,

linear hashing is suitable for databases that contain a large amounts of data.

Accordingly we will use and apply linear hashing throughout, this dissertation.

3.1.3 Indexing Applications for Spatial Databases

Recently, several indexing approaches have been proposed to cope with spatial query

processing. In this section, we focus on the proposed hash-based indexing approaches

to handle spatial queries, since hashing is the main focus of this dissertation.

B-trees:

B+-tree indexing that uses space-filling curves such as the Peano curve (or Z-curve) and

the Hilbert curve (Faloutsos and Roseman, 1989) to handle spatial queries are presented

in (Faloutsos and Rong, 1991; Jensen et al., 2004b; Yiu et al., 2008). Given objects in

2D-space, the representation of their locations can be linearized by using space-filling

curves. Accordingly, the B+-tree index is constructed using the linearized values (e.g.,

the z-values of Z-curve), and the linearized values can be searched by the B+-tree search

operation.

33

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

R-trees:

R-trees are commonly used to handle a range query1 by finding all objects whose MBRs

overlap a range query (Guttman, 1983).

Papadias et al. (1995) propose an R-tree-based framework to handle the topological

relations (e.g., inside or covers) of spatial queries. The framework treats the indexed

objects of an R-tree as primary objects and the query object as a reference object.

Subsequently, it performs the topological predicates to derive the topological relationships

between a reference object and primary objects.

An approach that employs R-trees to handle the directional relations (e.g., south) of

spatial queries is proposed in (Papadias et al., 1994). First, it applies a pruning strategy

to exclude all the MBRs of the R-tree that cannot satisfy the directional relation of a

query. Second, the remaining MBRs of the R-tree are tested by using computational

geometry methods.

Hashing:

Belussi et al. propose a hashing approach which allows direct access to the cells of a

database grid (Belussi et al., 2002). In particular, a database is divided into cells of

a grid, whereupon R*-trees are applied to cluster the data in each cell. Each of these

cells is given a binary and unique hash key to avoid the necessity to search complete

paths of the tree structure.

Lo et al. propose Spatial Hash Joins (SHJ) (Lo and Ravishankar, 1996), which

consist of two phases: a partition phase and a join phase. In the partition phase,

database objects are divided into separate datasets using a spatial partitioning schema.

This results in so-called hash buckets, where each object is mapped to its corresponding

bucket. Each bucket is identified by its extent, i.e., the rectangle of the related partition.

In the second phase, buckets which share the same extent are joined.

In (Mamoulis and Papadias, 2003), Slot Index Spatial Join (SISJ) is proposed as

an extension to SHJs. The key idea is to join indexed spatial data of R-trees with

non-indexed spatial data. The SISJ splits the entries of the R-trees into slots and hashes,

where each slot has a unique ID. In addition, each slot has identifiers of nodes pointing

to their Maximum Bounding Rectangles (MBRs). Non-indexed data is also divided into

buckets as they have a similar structure as the slots. In the final step, each bucket

is joined with the corresponding nodes in the slot of the R-trees. We note that the

1Sometimes it is called a window or rectangle query.

34

3.2 Clustering

proposed approaches apply join operations and computational geometry techniques to

answer spatial queries.

In the area of biomedical research, hashing has been applied to index spatial databases

containing the biomedical data, such as the topological structure of chemical molecule.

A hash table data-structure has been used to index graphs based on the canonical

code (Williams et al., 2007). The canonical code is a string representation of adjacency

matrices of a graph (or sub-graph). The canonical code of each sub-graph is then used

as the key of the hash table to speed-up the process of isomorphic lookup. However,

the authors consider only graph isomorphism with respect to connectivity rather than

the labelled variables and edges of subgraphs of spatial databases.

In (Pal and Rao, 2011; Zou et al., 2008) the molecular graph of a spatial database is

decomposed into sequences of bit-strings. By means of these bit-strings the connectivity

structure of each sequence is captured. In particular, the connectivity structure of each

sequence is mapped into true (1) and false (0) values, where 1 denotes that two vertices

are connected in a sequence, and 0 denotes that they are not connected. Subsequently,

the mapped values are used as a hash key to index all sequences of the decomposed graph.

This other similar approaches in biomedical research only consider the connectivity

between the nodes of the graph database, but not the location information (e.g., the

geographical position (spatial location) of spatial objects).

3.2 Clustering

Clustering is a sub-field of data mining and aims at grouping similar (spatial) objects

that have similar features into classes. Accordingly, a cluster represents a set of (spatial)

objects that are similar to each other, and dissimilar to the objects of other clusters.

Distances are commonly used to measure similarity (or dissimilarity) among the

pairs of objects. Minkowski distance is a general measurement on Euclidean space that

calculates distance between a set of pairs of points (Han, 2005).

The Minkowski distance is defined in equation 3.1, where r>0 is the order of

the Minkowski metric and i = (oi1 , oi2 ,· · · , oin) and j = (oj1 , oj2 ,· · · , ojn) are two

n-dimensional data objects.

dr(i, j) =
r

√
(|oi1 − oj1 |r + |oi2 − oj2 |r + · · ·+ |oin − ojn |r) (3.1)

35

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

Note that the Manhattan distance is a special case of Minkowski distance, where

r=1:

d1(i, j) = |oi1 − oj1 |+ |oi2 − oj2 |+ · · ·+ |oin − ojn | (3.2)

Similarly, the Euclidean distance is a special case of Minkowski distance, where r=2:

d2(i, j) =
√

(|oi1 − oj1 |2 + |oi2 − oj2 |2 + · · ·+ |oin − ojn |2) (3.3)

The Euclidean distance has the following properties (Han, 2005): d2(i, j) ≥ 0, d2(i, i)

= 0, d2(i, j) = d2(j, i), d2(i, j) ≤ d2(i, k) + d2(k, j).

According to (Han, 2005; Manolopoulos et al., 2003) clustering methods fall into eight

categories: (1) density-based, (2) grid-based, (3) partitioning, (4) hierarchical, (5) model-

based, (6) high dimensional, (7) constraint-based, and (8) hybrid (e.g., hierarchical and

partition).

Table 3.3 shows a comparison of some of the clustering methods in different categories.

As shown in Table 3.3, only the algorithms in the density-based category guarantee a

global optimum in terms of clustered data with respect to Euclidean distance. It also

indicates that the algorithms in the grid-based category have the fastest processing

speeds. Finally, hybrid hierarchical and partition, as well as grid-based approaches have

already been applied for clustering qualitative data (Fogliaroni et al., 2011). Hence, this

section will focus on the category 1, 2, and 8.

3.2.1 Grid-Based Clustering

In general, a basic grid-based clustering approach divides 2D space into a finite number

of rectangular units (Warnekar and Krishna, 1979), where each unit contains at least

one object (or point). This approach has the advantage of providing a fast processing,

since the speed of clustering process is independent of the number of objects and only

depends on the number of units. However, this approach suffers from two considerable

weaknesses in terms of the quality of clustered data (Han, 2005): (1) the boundaries

of clusters can be either horizontal or vertical and (2) there is no way to detect the

diagonal boundary that affects the shape of the cluster, and thus, parts of clusters could

be missing and considered in other units.

36

3.2 Clustering

Table 3.3: Comparison between eight categories of clustering methods.

Id Type Cluster algorithm Complexity [time] Global

optima

Requires

of

clusters

1 Density-based DBSCAN (Ester

et al., 1996)

O(nlog(n)) yes no

1 Density-based OPTICS (Ankerst

et al., 1999)

O(nlog(n)) yes no

2 Grid-based Basic approach

(Warnekar and

Krishna, 1979)

O(d), d is the # of

grids

no yes

2 Grid-based WaveCluster (Sheik-

holeslami et al.,

2000)

O(n) no no

3 Partitioning K-means (Babu and

Murty, 1993)

O(nkt), n is the # of

objects, k is the # of

clusters, and t is the

of iterations

no yes

4 Hierarchical BIRCH (Zhang et al.,

1996)

O(n) no no

5 Model-based Expectation-

Maximization (EM)

(McLachlan and

Krishnan, 1997)

O(n) no no

6 High-

Dimensional

CLIQUE (Agrawal

et al., 1998)

O(n) no no

7 Constraint-

based

CLTree (Liu et al.,

2000)

O(r), r is the # of

regions

no no

8 Hierarchical and

Partition

R-tree (Guttman,

1983)

O(2n), n is the # of

regions

no yes

37

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

However, other grid-based clustering methods such as a Wavelet-based Clustering

(WaveCluster) (Sheikholeslami et al., 2000) and a STatistical INformation Grid (STING)

(Wang et al., 1997) analyze the distribution of objects and then split the space into

units accordingly. Although these methods are considered among the best grid-based

clustering methods of their category, they have not been applied to cluster qualitative

data so far.

3.2.2 Density-Based Clustering

Density-based clustering methods have been developed to detect the arbitrary shapes

of dense points or regions. Empirical analysis studies indicate that density-based

clustering methods are very practical methods for clustering dense regions based on

metric criteria, i.e., Euclidian distance (Ester et al., 1996). Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), and Ordering

Points to identify the Clustering Structure (OPTICS) (Ankerst et al., 1999) are the

most popular methods in this category. In this section, we only consider DBSCAN.

DBSCAN is a well known clustering algorithm that has been successfully applied to

cluster GIS data. DBSCAN separates the areas of high and low density. It uses

two parameters: the cluster radius that the points (or polygons) need to lie within

(Eps), and the minimum number of points (MinPts) within a cluster. For clustering

purposes, DBSCAN differentiates five types of points; (1) core (Definition 4), (2) border

(Definition 5), (3) noise (Definition 6), (4) density-reachable (Definition 7), and (5)

density-connected (Definition 8). Following are the definitions of the five points as seen

in (Han, 2005):

Definition 4 (Core point). A point within Eps is called a core point if and only if the

number of neighborhood objects of this point is greater than or equal MinPts.

Definition 5 (Border point). A point is called border point if and only if the number

of neighborhood objects of this point less than MinPts.

Definition 6 (Noise point). A point is called noise point when it does not belong to

any cluster.

Figure 3.4 outlines the core, border, and noise points of DBSCAN.

38

3.2 Clustering

Noise point (or Outlier)

 Core point

Border point

Eps = 1 m

MinPts = 3

Pq

O

Figure 3.4: An example: DBSCAN.

Definition 7 (Density-reachable point). A point p is called density-reachable if the

distance between p and other point q dist (p, q) is less than Eps or if there is a sequence

of points (p1,..., pn), p0 = q, pn = p such that pi + 1 can be directly reached from pi.

Definition 8 (Density-connected point). A point p is density-connected to a point q if p

and q are density-reachable via intermediate object O with respect to Eps and MinPts.

Based on the previous definitions of density of points, DBSCAN attempts to find

the maximum number of density-connected points. Figure 3.4 shows that points p and

q are density-connected, and thus they can be included in the same cluster1.

In the scope of this dissertation, we will use DBSCAN to cluster qualitative data, as

it guarantees the global optimum via the reachability concept, and there is no need to

specify the number of clusters in advance.

3.2.3 Approaches for Clustering Qualitative Data

A lot of research has been undertaken to cluster quantitative data but very little work

deals with qualitative data.

R-trees and their modifications have been applied to cluster qualitative data. In

(Fogliaroni, 2012; Manolopoulos et al., 2003; Papadias and Manolopoulos, 1997) the

Qualitative Spatial Relations (QSRs) between pairs of objects within each MBR have been

computed. However, R-trees have two major weaknesses regarding clustering qualitative

data:

1We note that DBSCAN merges these two clusters into a single cluster after detecting the density-

reachable point.

39

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

1. MBRs can be duplicated, which requires the duplication of QSRs between pairs of

nodes (leaves) in several MBRs.

2. By using a number of objects that need to be clustered in advance, R-trees can

guarantee only a local optimum with respect to the (Euclidean) distance between

objects (Leutenegger et al., 1997). R*-trees aims to split the number of nodes in

a better way, rather than improve the quality of clustered objects.

Fogliaroni et al. (2011) apply a basic grid-based clustering approach to split 2D space

into a finite number of rectangular units, where each unit contains an average number of

objects (or points). Then QSRs among pairs of objects are abstracted within each unit.

Additionally, QSRs are abstracted between the units themselves. Averaging units by the

number of objects may improve the quality of produced units (or clusters), but it is not

guaranteed. In addition, this approach takes more time than a basic grid-based and

inherits the same weaknesses from it, such as repeating the same objects in different

grids.

3.3 Integrating Qualitative Spatial Reasoning with GISs

Egenhofer and Mark (1995) propose a research agenda called Naive Geography which

uses formal theories and models of human common-sense reasoning about geographic

space and time. In particular, the authors argue that Naive Geography should employ

qualitative spatial reasoning as the basis of intelligent Geographic Information Systems

(GISs) in order to be suitable for non-expert GIS users to use GISs without any specialized

training. Following the idea of Naive Geography, several approaches have been proposed

in recent years for integrating Qualitative Spatial representation and Reasoning (QSR)

with GISs. The approaches can be divided into two categories: intuitive interaction

with GISs (see Section 3.3.1) and matching geo-spatial information (see Section 3.3.2).

3.3.1 Approaches for Intuitive Interactions

In (Egenhofer and Franzosa, 1995), the 9-Intersection Model (9IM) was integrated with

GISs, so that topological relations such as contains and intersect could be computed.

Later, the 9IM was extended as a topological and spatial extension of SQL (Egenhofer,

1994b) to query Spatial Data-Bases (SDBs) of GISs.

40

3.3 Integrating Qualitative Spatial Reasoning with GISs

Egenhofer (1997) proposes a Spatial-Query-By-Sketch (SQBS) approach for querying

SDBs using a sketch-based interface. In this approach, users build spatial queries

by sketching configurations that they are in search of. The sketched-query is then

transformed into a set of scene networks, where each pair of objects is connected

via spatial relation(s). Additionally, cardinal directions (Frank, 1992) and the 9IM

(Egenhofer and Franzosa, 1995) are used to represent qualitative spatial relations. The

SQBS approach concentrates on translating a sketched-query into qualitative information

rather than matching it against SDBs.

Several visual tools are developed on the basis of the SQBS approach. For example,

visual tools for querying the SDBs by means of a sketch-based interface are presented in

(Blaser and Egenhofer, 2000; Kopczynski, 2006). Users first need to sketch their queries

by drawing the objects, and then these queries are used to retrieve relative results from

SDBs. A similar visual approach is taken in (Caduff and Egenhofer, 2005), where they

take into account varying capabilities of mobile devices. However, the main focus is on

Human-Computer-Interaction (HCI) level rather than on the matching of corresponding

objects of SDBs.

3.3.2 Approaches for Matching Geo-Spatial Information

In (Wallgrün et al., 2010) the authors propose a matching approach based on QSR.

They assume a database D given as a qualitative constraint network (GD), i.e. a directed

graph with relational labels. Given a sketched user query, a qualitative constraint

network GQ is derived. GQ is then matched against GD by finding all constraints in GD

that satisfy possible binary object tuples of GQ. The authors only consider qualitative

direction relations among street junctions as points in a small toy domain, while we

consider extended objects.

Similarly, Chipofya (2011) presents a method that finds optimal matches among

multiple sketch maps, where qualitative spatial relations among objects of each sketch

map are represented as a labelled graph. Then the graphs of all sketch maps are matched

and the optimal matches are detected. In the works (Chipofya, 2011; Wallgrün et al.,

2010), the authors concentrate on finding solutions of the graphs at run time.

In (Bruns and Egenhofer, 2000) the authors state query matching as a Constraint

Satisfaction Problem (CSP) based on so called scenes, which are defined by a set of

spatial relations between objects. A sketched user query is considered as a scene that

41

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

can be matched against subsets (or scenes) of a database. Matching is then the pairing

of a query with the constraints and variables of subsets of all of the maximal complete

subgraphs (maximal cliques) of the database. However, the authors did not consider

any technique for accelerating the search in SDBs.

In (De Felice et al., 2011), a hybrid qualitative-quantitative spatial reasoning and

matching approach is proposed. It integrates qualitative information with quantitative

information stored in SDBs. Based on incomplete qualified information in SDBs and

quantitative information, the system applies QSR and matching techniques to integrate

new qualitative information with the quantitative information in SDBs.

3.4 Summary

To conclude this chapter, Spatial Data-Base Management Systems (SDBMSs) of Ge-

ographic Information Systems (GISs) play a crucial role in answering spatial queries

efficiently.

SDBMSs incorporate efficient spatial data models to store and manipulate spatial

data. Currently, the Geometry Object Model (GOM) is the predominant spatial data

model in GISs. However, the GOM and other similar models do not support different

types of spatial relations other than the topological ones.

SDBMSs apply R-trees, B-trees, and hashing indexing methods to speed-up answering

spatial queries. B+-trees are used with the space-filling curves to process spatial queries.

However, the linearization process of the space-filling curves requires an exponential

number of steps to enumerate all objects in 2D space (Faloutsos and Roseman, 1989).

In turn, R-trees and their variants suffer from two major weaknesses: (1) the spatial

relations among the database objects need to be computed at run time, which is

computationally expensive and (2) join operations are required to process spatial queries

that are expensive in terms of time. Hashing methods are combined with R-trees to

answer spatial queries quickly. Therefore, they inherit the same weaknesses as R-trees.

Aside from the mentioned weaknesses, the indexing methods are designed to only

handle a single aspect of space such as topology or direction.

Clustering methods can be applied to spatial databases to cluster qualitative data.

Although many clustering methods exist, only the grid-based and hierarchical methods

have been applied to cluster qualitative data. The applied methods generate low quality

42

3.4 Summary

clusters, since they do not guarantee a global optimum. Additionally, the same objects

can be included in different clusters.

Qualitative Spatial representation and Reasoning (QSR) methods are combined

with GISs to facilitate an intuitive and qualitative interaction between GISs and their

users. QSR methods use matching approaches to speed-up answering qualitative spatial

queries in the graph databases of GISs. The main drawback of these approaches is that

the matching process is done at run time, which is computationally expensive. The

matching requires an exponential number of steps to enumerate all possible matches to

queries.

43

3. SPATIAL INFORMATION MANAGEMENT AND SYSTEMS

44

Chapter 4
Querying, Reducing, and Matching

Qualitative Information

Geographic Information Systems (GISs) do not adequately allow users to query spatial

databases by means of qualitative descriptions such as left, north of, or inside. Such

qualitative descriptions can be used to formulate Qualitative Spatial Queries (QSQs)

(see Section 4.1). In order to enable qualitative spatial query processing, we integrate

qualitative spatial models into GISs (see Section 4.2). We abstract binary Qualitative

Spatial Relations (QSRs) from database objects and store them in a Qualitative Spatial

Layer (QSL) to avoid computing QSRs for every single query (see Section 4.3). Next, we

consider the spatial query answering problem as a sub-graph isomorphism matching

problem (see Section 4.3.2). As abstracting the QSL results in a high space complexity in

terms of qualitative representations, we apply two qualitative data reduction strategies

(see Section 4.4): (1) reduction by clustering and (2) reduction by a converse operation.

4.1 Qualitative Spatial Queries

Qualitative Spatial Queries (QSQs) are non-geo-referenced queries that aim to query

spatial databases qualitatively and intuitively. Although QSQs do not possess geographic

locations, they aim at providing services for finding locations (e.g., restaurants or

damaged buildings). Additionally, the QSQs are limited to querying categories/classes

of objects (e.g., rivers) rather than individuals (e.g., the “Weser” river), since these

categories/classes of objects are commonly used by people.

45

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

Moreover, we only consider objects of atomic categories such as river or building, and

no higher order ontological categories such as state or country, which may summarize

several atomic objects1. In particular, the QSQs usually come in the form of constraints

between objects. The constraints are usually binary Qualitative Spatial Relations (QSRs)

holding between pairs of objects. In the simplest case, the QSQs contain a single

qualitative spatial relation and come in the form:

{a reference object, a qualitative spatial relation, a primary object}

For example, in a spatial query such as “Find a restaurant inside a park”, inside

is the qualitative spatial relation that holds between the primary object restaurant and

the reference object park. In order to answer QSQs, all of the constraints of a spatial

database that satisfy the constraints of the QSQs need to be enumerated, since the

geographic locations are not given or known. For instance, answering the spatial query

mentioned in the previous example results in testing all the object pairs restaurant-park

stored in a spatial database.

The QSQs fall into two categories (see Figure 4.1(a)): (1) verbal descriptions2 and

(2) visual descriptions3. The main distinction between these categories is that spatial

relations are explicitly expressed in verbal descriptions, whereas spatial relations are

implicit in visual descriptions, and hence need to be abstracted. Consider two examples

in Figure 4.1(a), where the spatial relation inside appears explicitly in the verbal

description, but implicitly in the visual descriptions.

The QSQs may contain two or more binary QSRs. Hence, a qualitative spatial query

is considered as a labelled graph GQ = 〈VQ, EQ〉, where VQ denotes the objects (vertices)

of a graph and EQ denotes labelled edges (constraints) holding among these objects. In

Figure 4.1(b), we depict two possible graph query representations for verbal and visual

descriptions of queries respectively. It is worth mentioning that visual descriptions of

a QSQ could be represented differently. For instance, the topological relation holding

a restaurant and a park can be considered as contains instead of inside, i.e., a park

1Dealing with the semantics or ontologies of objects (e.g., a hospital is a part of district) is beyond

the scope of this dissertation.
2Dealing with the natural language processing issues of the verbal descriptions of the QSQs is

beyond the scope of this dissertation.
3In the literature, these kind of queries are commonly called proctorial queries as well.

46

4.2 Enabling Qualitative Spatial Queries in GISs

Find a restaurant near a gas station

and north east of a gas station

and inside a park

Represent

Verbal descriptions Graph query

park

gas station

Visual descriptions

restaurant

Translate

a b c

near

NE

in
si

d
e

restaurant gas station

park

NE: NorthEast

SW: SouthWest

Eq: Equal

disjoint, near, SW

di
sj
oi

nt
, n

ea
r,

N
E

inside, E
q, sam

e

restaurant gas station

park

Represent

Graph query

Translate

SQL

SQL

Figure 4.1: An example: qualitative spatial query formalism.

contains a restaurant. We note that representing the QSQs as graph queries is crucial

and plays a fundamental role in explicitly identifying the components of queries (e.g.,

object pairs). This representation allows for easily translating queries into Structured

Query Language (SQL) and for identifying appropriate matching procedures to efficiently

answer such queries, e.g., the spatial query answering problem can be considered as a

sub-graph isomorphism matching problem.

Finally, GQ needs to be translated into SQL and processed on a Spatial Data-Base

Management System (SDBMS) (see Figure 4.1(c)). The translation operation is done

automatically by detecting each pair of GQ. Then the reference object, the primary

object, and the relation of the qualitative model of each pair are assigned to appropriate

fields in SQL, which are related to fields in database tables.

An example of an SQL translation of verbal descriptions of a QSQ is illustrated in

Figure 4.2.

4.2 Enabling Qualitative Spatial Queries in GISs

In section 3.1.1.1, we pointed out that several spatial data models have been developed

to model and manage spatial data in SDBMSs. In addition, the Geometry Object Model

(GOM) has been recognized in (Manolopoulos et al., 2005) as one of the most practical

spatial models, as it provides a rich set of functionalities to store and manipulate

spatial data. However, like other spatial data models, GOM only integrates a topological

model: the Dimensionally Extended 9-Intersection Model (DE-9IM), which offers eight

topological predicates (e.g., Disjoint) to compute the topological relations between

47

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

SELECT T,F

FROM (SELECT centroid, id

 FROM bremenosm

 WHERE RO='restaurant' AND PO='gas station'

 AND ComputeDistance(RO.geometry, PO.geometry)='near'

 AND ComputeDirection(RO.geometry, PO.geometry)='NorthEast'

) AS T

,

FROM (SELECT centroids, id

 FROM bremenosm

 WHERE RO='restaurant' AND PO='park'

 AND ComputeTopology(RO.geometry, PO.geometry)='inside'

) AS F

WHERE T.RO=F.RO RO: Reference Object

PO: Primary Object

Figure 4.2: An example: verbal descriptions of a QSQ are translated to SQL.

pairs of geometric objects. However, QSQs may contain different kinds of QSRs (e.g.,

direction) other than topology. Hence, GOM cannot cope with QSQs that contain QSRs

other than topology such as direction or distance. Recall the SQL example in Figure 4.2

that shows that the directional and distance predicates are essential to process the SQL.

Following (Freeman, 1975) and (Egenhofer, 1997), spatial relations which are beneficial

for developing several real life applications including Geographic Information Systems

(GISs) fall into three categories: (1) topological, (2) directional, and (3) distance. In

order to enable qualitative formalism (e.g., QSQs) of direction and distance relations,

we integrate two kinds of qualitative spatial models into GOM: (1) the Cardinal Direction

Models (CDMs) and (2) the Absolute Distance Model.

(1) The Cardinal Direction Models

In the context of cognitive science, cognitive studies by (Franklin and Tversky, 1990;

Franklin et al., 1995; Huttenlocher et al., 1991; Wang and Schwering, 2009) give strong

evidence to support the cognitive plausibility of the cone-based model. In addition, the

48

4.2 Enabling Qualitative Spatial Queries in GISs

cone-based model is a practical approach (Skiadopoulos et al., 2007), due to its ability

to retrieve the directional relations based on the verbal descriptions of users. For these

reasons, the cone-based model has been used in GISs (Clementini and Billen, 2006).

Therefore, we integrate the cone-based model into GOM to serve the QSQs that are given

by means of verbal descriptions.

In the context of GIS, the Cardinal Direction Model (CDM) for extended objects is

strongly suggested by (Blaser and Egenhofer, 2000; Bruns and Egenhofer, 2000; Egen-

hofer, 1997; Skiadopoulos and Koubarakis, 2004). In particular, the authors conclude

that the CDM should be used to answer visual-based queries (e.g., Spatial-Query-by-

Sketch (Egenhofer, 1997)) due to its ability to capture meaningful distinctions of space

(e.g., Sketched-queries inherently involve geometric information). This implies more

relevant results to the queries. We thusly integrate the CDM into GOM to serve the

QSQs that are given by means of visual descriptions.

(2) The Absolute Distance Model

In Section 2.2.3, we indicated that the notion of distance is context-dependent and

influenced by several factors, e.g., “attractiveness”. Therefore, an ideal distance model

would take these factors into account. However, in this dissertation, for simplicity, we

only consider the Euclidean distance to develop context-independent distance model.

Based on the qualitative distance model (Gahegan, 1995), we propose an absolute

distance model that assigns one of the four distance relations: ZeroDist, near, medium,

and far to pairs of objects in D2. This representation is based on the Minimum Bounding

Rectangle (MBR).

Definition 9 (the Absolute Distance Model).

Let Pcent = (xcent, ycent) denote the centroid of the MBR. In addition, dmax = d3 de-

notes the maximum distance between Pcent and one of the corners of the MBR. In order

to define the four relations, we need two additional distance values d1 and d2 with

d0 < d1 < d2 < d3. d denotes the distance between either the point of interest and Pcent

or between any two points of interest. The relation Distr is considered:

Distr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ZeroDist if d = 0;

near if d0 < d ≤ d1;

medium if d1 < d ≤ d2;

far if d2 < d < d3.

49

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

d0

d1

d2

d3

Figure 4.3: The distance model with four relations.

In Figure 4.3 we depict a distance model with a fixed region of interest and an

equidistant partition scheme using all di. We integrate the absolute distance model into

GOM to allow for deriving of distance relations between pairs of geometric objects.

It is crucial to mention that GOM supports R-trees indexing (for more details about

R-trees, see Section 3.1.2.2). In this dissertation, we use R-trees to accelerate computing

the topological relations among geometric objects.

4.3 Extending a Qualitative Spatial Layer into GISs

Abstracting Qualitative Spatial Relations (QSRs) from geometries becomes an impractical

approach when the abstraction process needs to be conducted for every single query.

In this dissertation, we call this kind of approach a naive approach, in which all QSRs

holding among database objects need to be abstracted and matched to the QSRs of QSQs.

Another possibility includes a buffered approach, in which previous query matches are

memorized in order to avoid recomputing QSRs. However, these approaches require a

massive amounts of database storage, as the number of matches of processed queries

is usually very large. Moreover, many QSQs may not be processed previously which

implies that the naive approach needs to be applied to answer these queries. In other

words, these approaches do not guarantee the acceleration of processing QSQs.

Alternatively, QSRs can be abstracted and explicitly stored in a Qualitative Spatial

Layer (QSL) of spatial databases to avoid the additional cost of the abstraction process

50

4.3 Extending a Qualitative Spatial Layer into GISs

SDBMS

Spatial extension

Qualitative Spatial Layer

DistanceTopology Direction

Geometry Object Model

Figure 4.4: A logical view of the qualitative database layer extension.

every time (Fogliaroni et al., 2011). Therefore, as shown in Figure 4.4, we abstract the

QSL and store it once as an extra database storage layer upon the spatial layer of a

SDBMS. In the QSL extension, the structure, the capabilities, and the functionalities

of GOM and the relational SDBMS are fully preserved, but directional and distance

predicates are extended to the GOM and SQL. The QSL is based on an abstraction

process that computes the qualitative relations between all pairs of objects.

Figure 4.5 shows the database table of a qualitative spatial layer abstracted from

four geometric objects {A1, B2, C3, C4}.
Consider a database D = 〈OD, FD〉, where OD denotes the set of objects occurring

in the database, and FD indicates their connected geometric features (e.g., their centroid

positions, geometric type, etc). Then, pairs of objects (oi, oj) ∈ OD and their relational

structure can be represented as a complete directed labelled graph GD = 〈VD, ED〉,
where ED denotes labelled edges (qualitative spatial relations) that hold among objects

or vertices (VD). The order of a OD is denoted by |OD|, which is the number of objects.

For instance, assume that there are two objects (X and Y) and a binary topological

relation disjoint holding among them; the direction of the edge must be considered as

X Disjoint Y, which has a different label than Y Disjoint X. Algorithm 1 generates a

complete graph GD from OD in O(η|OD|2) steps, where η is a number of qualitative

models (or calculi). The algorithm has a complexity of O(η|OD|2) space as well. It

iterates over all pairwise disjoint object pairs OD (lines 2 to 4), then calculates the

relation1 (line 5), and adds the edges and their labels to GD (line 6).

1In the scope of this dissertation, standard qualitative spatial models are applied (c.f Section 2.2).

51

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

C4

Sample of four geometric objects in DB

A1

B2

C3

Class_Of

_Object1

Class_Of

_Object2

Topology Direction Distance Id_Object1 Id_Object2

A B contains N near 1 2

B A inside S near 2 1

A C disjoint NE near 1 3

C A disjoint SW near 3 1

B C disjoint NE near 2 3

C B disjoint SW near 3 2

A B disjoint NW near 1 4

B B disjoint NW near 2 4

C B disjoint W near 3 4

A disjoint SE near 4 1

B disjoint SE near 4 2

C disjoint E near 4 3

Abstract

Qualitative Spatial Layer

C

C

C

Figure 4.5: Example: a qualitative spatial layer that represents all the binary qualitative

spatial relations (per each one of the three qualitative models including topology, direction,

and distance) among four geometric objects.

Algorithm 1: AbstractDataBaseGraph(Objects OD, ObjGeometries FD)

input : OD: all database objects

output : GD: a complete graph database that contains all pairs of objects and

their corresponding relations

1 initialization: r←NULL; GD ←NULL;

2 for i ← 1 to |OD| do
3 for j ← 1 to |OD| do
4 if (oi.id �= oj.id) then

5 r← ComputeQSRels(fi.geometry, fj .geometry);

6 GD.add← (oi, r, oj);

7 end

8 end

9 end

10 return GD;

52

4.3 Extending a Qualitative Spatial Layer into GISs

A1 B2

C3C4

D
1

4

D
4

1

D
3

 2

D
2

 3

D1 2

D2 1

D4 3

D3 4

D
1 3

D
3 1

D4 2

D2 4

A1 B2

C3C4

T
1

 4

T
4

 1
 T

3
 2

T
2

 3

T1 2

T2 1

T4 3

T3 4

T1 3

T3 1

T4 2

T2 4

A1 B2

C3C4

S
1

4

S
4

1

 S
3

 2

S
2

 3

S1 2

S2 1

S4 3

S3 4

S
1 3

S
3 1

S4 2

S2 4

A1 B2

C3C4

T1 2, D1 2, S1 2

T2 1, D2 1, S2 1

T
3 1, D

3 1, S
3 1

T
1 3, D

1 3, S
1 3

T4 2
, D

4 2
, S

4 2

T
4

1
,
D

4

1
,
S

4

1

T
1

4
,
D

1

4
,
S

1

4

T3 4, D3 4, S3 4

T4 3, D4 3, S4 3

T4 2
, D

4 2
, S

4 2

T
3
 2

,
D

3
 2

,
S

3
 2

T
2

 3
,
D

2
 3

,
S

2
 3

Figure 4.6: The QCND using three qualitative models T, D, and S.

4.3.1 Multi-Graph Representations

As we mentioned in the previous section, the complete graph database GD is the result

of the abstraction process. GD represents several graphs that are combined into a single

graph. Each graph represents object pairs associated with a single qualitative relation of

a qualitative model. If we consider the abstracted binary relations as only labels, then

each edge of GD can hold multi-labels, where each label of an edge belongs to a spatial

relation of a qualitative model. For reasoning purposes (e.g., composition), in the scope

of this dissertation we make use of a multi-Qualitative Constraint Network (QCND)

which combines m Qualitative Constraint Networks (QCNs) (each corresponding to a

specific qualitative model) into a single QCN (cf. Section 2.3), where m is the number of

qualitative models considered. As depicted in Figure 4.6, QCND can also be represented

as a labelled directed graph where each edge is labelled by the concatenation of the

labels of the single QCNs (Topology (T), Direction (D), and Distance (S)).

Dealing with errors due to noisy data and imprecise numerical representations is beyond the scope of

this dissertation.

53

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

4.3.2 Matching a Qualitative Spatial Layer

Given a database D and a qualitative query Q, we can interpret both as graphs: GD

and GQ. As we indicated in (Al-Salman et al., 2012), the spatial query answering

problem can be considered as a sub-graph isomorphism matching problem given the

above information. We denote the order of a graph GX by |GX|, which is the number of

vertices, i.e. |GX| = |VX | = |OX |. Two labels in a graph are considered equal if and only

if the intersection of two corresponding constraints is not empty. GQ is considered to

be a sub-graph which contains n = |GQ| variables and will be matched against subsets

of the complete graph (GD), where each subset contains exactly the same number of

variables as GQ.

Definition 10 (exact match).

A user query is said to be exactly matched if the intersection between all of the constraints

of GQ and all constraints of a subset of GD is not empty.

Definition 11 (partial match).

A user query is said to be partially matched if the intersection between a constraint of

GQ and a constraint of a subset of GD is not empty.

Definition 12 (no match).

A user query is said to be not matched if the intersection between all of the constraints

of GQ and all constraints of every subset of GD is empty.

In Figure 4.7 we depict an example of how the variables of GQ can be matched

against the variables of GD based on three qualitative models.

In this dissertation, we will only focus on the exact matching between GQ and GD,

e.g., we do not consider the conceptually neighboring queries.

Finding sub-graph isomorphisms requires an exponential number of steps to enumer-

ate all the possible exact matches. A common way to deal with sub-graph isomorphisms

is to represent the possible matches as an interpretation tree (Itree) (Andrew, 1990).

The leafs of the Itree keep all possible matches between GQ and GD (see Figure 4.8).

The Itree is a valuable representation since it allows for several search techniques and

heuristics to be applied (e.g., breadth first search or A-star) in order to prune the search

space of the tree, such as by using a Breadth-First Search (BFS) (Cormen et al., 2009).

54

4.3 Extending a Qualitative Spatial Layer into GISs

A

B

C C4

B C

A1 C4

C3

Eq, i
nsi

de, e
qual NE, inside, near

SW, disjoint, near

N

GQ

 A spatial query Sample of a database Matches

B2

A1 C4

C3B2

subset1

subset1Eq
, c

on
ta

in
s,

 e
q

u
al SW

, contains, nearNE, disjoint, near

A1

B2

C3

N

C4

A1

B2

C3

A

GD M

exact match

partially match

(A, B) (A1, B2) & (A, C) (A1, C3) & (B, C) (B2, C3)

two pairs matched

two pairs unmatched

subset2

(A, B) (A1, B2) & (A, C) (A1, C4) & (B, C) (B2, C4)

subset2

Figure 4.7: Matching GQ against GD: the first subset is exactly matched by users query,

the second subset is partially matched, where the pairs {(A, C), (A1, C4)}, {(B, C), (B2,

C4)} differ by a directional relation.

The Qualitative Layer Matcher (QLM) algorithm is depicted in Algorithm 2. In

general, QLM matches GQ against the Itree by using BFS. Given GQ and GD, it starts

from the root of the Itree by expanding each object of GD as broadly as possible (lines

2 to 5). In order to determine the admissible sub-branches of the Itree, the QLM first

enforces a unary constraint to check if the label of object qi is matched to oi. If a

unary constraint is satisfied, it then enforces a binary constraint. Specifically, it checks

if the intersection between the constraints of the pairs of objects (qi, qj) ∈ GQ and

(oi, oj) ∈ GD is not empty (line 3). Therefore, any sub-branch that does not satisfy the

unary and binary constraints can be pruned. Furthermore, if all the constraints of the

sub-branches of the Itree do not match with the corresponding sub-branches of GQ, then

the whole search process is terminated, since no solution can be found in GQ (lines 6

and 7). Otherwise, this process keeps expanding the Itree branches until the number of

Itree levels reaches the number of objects of GQ (lines 8 to 11). Simplified and clarified,

55

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

C3B2A1 C4

A1

{ A~A1, B~B2, C~C3 }

T

B

A

C

Binary constraint is matched

Unary constraint is matched

GQ

B2 C3 C4 A1 B2 C3 C4 A1 B2 C3 C4 A1 B2 C3 C4

A1 B2 C3 C4 A1 B2 C3 C4 A1 B2 C3 C4 A1 B2 C3 C4

Figure 4.8: Matching the Itree to the unary and binary constraints of GQ.

Figure 4.8 shows an example of matching both unary and binary constraints of the

Itree by a GQ.

4.4 Qualitative Data Reduction

The abstraction process of GD results in a high space complexity in terms of the amounts

of qualitative data. In order to cope with this complexity, we apply two qualitative data

reduction strategies: (1) Qualitative Data Reduction by Clustering (Section 4.4.1) and

(2) Qualitative Data Reduction by a Converse Operation (Section 4.4.2).

4.4.1 Qualitative Data Reduction by Clustering

Generally speaking, every object is spatially related to every other object in 2D space.

Following the first law of geography that states “everything is related to everything else

but nearby things are more related than distant things” (Tobler, 1970), it makes sense

to group nearby objects into clusters.

Here, the main purpose of clustering is to reduce the amounts of qualitative data.

To do this, database objects are spatially represented by clusters and then the QSRs

are abstracted within the corresponding clusters and between clusters themselves.

56

4.4 Qualitative Data Reduction

Algorithm 2: Qualitative Layer Matcher(DBgraph GD, Query GQ)

input : GD: a complete graph database, GQ: user’s query

output : M: a set of matches satisfying GQ

1 initialization: Υ ←NULL; Itree←NULL; M←NULL; � ← |GQ|;
2 Itree.Level(1)← GD;

3 Υ ← Itree.Level(1).GetMatch(GQ.Level(1));

4 M← Itree.Level(1).GetMatch(GQ.Level(1));

5 for i ← 2 to � do

6 if Υ==NULL then

7 EXIT;

8 else

9 Υ ← Itree.Level(i).GetMatch(GQ.Level(i));

10 M← Mi−1 � Υ;

11 end

12 end

Consequently, the total space consumption might be reduced with respect to the original

size of the graph database (GD).

In his dissertation, Fogliaroni (2012) applies grid-based clustering algorithms, in

which qualitative spatial relations are computed among objects inside grids and among

clusters themselves to reduce the amount of qualitative data. This process guarantees

the retrieval of the same results as without clustering. The author further points out

that some binary relations can be inferred from (each) other based on converse and

composition properties of qualitative spatial calculi. Accordingly, inferable relations do

not need to be stored in a database and are created at run time, which implies reduction

of stored qualitative data. For example, if we know that two clusters are disjoint from

each other, then we can directly conclude that all objects in the clusters are disjoint

from each other as well. This implies that only disjoint relations between clusters need

to be computed and stored, instead of all of the disjoint relations between individual

objects in the clusters.

We apply clustering for the same purpose, albeit with a focus on three specific aspects:

(1) the density of clusters, (2) enclosing clusters (cf. Section 4.4.1.1), and (3) computing

the QSRs between the clusters in a more sophisticated manner (see Section 4.4.1.3).

As we indicated in Section 3.2, a grid-based approach suffers from two weaknesses:

57

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

(1) the same object could be included in several grids or clusters and (2) it does not

consider the spatial density of objects in 2D space. Furthermore, we pointed out that

the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester

et al., 1996) includes two advantageous properties that others do not. Firstly, it does

not require one to specify the number of clusters in advance. Secondly, it guarantees

a global optimum in terms of clustered data based on the concept of reachability (cf.

Section 3.2.2). Therefore, we apply DBSCAN on the database objects OD.

Given a set of n points of geometric objects C = {c1, c2, c3, . . . , cn} stored in D, C

is partitioned into z number of disjoint clusters Ci
′s contained by F and satisfying the

following conditions:

• F =
⋃z

i=1Ci, Ci ∩ Cj = ∅, (for i ≤ 1, j ≤ z, i �= j),

• each cluster Ci represents points with a label i.

We note that we consider points instead of regions in clustering process to accelerate

the process. In the next section, we will describe the strategies of enclosing clusters

which will guarantee that all region extents will be included in the clusters.

In the rest of this chapter, we will make use of |C| to denote the order of clusters C,

which indicates the number of clusters. Additionally, the order of a cluster Ci will be

denoted by |Ci|, which indicates the number of objects occurring in a cluster.

In general, DBSCAN separates the areas of high density from low density. It

uses two parameters: the radius of a cluster where the points (or polygons) need to be

included in (Eps) and the minimum number of points (MinPts) within a cluster. Figure

4.9 shows objects in Bremen that are clustered using DBSCAN, where the overlayed

plots (polygons) of the same color and shape belong to the same cluster. Based on

DBSCAN, the qualitative data reduction can be achieved. The equation of qualitative

data reduction rate of GD by DBSCAN is given (in percent) by:

rate(GD) =

[
1− (

∑z
i=0 R

i
w +Rb)

|GD|

]
· 100 =

[
1− (

∑z
i=0(|Ci|2 − |Ci|)) + (|C|2 − |C|)

|GD|

]
· 100
(4.1)

where z is the number clusters, |GD| is the number of spatial relations between all

object pairs (without considering clustering), Ri
w is the number of spatial relations

between object pairs within an individual cluster, and Rb is the number of spatial

58

4.4 Qualitative Data Reduction

Figure 4.9: A clustering of the objects of Bremen inner city using DBSCAN(MinPts=2,

Eps=300).

relations between cluster pairs. The output of the equation 4.1 indicates the percentage

of spatial relations that can be saved with respect to the original size of GD.

In Figure 4.10, we depict three cases for the qualitative data reduction by DBSCAN,

in which 12 database objects are clustered. For simplicity, we assume that the disjoint

spatial relations between cluster pairs are inferable and allow for reduction. For instance,

if we know that two clusters are disjoint from each other, we can directly conclude

that all pairwise objects of those clusters are disjoint as well. Thus, there is no need

to compute and store the disjoint relations among the pairwise objects of clusters. In

the first case (Figure 4.10(a)) all objects are included in a single cluster which means

that no reduction is possible, as the spatial relations between all object pairs need to

be abstracted. In Figure 4.10.b, the database objects are grouped into two clusters.

Accordingly, the reduction rate based on the equation previously mentioned can be

computed as follows:

59

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

(a) (b) (c)

Figure 4.10: Examples of qualitative data clustering and reduction by DBSCAN: (a) all

objects are grouped into a single cluster, (b) all objects are grouped into two clusters, and

(c) all objects are grouped into four clusters.

rate(GD) =

[
1− (((6∗6)−6)+((6∗6)−6)+(2))

((12∗12)−12)

]
· 100 ≈ 53 %.

Similarity, we can calculate the reduction rate in the third case (Figure 4.10(b)) to

be approximately 73 %. From the aforementioned cases, it is apparent that changing

the number of clusters has an impact on the qualitative data reduction rates.

4.4.1.1 Enclosing Clusters

The DBSCAN clustering presented previously identifies points that are near to each

other as clusters by giving them labels (e.g., all points in cluster1 (C1) can be labelled as

1 and so forth) that indicate to which cluster they belong. However, in order to abstract

QSRs between clusters, point clusters must be first transformed (or approximated) into

regions. More precisely, given the set of points which constitute cluster Ci, Ci needs to

be transformed into a region by capturing its approximate shape. Some methods for

achieving this result are: Minimum Bounding Rectangle (MBR) (Buckley, 2008), Convex

Hull (CH) (Chan, 1996), and ConCave Hull (CCH) (Duckham et al., 2008). These are the

most popular methods, and we will consider them in this dissertation to capture the

shape of Ci.

Minimum Bounding Rectangle:

Given a cluster Ci in a 2D-space, the MBR is the axis-aligned minimum bounding rect-

angle whose edges are parallel to the coordinate axes. All points of cluster Ci fall

within this rectangle (see Figure 4.11(a)). The minimum and maximum extents of

the rectangle are specified by two coordinate pairs: (Xmin, Ymin) and (Xmax, Ymax),

60

4.4 Qualitative Data Reduction

X

Y

(Xmin, Ymin)

(Xmax, Ymax)

X

Y

X

Y

(a) (b) (c)

Figure 4.11: An example: the MBR, CH, and CCH of a cluster.

where Xmin denotes the X-axis minimum value of S, Ymin denotes the Y-axis minimum

value of Ci, Xmax denotes the X-axis maximum value of Ci, and Ymax denotes the

Y-axis maximum value of Ci. The time complexity of finding MBR is O(|Ci|), since
all the points of Ci need to be tested to determine the two endpoints of its major diagonal.

Convex Hull:

Given a cluster Ci in a 2D-space, a Convex Hull denoted by CH(Ci) is the set of the

smallest convex polygon containing all points of Ci (see Figure 4.11(b)). In particular,

the CH(Ci) is derived by intersecting all the possible convex sets that enclose the points

in Ci (Chan, 1996). Chan (1996) proposes an algorithm that only requires O(|Ci| log(h))
steps for computing CH(Ci) in two and three dimensions, where h is the number of

points on the boundary of the CH.

Concave Hull:

ConCave Hull, denoted by CCH(Ci), aims to characterize the shape of Ci that represents

the area occupied by all points in Ci by generating convex and non-convex hull polygons

(see Figure 4.11(c)) (Edelsbrunner et al., 1983). It usually takes a single parameter

kpercent, that can be adjusted to determine the level of smoothness of the computed

polygon. In turn, Duckham et al. (2008) propose an algorithm that requires O(|Ci|
log|Ci|) steps to computing the CCH(Ci); it is based on the Delaunay triangulation of

the points.

61

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

4.4.1.2 Qualitative Spatial Relations Between Clusters

The main goal of computing the QSRs between the cluster pairs is to identify the QSRs

that can be inferred from each other. In this dissertation, the inferable QSRs are referred

to as decisive relations and the non-inferable ones as indecisive relations.

Definition 13 (A decisive spatial base relation).

Let B be a Jointly Exhaustive and Pairwise Disjoint (JEPD) set of binary base relations

defined over a domain D, and let R∈2B be a spatial (disjunctive) relation. Then a

spatial relation R between any two shapes1 of clusters (shape(Ci), shape(Cj)) is said to

be decisive if and only if

(shape(Ci), shape(Cj))∈ R =⇒ ∀ci ∈ Ci, ∀cj ∈ Cj : (ci, cj) ∈ R.

Below, the following qualitative aspects are addressed separately in order to exploit

the capability of reducing the QSRs: (1) topology, (2) distance, and (3) direction.

Topology:

In order to compute the precise topological relations between clusters, the shape of the

clusters must be captured as tightly as possible. To achieve this result, we use ConCave

Hull (CCH), because of its ability to produce tighter polygons than the CH and MBR. Recall

that the topological model we introduced in Section 2.2.1 has eight topological relations,

which can be abstracted between simple convex regions: equal, disjoint, meets, overlaps,

contains, covers, inside, and coveredBy. Here, we only focus on disjoint relations, since

a direct conclusion can be drawn regarding the disjointedness of clusters. Therefore,

even if clusters contain holes, the correct disjoint relation can be captured between

these clusters. In this dissertation, we argue that the CCH generates fewer non-disjoint

relations than the MBR and CH, which means that the CCH can achieve a higher reduction

rate than the others. Figure 4.12 illustrates three examples, which show that the

CCH produces the fewest number of non-disjoint relations, thereby achieving a higher

topological reduction rate than the others.

In (Egenhofer and Franzosa, 1991), two clusters Ci and Cj are called disjoint if the

intersection of Ci’s interior, boundary, and exterior with Cj ’s interior, boundary, and

exterior is empty. Since, the disjointness od the concave hulls of two clusters CCH(Ci)

1Such as MBR, CH, or CCH cf. Section 4.4.1.1.

62

4.4 Qualitative Data Reduction

(a) the MBR generates more non-disjoint relations than the CH and

CCH.

(b) the CH generates fewer non-disjoint relations than the MBR.

(c) the CCH generates fewer non-disjoint relations than both the

MBR and CH.

Figure 4.12: An example: computing disjoint relations between clusters based on three

cluster representations the MBR, CH, and CCH, where the yellow color presents the non-disjoint

relations.

63

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

and CCH(Cj), implies that all the points of CCH(Ci) are disjoint from all the points of

the CCH(Cj), we therefore consider disjoint as a decisive relation.

Distance:

The absolute distance model presented in Section 4.2 distinguishes the four qualitative

spatial relations: ZeroDist, near, medium, and far. In order to compute a distance

between clusters, we use the MBRs as suitable representations of clusters for two reasons:

(1) the maximum and minimum distances can be computed based on the two end-

points of the MBRs and (2) measuring the distance between the MBRs is computationally

inexpensive.

Let p = (p1, p2) to be a 2D point, where p1 and p2 are its coordinates. Also, let

R be a 2D MBR defined by the two endpoints of its major diagonal r = (r1, r2) and

r′ = (r′1, r′2), where r′1 > r1, r
′
2 > r2, (r1, r2), and (r′1, r′2) are the coordinates of r and

r′ respectively. Similarly, let S be a 2D MBR defined by the two endpoints of its major

diagonal s = (s1, s2) and s′ = (s′1, s′2), where s′1 > s1, s
′
2 > s2, (s1, s2), and (s′1, s′2)

are the coordinates of s and s′ respectively.

Then the minimum and maximum distances, MINDIST and MAXDIST respectively

between any two rectangles and between a point and a rectangle, are given by (Ra-

maswamy et al., 2000; Roussopoulos et al., 1995):

Definition 14 (MINDIST (p, R) =
√∑2

i=1 x
2
i , where).

xi =

⎧⎪⎨
⎪⎩

ri − pi if pi < ri;

pi − r′i if r′i < pi;

0 otherwise.

Definition 15 (MINDIST (R, S) =
√∑2

i=1 x
2
i , where).

xi =

⎧⎪⎨
⎪⎩

ri − s′i if s′i < ri;

si − r′i if r′i < si;

0 otherwise.

64

4.4 Qualitative Data Reduction

Definition 16 (MAXDIST (p, R) =
√∑2

i=1 x
2
i , where).

xi =

{
r′i − pi if pi <

ri+r′i
2 ;

pi − ri otherwise.

Definition 17 (MAXDIST (R, S) =
√∑2

i=1 x
2
i , where).

xi =
{

max(|s′i − ri|, |r′i − si|).

Based on our distance model, the relation between the MBRs of clusters R and S is

considered ZeroDist if MINDIST (R, S) = 0, near if d0 < MAXDIST (R, S) ≤ d1,

medium if d1 < MINDIST (R, S) ≤ d2 ∧ d1 < MAXDIST (R, S) ≤ d2, far if

d2 < MINDIST (R,S) < d3, and indecisive if otherwise.

Table 4.1 lists the decisive and indecisive relations based on the derived relations of

the MAXDIST and the MINDIST functions. If a distance relation between R and S

Table 4.1: The distance decisive and indecisive relations.

MAXDIST(R,S)

MINDIST(R,S)
ZeroDist near medium far

ZeroDist indecisive - - -

near indecisive decisive - -

medium indecisive indecisive decisive -

far indecisive indecisive indecisive decisive

is considered indecisive, distance relations are computed over all pairs of points (r,s),

where r ∈ R and s ∈ S, since the pairs of points of two clusters do not have a unique

distance relation. For example, a distance relation between points pair r1 ∈ R and

s1 ∈ S could be near, medium for points r2 ∈ R and s2 ∈ S of the same MBRs of R

and S. Unfortunately indecisive relations have a high space and time complexity. To

deal with this issue, clusters can be divided into smaller sub-clusters that have decisive

distance relations.

65

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

Direction:

The Cardinal Direction Model (CDM) for extended objects and the cone-based model

in Section 2.2.2 contain nine base (or ‘single-tile’) relations can be differentiated. Since

the CDM partitions the space based on the MBR of a reference object, a directional

relation between clusters can be computed based on their MBRs as well. In order to

guarantee that a cluster covers the actual extent of objects, a MBR of a cluster is derived

by computing the MBR of the MBRs of objects occurring in this cluster. In the CDM, based

on the transitivity property of the relation, we consider the four directional relations as

decisive, as they are transitive: NE , NW , SE , and SW (see Lemma 1).

Lemma 1. The directional relations NE, NW SE, and SW are decisive.

Proof.

Given three points shown in Figure 4.13(a), c1 = (x1, y1), c2 = (x2, y2), and c3 =

(x3, y3), where a point c1 ∈ MBR(Ci), the most NE point c2 ∈ MBR(Ci) and a point c3 ∈
MBR(Cj). Now c2NEc1 ⇐⇒ x2 > x1∧y2 > y1 and c3NEc2 ⇐⇒ x3 > x2∧y3 > y2 =⇒
x3 > x1 ∧ y3 > y1 =⇒ c3NEc1. Similarly, the transitivity of the other three relation

can be proven.

In contrast, we consider N , S , E , and W as well as multi-tile relations as indecisive,

since they are non-transitive (Lemma 2).

Lemma 2. N, S, E, and W as well as multi-tile relations are indecisive.

Proof.

Given three points shown in Figure 4.13(b), c1 = (x1, y1), c2 = (x2, y2), and c3 =

(x3, y3), where a point c1 ∈ MBR(Ci), the most N point c2 ∈ MBR(Ci) and a point

c3 ∈ MBR(Cj). Assume that c3Nc1. Now c2Nc1 ⇐⇒ x2 = x1 ∧ y2 > y1, but c3NWc2

⇐⇒ x3 < x2 ∧ y3 > y2 � x3 < x1 ∧ y3 > y1 � c3Nc1. Similarly, the non-transitivity

of the other relations as well as multi-tile relations can be proven.

As we have shown that the indecisive are non-transitive, the directional relations of

the cone-based model are thusly indecisive, since they are non-transitive.

4.4.1.3 Abstracting a Qualitative Spatial Layer From Clusters

Algorithm 3 is an algorithm for abstracting QSRs within clusters and between cluster

pairs. First, it iterates over each cluster, abstracts QSRs within each cluster by using the

AbstractDataBaseGraph procedure1, and eventually stores them in GC
D (lines 2 to 4).

1This procedure is already mentioned in Section 4.3 and used to abstract QSRs.

66

4.4 Qualitative Data Reduction

N

S

EW

NENW

SESW

N

S

EW

NENW

SESW

(a) (b)

Eq

Ci

c1
c2

Cj

c3

Eq

Ci

c1
c2

Cjc3

Figure 4.13: (a) shows the transitive relation NE between the reference cluster Ci and the

primary cluster Cj , (b) shows the non-transitive relation N between the reference cluster

Ci and the primary cluster Cj .

Secondly, it iterates over all pairwise disjoint clusters in C and computes the relation

r (lines 5 to 8). Finally, if r is decisive then the relation, the edges, and their labels

are added to CR (lines 9 and 10). Otherwise, all pairwise disjoint object pairs of two

clusters are iterated over and the relations are computed and added to GC
D (lines 11 to

22).

4.4.1.4 Matching the Qualitative Spatial Layer of Clusters

In this sub-section, we present an algorithm called DBSCAN Matcher (DM), which aims

to match GQ against the graph databases of clusters. Algorithm 4 first matches GQ

against each graph database of cluster in GC
D by calling the Qualitative Layer Matcher()

function (lines 2 to 4). We note that Qualitative Layer Matcher() is already presented

in Section 4.3.2 and used to match GQ against the qualitative spatial layer. Afterwards,

it checks each spatial relation of GQ, and determines whether it is a decisive relation

or not (lines 5 to 7). If relation is determined as decisive, it detects the cluster pairs

holding the relation. In the end, it runs through all pairwise disjoint clusters in C and

extracts the object pairs that have the same labels as the ones of GQ (lines 8 to 11).

67

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

Algorithm 3: Abstract Relations Clusters(Clusters C, GeomtryClusters F)

input : C: clusters and their database objects

output : GC
D: a set of complete graphs of the clusters DB that contains the object

pairs and their corresponding relations, CR: a complete graph of the

clusters that contains the clusters pairs and their corresponding relations

1 initialization: r←NULL; rc←NULL; GD ←NULL; SC←NULL; FC←NULL;

2 for k ← 1 to |C| do
3 GC

D.add← AbstractDataBaseGraph(Ck, Fk);

4 end

5 for i ← 1 to |C| do
6 for j ← 1 to |C| do
7 if (Ci.id �= Cj.id) then

8 r ←ComputeQSRels(GetShap(Fi), GetShap(Fj));

9 if r is decisive then

10 CR.add← (Ci, r, Cj , Ci.id, Cj .id);

11 else

12 FC ←Ci;

13 SC ←Cj ;

14 for v ← 1 to |FC| do
15 for e ← 1 to |SC| do
16 if (FCv.id �= SCe.id) then

17 rc ←ComputeQSRels(Fv, Fe);

18 GC
D.add←(FCv, rc, SCe, FCv.id, SCe.id);

19 end

20 end

21 end

22 end

23 end

24 end

25 end

68

4.4 Qualitative Data Reduction

Algorithm 4: DBSCAN Matcher(GC
D, C

R, Clusters C, Query GQ)

output : M: a set of matches satisfying GQ

1 initialization: �←NULL; M←NULL;

2 for k ← 1 to |C| do
3 M.add← Qualitative Layer Matcher(GC

Dk, GQ);

4 end

5 � ← GQ.GetRelations();

6 for t ← 0 to |�| do
7 if �t is decisive then

8 P←CR.GetPairs(�t);

9 foreach (pi, pj) ∈ P ∧ i �= j do

10 M.add←C.GetMatches(Ci, Cj , pi, pj);

11 end

12 end

13 end

4.4.2 Qualitative Data Reduction By a Converse Operation

In the previous section, we have applied a clustering approach to reduce the size of

the graph database (GD). Here, we apply a converse operation provided by qualitative

spatial models (cf. Section 2.1.1) to reduce the size of GD as well. Based on the converse

property of qualitative models, binary relations can be permanently deleted from GD.

GD can be represented by a multi-Qualitative Constraint Network (QCND) which

allows for performing converse and composition operations. Given qualitative models

that have a unique converse property, a symmetric graph of QCNsD can be exploited.

Hence, only half size of the QCND needs to be considered in a query processing, whereas

the other half can be safely pruned. Figure 4.14.(a) shows an example of a QCND

containing four objects (A1, B2, C3, C4) and their binary distance and topology relations.

It also shows how a QCND can be represented by a symmetric 2D matrix. Figure

4.14.(b) shows that half of the QCND can be pruned based on symmetry, which results

in the new labelled graph QCND’.

Table 4.2 shows the labels of inverse relations for the eight binary relations of the

9-Intersection Model (Egenhofer and Franzosa, 1995). It also illustrates that the last

four labels of relations and their inverses are not the same. For instance, the label of

69

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

A1

B2

Reduce

disjoint, near

disjoint, near

disjoint, near

disjo
in

t,n
ear

d
is

jo
in

t, n
e

a
rin

s
id

e
,
n

e
a

r

disjoint, near

disjoint, near

disjo
in

t,n
ear

d
is

jo
in

t, n
e

a
r

c
o

n
ta

in
s
,
n

e
a

r

disjoint, near disjoint, near

disjoint, near

disjoint, neardisjoint, near

disjoint, neardisjoint, near

disjoint, near

disjoint, near

disjoint, near

disjoint, near disjoint, near

disjoint, near

disjoint, near

contains,near

 inside,near

contains,near

c
o

n
ta

in
s
,
n

e
a

r

disjo
in

t,n
ear

disjoint, near

disjoint, near

d
is

jo
in

t, n
e

a
r

C4

C3

disjoint, near

disjoint, near

disjoint, near

A1 B2 C3 C4

A1

B2

C3

C4

A1

B2

C3

C4

A1 B2 C3 C4
A1

B2

C4

C3

QCN
D

QCN
D ’

(a)

(b)

Figure 4.14: An example: pruning half of QCND space based on symmetry.

Table 4.2: Eight binary relations of 9-Intersection-Model and their inverses from (Egenhofer,

1994a).

Nr Relation R Inverse of Relation R�

1 disjoint(A, B) disjoint(B, A)

2 meet(A, B) meet(B, A)

3 equal(A, B) equal(B, A)

4 overlap(A, B) overlap(B, A)

5 inside(A, B) contains(B, A)

6 contains(A, B) inside(B, A)

7 covers(A, B) coveredBy(B, A)

8 coveredBy(A, B) covers(B, A)

the topological relation inside is the inverse of the contains relation, and vice versa.

Similarly, a spatial query can be given as a multi-Qualitative Constraint Network

(QCNQ). If the QCNQ is given as a complete graph, half of the binary relations of

a spatial query can be pruned based on a symmetric property as well. However, the

binary relations of a spatial query must be checked to ensure that they belong to the

non-pruned part of the QCND. For instance, when QCNQ contains binary relations

that belong to the pruned part of QCND, the converse operation is applied on those

binary relations.

70

4.4 Qualitative Data Reduction

Example 1 (Converse operation over binary relation of a spatial query).

In a query “Find me a park that contains a restaurant”, the topological relation contains

does not belong to QCND’. Hence, the converse operation must be applied on the

contains relation to be the inside relation and the order of object pairs must be reversed.

Consequently, the spatial query changes to be “Find me a restaurant that is inside a

park”.

71

4. QUERYING, REDUCING, AND MATCHING QUALITATIVE
INFORMATION

Table 4.3: Comparison between the three matching approaches.

Approach Space Complexity Time Complexity QSL Computing

Relations

naive O(n) O(n2) Not

required

Run time

QLM O(n2) O(n2) Required In advance

DM O(|GC
D|)+O(|CR|) O(|GC

D|)+O(|CR|) Partially

required

Partially at

run time

4.5 Summary

There is still a fairly wide gap between the qualitative concepts of a human and the

quantitative data stored in spatial databases of Geographic Information Systems (GISs).

Accordingly, we have integrated the qualitative spatial models into the geometry object

model to enable the intuitive and qualitative formalism of queries in GISs. To avoid

the extra costs of query processing, we have abstracted the Qualitative Spatial Layer

(QSL) that covers the spatial aspects of space from spatial databases. Since the space

demands of the QSL are high, we have applied two qualitative data reduction strategies.

This chapter has emphasized on the three matching approaches for answering QSQs: (1)

a naive approach, (2) Qualitative Layer Matcher (QLM), and (3) DBSCAN Matcher

(DM). The properties and capabilities vary from one approach to the next. In Table

4.3, we summarize these properties and capabilities for the approaches. Aside from

space and time complexity, Table 4.3 shows the QSL and computational requirements

for each approach, where n is the number of database objects, |GC
D| is the number of

spatial relations within clusters and between pairwise objects of cluster pairs holding

indecisive relations, and |CR| is the number of spatial relations between cluster pairs

holding decisive relations. From Table 4.3 it is apparent that the naive approach

does not require the QSL, and thus O(n) space is required. However, the approach

needs to compute O(n2) relations from database geometries at run time, which is

computationally expensive. Conversely, QLM requires the QSL, which results in O(n2)

space, but it does not need to compute spatial relations at run time. DM acts as a middle

case, in which some of spatial relations need to be computed from database geometries.

72

Chapter 5
Optimizing Indexing Approaches for

Spatial Databases

In Chapter 4 we pointed out that the interpretation tree (Itree) is an adequate repre-

sentation for solving a sub-graph isomorphism matching problem. Additionally, we used

Breadth-First Search (BFS) to match Qualitative Spatial Queries (QSQs) against the

entries of Itree. However, processing QSQs using BFS has an exponential space and

time complexity. In order to reduce the complexity of processing QSQs, we propose

five optimization indexing approaches: (1) A Hybrid Interpretation Tree and B+-Tree

(HITBT) (Section 5.1), (2) Qualitative Hash Table Indexing (QHTI) (Section 5.2), (3)

Qualitative Hash Table Compression (QHTC) (Section 5.3), (4) QHTC of Qualitative

Models (QHTCM) (Section 5.4), and (5) QHTC of Object Pairs (QHTCP) (Section 5.5).

5.1 A Hybrid Interpretation Tree and B+-Tree

In Section 4.3.2 we indicated that the graph database GD can be decomposed into

Itree at run time to be matched by a graph query GQ via BFS. However, the central

disadvantage of this approach is that all entries of Itree must be traversed (in an

arbitrary manner). This procedure requires an exponential number of steps to find

all possible answers to a GQ. Several approaches are proposed to decompose graph

databases into trees in advance, e.g., (Bodlaender, 1997; Matoušek and Thomas, 1991;

Robertson and Seymour, 1986). In particular, the authors argue that the decomposition

of a graph with a limited tree-width allows for solving the sub-graph matching problem

73

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

A1

B2 C3 C4

TB

B2

A1 C3 C4

C3

A1 B2 C4

C4

A1 B2 C3

A1

B2 C3 C4

B2

A1 C3 C4

C3

A1 B2 C4

C4

A1 B2 C3

level 1

Class_Of
_Object1

Class_Of
_Object2

Topology Distance Id_Object1 Id_Object2

A B contains near 1 2

B A inside near 2 1

A C disjoint near 1 3

C A disjoint near 3 1

B C disjoint near 2 3

C B disjoint near 3 2

A B disjoint near 1 4

B B disjoint near 2 4

C B disjoint near 3 4

C A disjoint near 4 1

C B disjoint near 4 2

C C disjoint near 4 3

B+-tree B+-tree B+-tree B+-tree

level 2

(a)

(b)

Figure 5.1: An example: the index construction of the first level of TB of HITBT.

in polynomial time. The graph GD with k-width can be decomposed into k-trees, where

k-trees enumerate and store all possible matchings in all the k-levels of GD in advance.

This approach can be actually viewed as pre-constructed Itree of GD with k-width.

Accordingly, the construction of Itree of GD with k-width can be done in polynomial

time (Bodlaender, 1997). This procedure considerably reduces time complexity of

sub-graph isomorphism matching, while it brings an exponential space complexity. In

this chapter, we assume that the queries contain a limited number of binary qualitative

spatial relations. Simplified, we refer to qualitative spatial relations as relations and for

QSQs as queries or GQ(s). Moreover, we focus on the precomputed Itree in which we

reduce space and time complexity of processing the queries.

Constructing Itree in advance allows for constructing B+-trees (see Section 3.1.2.1

for more details about B+-trees) index on its entries which implies reduction of query

processing time. In order to reduce the processing time of the queries, we propose a

Hybrid Interpretation Tree and B+-Tree (HITBT) approach. HITBT offers three operations:

Index Construction-HITBT, Search-HITBT, and Delete-HITBT.

5.1.1 Index Construction-HITBT

As shown in Figure 5.1(a), the Index Construction (IC) of HITBT can be done by

decomposing GD into several levels of tree TB, in which B+-trees are deployed on each

level of TB. In particular, Figure 5.1(b) illustrates that B+-trees are deployed on the

74

5.1 A Hybrid Interpretation Tree and B+-Tree

labels of object pairs and their relations of the first level of TB. In this dissertation,

the GD dimensions denote the labels of spatial relations holding object pairs and the

GD attributes denote the labels of object pairs and their corresponding dimensions.

Algorithm 5 lists the steps to construct TB from GD. With G[g], we denote the gth vertex

of a graph GD. The algorithm iterates all possible k-ary tuples of objects with k ≥2

and k < �, where � is the maximum tree-width1 (line 3). For instance, k = 2 constructs

all graph sets that consist of two object pairs and their relations. Subsequently, the

labels of all object pairs and their relations per level k are stored in a temporal tree

(TempTG) (lines 3 to 9). In the end, TempTG is added into tree TB and then B+-trees

are deployed on the attributes of TB (lines 10 and 11).

Algorithm 5: IndexConstruction HITBT(DBgraph GD, TreeLevel �)

output : TB: all possible sets of object pairs and their relations indexed by

B+-trees

1 initialization: TempTG←NULL; TB←NULL; �←MaxQuerySize;

2 TB.Level(1)←GD;

3 for k ← 2 to � do

4 TempHG←NULL;

5 for h← 1 to � do

6 for m← 1 to |TB.Level(k − 1)| do
7 TempHG.Add(GD[h], T

B.Level(k − 1)[m]));

8 end

9 end

10 TB.Add(TempHG, k);

11 TB.Level(k).Apply.B+-trees();

12 end

5.1.2 Search-HITBT

In order to match a query, HITBT matches each attribute of TB by each attribute of GQ

using the search operation of B+-trees (cf. Section 3.1.2.1). Eventually, the returned

results of the attributes are intersected to obtain the final results of the query. Algorithm

6 shows the steps to match GQ against the entries of TB. Firstly, the level of TB that

1In our case the maximum tree-width is restricted to a maximum size that a query is allowed to be.

75

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

needs to be searched is identified via the order of GQ (line 2). Next, the attributes of

GQ are matched against the attributes of TB using B+-trees search operation (line 3).

Lastly, the results of the attributes are intersected with the values of new attributes

and then stored in M (lines 4 to 7).

Algorithm 6: Match HITBT(B+-trees TB, QueryGraph GQ)

output :M: a set of matches satisfying GQ

1 initialization: M←NULL; FirstAtrr←NULL; Tlevel←NULL;

2 Tlevel←TB.Level(|GQ|);
3 FirstAtrr←GQ.Get First Attribute();

4 M← Tlevel.FirstAtrr.B+-trees.Search(FirstAtrr);

5 foreach attributes attr ∈ GQ with attr �= FirstAtrr do

6 M← M∩ TB.attr.B+-trees.Search(GQ.attr);

7 end

5.1.3 Delete-HITBT

Given an object o that is requested to be deleted, first HITBT needs to find all the entries

of each level of TB that match label o. Accordingly, the matched entries are deleted

from TB and result in a new tree TB’. Algorithm 7 outlines the steps to delete o from

TB. First, in every level of TB with k ≥1 all object pairs that contain the object o are

fetched through B+-trees search operation and then stored in a temporal variable TMP

(lines 2 and 3). Subsequently, TMP entries are iterated where object pairs that contain

the exact Id of o are deleted from TB and B+-trees (lines 4 to 9). Finally, the structure

of TB and the pointers of B+-trees are updated (lines 10 and 11).

5.1.4 Discussion

We have described the HITBT approach that aimed to accelerate the spatial query

processing by deploying B+-trees onto each level of TB of HITBT. However, HITBT suffers

from two major drawbacks: (1) high dimensionality and (2) high space complexity. The

first drawback has been stemmed from applying B+-trees on every attribute for each

level of TB . Due to this, a significant amount of space is needed to store B+-trees indices.

The second drawback has been caused due to the fact that the number of constructed

sets of TB is very highly grown with the number of the levels of TB . Therefore, there is

76

5.2 Qualitative Hash Table Indexing

Algorithm 7: Delete HITBT(B+tree TB, Object o)

output : TB’: TB without any occurrence of o

1 initialization: TMP←NULL;

2 for k ← 1 to TB.MaxLevel do

3 TMP ← TB.Level(k).GetPairs(o);

4 foreach tmp ∈ TMP do

5 if tmp.Contains(o.Id) then

6 TB.Level(k).Delete(tmp);

7 TB.Level(k).B+-trees.Delete(tmp);

8 end

9 end

10 TB.Level(k).Update();

11 TB.Level(k).B+-trees.Update();

12 end

a necessity to develop approaches that extend and enhance the capability of HITBT by

dealing with aforementioned drawbacks.

5.2 Qualitative Hash Table Indexing

In this section we introduce a Qualitative Hash Table Indexing (QHTI) to deal with a

high dimensionality issue that has been explained in Section 5.1.4. We have sketched

QHTI in (Al-Salman and Dylla, 2013). Here we detail QHTI and its architecture is

depicted in Figure 5.2(a), (b), (c), and (d).

The objective of QHTI is to compute all qualitative spatial relations between object

pairs in a database D and store them in a hash table. QHTI particularly copes with the

problem of high dimensionality by concatenating N attributes of the abstracted graph

database (GD) into a single attribute. Again, the GD dimensions denote the labels of

spatial relations holding object pairs and the GD attributes denote the labels of object

pairs and their corresponding dimensions. Simplified, QHTI provides three operations:

(1) Index Construction, (2) Search, and (3) Delete.

77

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

A

CB

D

R
1 R

2

R3

R
4

R
5

R
6

A

CB

D

A
 R

1 B

B
 R

5
 D

D
 R

6
 C

B R3 C

D
 R
4

 A

C
 R

2
 A

A B C D

A R1 B B R3 C C R2 A D R6 C D R4 AB R5 D

A R1 B R5 D B R3 C R2 A D R6 C R2 AB R5 D R6 C...

...

A R1 B B R5 D B R3 C C R2 A D R6 C D R6 C

A R1 B R5 D B R5 D R2 C B R3 C R2 A D R6 C R2 A

Hash level 1

Hash level 2

A R1 B R5 D B R3 C R2 A D R6 C R2 AB R5 D R6 C...

Hash

A R1 B B R3 C C R2 A D R6 C D R4 AB R5 D

A B C D

Merge Decomposition

Hashing

...

...

Compressing

Hash level 1

Hash level 2

A R1 B D R6 C D R6 A

A R1 B R5 D B R3 C R2 A D R6 C R2 A

...

key

The number of recurring sets

Pairs of objects and relations

Hash

Spatial relations layer

Semantic layer

......

...

NR :

NR MBRMBR : MBR of recurring sets

Graph DB (G
D

)

G
e
o
m

e
tr

ic
 d

a
ta

Abstraction

Geometric layer

(a) (b) (c)

Bucket 0 (00) Bucket 1 (01) Bucket 2 (10)

Bucket 0 (00) Bucket 1 (01)

key

Pointer to the record address of DB on disk

Bucket 0 (00) Bucket 1 (01) Bucket 2 (10)

Bucket 0 (00) Bucket 1 (01) Bucket 2 (10)

...

Id :

Id NR MBRId NR MBRId

NR MBRIdNR MBRIdNR MBRId

A unique id to related geomtries in DB

Pairs of objects and relations

Pointer to the record address of DB on disk

QHTI

QHTC (e)

(d)

Figure 5.2: Architecture of Qualitative Hash Table Indexing (QHTI) and Compression

(QHTC).

5.2.1 Index Construction-QHTI

QHTI index construction consists of two steps: (a) merging and (b) decomposition and

hashing.

(1) Merging : In the merging step for each object pair in database D and their cor-

responding edges specific labels are calculated from the quantitative values (Figure

5.2(a)). First, the qualitative relation r of a specific qualitative dimension is derived,

e.g., topology (Egenhofer and Franzosa, 1995). The new label l results from joining the

relation name with the names of the vertices, e.g., from the relation Contains holding

between objects X and Y results in a single label “X Contains Y” (Figure 5.2(b)). So,

we can derive a graph database GD by computing the relations from the geometric (or

quantitative) data ∀oi, oj ∈ OD with oi �= oj , generating the according label (merging),

and adding them to GD. This procedure has a complexity of O(η|OD|2), where η is the

number of qualitative dimensions.

78

5.2 Qualitative Hash Table Indexing

Class_Of_Object

1

Class_Of_Object

2

Topology Id_Object

1

Id_Object

2

A B contains 1 2

B A inside 2 1

A C disjoint 1 3

C A disjoint 3 1

B C disjoint 2 3

C B disjoint 3 2

A B disjoint 1 4

B B disjoint 2 4

C B disjoint 3 4

B A disjoint 4 1

B B disjoint 4 2

B C disjoint 4 3

Classes_Of_Merged_Object

_Pairs

Id_Object1 Id_Object2

AcontainsB 1 2

BinsideA 2 1

AdisjointC 1 3

CdisjointA 3 1

BdisjointC 2 3

CdisjointB 3 2

AdisjointB 1 4

BdisjointB 2 4

CdisjointB 3 4

BdisjointA 4 1

BdisjointB 4 2

BdisjointC 4 3

T.level(1) T.level(1) of QHTI
Hashing

(a) (b)

Figure 5.3: An example: the index construction of the first level of T.

(2) Decomposition and Hashing : In the second step, GD with k-width is decomposed

into a tree T, where k ≥2, k < �, and � is the maximum tree-width1. Each level k of T

comprises all possible subsets of k + 1 vertices (i.e. objects) and their relations with

(Figure 5.2(c) and (d)). We apply linear hashing (Litwin, 1980) to hash the entries

in each level of the tree, because it is able to cope with databases that change their

size dynamically (cf. Section 3.1.2.3). Hash keys and values are generated from object

names and their relations (Figure 5.2(d)). We start with initializing the first tree level

with GD and iteratively build-up each tree level k by adding an object from GD to the

subsets derived in level k-1 (Algorithm 8). With G[g] (H [h]) we denote the gth vertex of

a graph GD (hth object of a hash table H). For each tree level linear hashing is applied.

Figure 5.3 gives an example how labels of the first level of T are generated (or

merged) from the object names and their corresponding topological relations.

5.2.2 Search-QHTI

In order to match a query GQ against the hash table entries, QHTI does not need to visit

all hash entries. We only need to consider entries that have the same hash value as GQ.

1Again, in our case the maximum tree-width is restricted to a maximum size that a query is allowed

to be.

79

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

Algorithm 8: IndexConstruction QHTI(DBgraph GD)

output : T: GD decomposed and hashed into a tree T

1 initialization: TempTG←NULL; label←NULL; T←NULL; �←MaxQuerySize;

2 T.Level(1)←GD;

3 for k← 2 to � do

4 TempHG ← NULL;

5 for h ← 1 to � do

6 for m ← 1 to |T.Level(k − 1)| do
7 label ← Merge(GD[h], T.Level(k − 1)[m]);

8 TempHG.Add(label);

9 end

10 end

11 T.Add(TempHG,k);

12 T.Level(k).ApplyLinearHashing();

13 end

For instance, given a query with a hash value of (01), only hash entries with value (01)

need to be traversed. In Algorithm 9 we first generate a hash entry from GQ (lines 2 to

4). Then, the hash value of this entry is used to fetch all entries with the same value in

T (line 5). Finally, the hash key of the query is matched against the hash keys of T

using the hash search operation Get(·) in line 6. This Get(·) sub-procedure (defined in

Algorithm 10) extracts the actual entries of the hash values. Figure 5.4 illustrates an

example of structuring and matching a query against the entries of T.level(2).

5.2.3 Delete-QHTI

In order to delete an object o from GD, each level of T must be traversed and each

entry containing o needs to be deleted (Algorithm 11). In each level we first store all

tuples that contain o (lines 2 and 3) and for each of these tuples we generate the key

and delete the corresponding entry (lines 4 to 8).

5.2.4 Discussion

In this section, we have proposed QHTI that hashes and indexes all possible object pairs

combined with their relations into buckets of a hash table. Nevertheless, QHTI does not

80

5.2 Qualitative Hash Table Indexing

Algorithm 9: Search QHTI(QHTI tree T, Query GQ)

output :M: set of matches that satisfy GQ

1 initialization: M ←NULL; QHash←NULL; HashList←NULL; �←|GQ|;
2 foreach pair p = (oi, oj) ∈ GQ with oi �= oj do

3 QHash.Add(Merge(p, GQ));

4 end

5 HashList←T.(�).GetHashKeys(GetHash(QHash));

6 M←Get(HashList, QHash);

7 return M;

Algorithm 10: Get(Hash List HList, Hash Key QHash)

output :M: set of hash values

1 if |HList| < 1 then

2 return NULL;

3 else if |HList|==1∧HList==QHash then

4 return HList.Ptr;

5 else

6 M← NULL;

7 for z← 0 to |HList| do
8 if HList[z]== QHash then

9 M.Add(HList[z].ptr);

10 return M;

scale in terms of space as it requires exponential number of sets with the levels of T

of QHTI. In general, QHTI generates many recurring sets of hash values in each level of

tree T of QHTI. Accordingly, there is a great opportunity to develop an approach that

extends QHTI by handling these recurring sets and represent them as a unique set which

will arguably decrease the total size of T.

81

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

A R1 B R5 D

Query: “ Find a restaurant inside a park and a park near a riverbank”

“ A R1 B B R5 D ”

Structure

Matching

...

A R1 B B R5 D B R3 C C R2 A D R6 C D R6 C

A R1 B R5 D B R5 D R2 C B R3 C R2 A D R6 C R2 A

Hash level 1

Hash level 2 ...

Spatial relations layer

Bucket 0 (00) Bucket 1 (01) Bucket 2 (10)

Bucket 0 (00) Bucket 1 (01)

...

T of QHTI

(00)

Figure 5.4: Example of structuring and matching a query against the second level of T.

5.3 Qualitative Hash Table Compressing

In Section 5.2.4, we pointed out that space demands of QHTI are high. Additionally,

we observed that QHTI may generate many recurring sets in each level of tree (T) of

QHTI. In this section, we thusly propose Qualitative Hash Table Compression (QHTC)

that reduces space consumption by extracting recurring sets. QHTC summarizes these

recurring sets and represents them uniquely in a hash table (TC). Similar to QHTI, QHTC

provides the three methods: (1) Index Construction, (2) Search, and (3) Delete.

5.3.1 Index Construction-QHTC

The index construction of QHTC represents all entries of T derived by QHTI as a Unique

Set of Values (USV) by eliminating all recurrent sets (Figure 5.2(e)). Then, in each level

of T derived by QHTI, a USV is stored in the corresponding level of TC . Moreover, QHTC

computes the MBR for each entry of the USV1. We note that the MBR is very important

to give an approximation for sets to match, even before retrieving the actual geometries

of these recurrent sets. In Figure 5.2(e) we depict the compression of the sets of QHTI

in a semantic layer. We deploy linear hashing in QHTC to map each unique set into the

corresponding bucket in TC . In addition, each hash entry is assigned three additional

1We calculate the MBR by accumulating over the centroids of each recurrent set.

82

5.3 Qualitative Hash Table Compressing

Algorithm 11: Delete QHTI(QHTI tree T, Object o)

output : T’: T without any occurrence of o

1 initialization: TMP←NULL;

2 for k← 1 to T.MaxLevel do

3 TMP ← T.Level(k).GetPairs(o);

4 foreach tmp ∈ TMP do

5 if tmp.Id==o.Id then

6 T.Level(k).LinearHash.Delete(GetHash(tmp), tmp);

7 end

8 end

9 end

variables: 1) NR: the number of recurrences, 2) MBR: the minimum bounding rectangle

of the recurring sets, and 3) Id : a unique id to the corresponding geometries in the

database D. As introduced before (cf. Section 4.3), we denoted the geometries part of

D by FD.

Algorithm 12 details the steps to construct the index. Given a hash table T generated

by QHTI we hash and map all recurrent sets in each level k into so-called buckets (lines

2 to 4). When a recurrent set with the same hash key and value already exists in TC

(lines 5 to 7), we increment the counter NR for this hash entry (line 8). Subsequently,

the pointer to the actual geometries of the objects in FD is added to a database table

DBh that maintains all pointers corresponding to FD (line 9). Additionally, the MBR

is updated to include the new geometry of the matched entry (line 10). Otherwise,

a recurrent set is hashed and mapped to the corresponding bucket, its NR value is

initialized with 1 and a pointer is added to DBh, its Id is initialized by a new unique

identifier, and its MBR is updated (lines 12 to 17). Finally, B+-trees are applied on the

pointers (Id′s) of DBh to allow retrieving the corresponding geometries in logarithmic

time (line 20).

A detailed example of constructing the index of TC .Level(1) is depicted in Figure

5.5. Figure 5.5(a) shows two entries in T.Level(1) (marked with green color) that form

a recurring set and Figure 5.5(b) shows how they are represented in TC .Level(1).

83

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

Algorithm 12: IndexConstruction QHTC(QHTI tree T, GeomDB FD)

output : TC : all unique hash entries in T,

DBh: according pointers FD for entries TC

1 initialization: TC←NULL; HashList←NULL; SPairs←NULL; DBh←NULL;

c←0; h ←NULL;

2 for k ← 1 to T.MaxLevel do

3 SPairs← T[k];

4 foreach SP∈ SPairs do

5 h ← GetHash(SP);

6 HashList←TC .Level(k).GetHashKeys(h);

7 if Get(HashList,SP) �=NULL) then

8 TC .Level(k).SP .NR++;

9 DBh.Add(SP .Id, FD.Geometries);

10 TC .Level(k).SP .Update(MBR)←DBh.GetMBR(SP .Id, FD);

11 else

12 c++;

13 TC .Level(k).Hash&Insert(SP);

14 TC .Level(k).SP .NR←1;

15 TC .Level(k).SP .Id←c;

16 DBh.Level(k).Add(SP .Id, FD.Geometries);

17 TC .Level(k).SP .Update(MBR)←DBh.GetMBR(SP .Id, FD);

18 end

19 end

20 DBh.Level(k).Ids.Apply.B+-tree();

21 end

84

5.3 Qualitative Hash Table Compressing

Classes_Of_Merged_Object__Pai

rs

Id_Object1 Id_Object2

AcontainsB 1 2

BinsideA 2 1

AdisjointC 1 3

CdisjointA 3 1

BdisjointC 2 3

CdisjointB 3 2

AdisjointB 1 4

BdisjointB 2 4

CdisjointB 3 4

BdisjointA 4 1

BdisjointB 4 2

BdisjointC 4 3

Classes_Of_Merged_O

bject_Pairs

Ids_of_Objects MBR

NR

AcontainsB {1,2} MBR({1,2}) 1

BinsideA {2,1} MBR({{2,1}) 1

AdisjointC {1,3} MBR({1,3}) 1

CdisjointA {3,1} MBR({3,1}) 1

BdisjointC {2,3},{4,3} MBR({2,3},{4,3}) 2

CdisjointB {3,2},{3,4} MBR({3,2},{3,4}) 2

AdisjointB {1,4} MBR({1,4}) 1

BdisjointB {2,4},{4,2} MBR({2,4},{4,2}) 2

BdisjointA {4,1} MBR({4,1}) 1

Hashing
T.level(1) of QHTI TC.level(1) of QHTC

(a) (b)

Figure 5.5: An example: the index construction of the first level of TC .

5.3.2 Search-QHTC

QHTC only requires visiting TC entries that have the same hash value as GQ in order to

match a spatial query GQ.

Algorithm 13 outlines the steps for matching a user query against the entries of TC .

Firstly, GQ is restructured as a hash entry (QHash) (lines 2 to 4). The hash value is

then derived from QHash and used to retrieve entries of TC which have the same hash

value. These are stored in the linked-list (HashList) (line 5). Secondly, HashList and

the key of QHash are passed to the Get() sub-procedure that finds the entry of TC

with the same key (line 6). Unlike QHTI, in QHTC the Get() sub-procedure returns a

single entry at most, due to the fact that the entries of TC are unique. If a query is

matched, the corresponding MBR and NR are first retrieved from the matched entry of

TC (lines 7 and 8). Lastly, the actual geometries of the matched entries are retrieved

from FD via DBh (line 9).

5.3.3 Delete-QHTC

Deleting an object o from TC requires traversing each level of TC and removing entries

containing o (Algorithm 14). QHTC iterates over each level of TC and extracts all tuples

containing o (lines 2 and 3). Now, for each extracted entry, the matches are retrieved

85

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

Algorithm 13: Search QHTC(QHTC tree TC , Query GQ, DBPointersDBh, GeomDB

FD)

output :M: a set of matches that satisfy GQ

1 initialization: M←NULL; level ← |GQ|; QHash ←NULL; MatchEnt←NULL;

HashList←NULL;

2 foreach Pair p ∈ GQ do

3 QHash.Add(MergePairAndRelation(p));

4 end

5 HashList←TC(level).GetHashKeys(GetHash(QHash));

6 MatchEnt ← Get(HashList, QHash);

7 if MatchEnt�=NULL then

8 MatchEnt.Returns(NR, MBR);

9 M.Add(DBh.GetGeometries(MatchEnt.Id, FD));

10 return M;

11 end

and stored in M (lines 4 and 5). Next, QHTC goes through each entry (mat) of M to

find the entries that have the same Id as o.Id (lines 6 and 7). When mat.Id equals o.Id

and its number of recurrences NR > 1, then NR is decremented, the MBR value of mat

is updated, and its pointers of DBh and B+-trees are deleted (lines 8 to 12). Otherwise,

the mat entry and its pointers are completely eliminated from TC (lines 13 to 17).

5.3.4 Discussion

As an extension of QHTI, we have proposed QHTC approach that has been aimed to

reduce the vast number of (recurring) entries in tree (T) generated by QHTI. Although

QHTC may have a much smaller number of entries, each QHTC entry contains pointers to

a list of object pairs to the hash value of the entry. As a result, the number of object

pairs that QHTC has to keep track of is exact the same as that of QHTI.

However, the main goal of QHTC was to accelerate the matching of QSQs on a

qualitative level but not a quantitative one. This procedure gave QHTC an ability to

retrieve the MBR and the number of a query matches even before retrieving the actual

geometries for these matches. Moreover, QHTC keeps track of the corresponding object

pairs by using a list of numeric Id′s that considerably require less space than storing

86

5.3 Qualitative Hash Table Compressing

Algorithm 14: Delete QHTC(QHTC tree TC , DBPointers DBh, Object o, GeomDB

FD)

output : TC ’: TC without o

1 initialization: M← NULL; TMP ← NULL;

2 for l ← 1 to TC .MaxLevel do

3 TMP ←TC .Level(l).GetPairs(o);

4 foreach tmp ∈ TMP do

5 M←Search QHTC(TMP , tmp, DBh, FD);

6 foreach mat ∈ M do

7 if mat.Id==o.Id then

8 if (mat.NR)>1 then

9 TC .Level(l).mat.NR← NR-1;

10 TC .Level(l).SP .Update(MBR)←DBh. GetMBR(mat, FD);

11 DBh.Level(l).B+-tree.Delete(mat.Id);

12 DBh.Level(l).Delete(o.Id, FD.Geometries);

13 else

14 TC .Level(l).LinearHash.Delete(mat);

15 DBh.Level(l).B+-tree.Delete(mat.Id);

16 DBh.Level(l).Delete(o.Id, FD.Geometries);

17 end

18 end

19 end

20 end

21 end

the labels of object pairs and their relations themselves.

Nevertheless, the efficiency of QHTC depends on the amounts of the recurrent entries

of T. Consequently, QHTC becomes impractical approach when the T entries do not

possess many recurrences. Alternatively, the recurrences of the labels of the relations or

object pairs can be determined in order to increase the possibility of finding recurrences

(or repeated sets). Therefore, variants of QHTC that represent either the labels of relations

or object pairs as unique sets can be developed. The development of such variants will

lead to decrease the amounts of the recurring labels of relations or object pairs in T

respectively.

87

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

5.4 Qualitative Hash Table Compressing of Qualitative

Models

In the previous section, we have developed QHTC as an extension to QHTI. Furthermore,

we have indicated that determining either labels of relations or object pairs instead of

combining both, might increase the possibility of finding recurrences (cf. Section 5.3.4).

Especially, qualitative models and object pairs usually have a limited number of labels

of relations or object pairs respectively. For instance, the 9-intersection model contains

eight spatial relations and thus eight labels which implies a higher possibility of finding

recurrences. In this section, we only focus on determining the recurring sets of labels

of relations and we thusly propose Qualitative Hash Table Compressing of Qualitative

Models (QHTCM) as a variant of the original QHTC. QHTCM provides three operations:

Indexing Construction-QHTCM , Search-QHTCM , and Delete-QHTCM .

5.4.1 Index Construction-QHTCM

The key idea behind the Index Construction (IC) of QHTCM is to aggregate the recurrent

sets of labels, i.e., relations. These labels can be used to index the underlying object

tuples labels. QHTCM stores unique relations in the hash table (TM .SpRel), where

each entry points to the corresponding object tuples stored in another database table

(TM .OPairs). In particular, linear hashing is deployed in QHTCM to map each unique

set of relations into the corresponding bucket in TM .SpRel. In addition, each hash

entry has two additional variables: 1) NR: the number of recurrences and 2) Id: a

unique id to the corresponding object tuples in the database D.

Algorithm 15 illustrates construction of the index of QHTCM . The Algorithm runs

through each level of T of QHTI, extracts spatial relations and object tuples, and stores

them in two array variables SpatialRels and Pairs (lines 2 to 4). Next, hash values are

derived from SpatialRels entries that are used to map SpatialRels entries (keys) into

corresponding buckets (lines 5 to 8). However, when an entry does already exist in the

hash table, then its NR value is incremented and a pointer is added to its associated

object tuples (lines 9 to 11). Otherwise, an entry is inserted into the hash table (line 13),

its NR value is initialized by 1 (line 14), its Id is initialized by a new unique identifier

(lines 15 and 16), and eventually a pointer is added to its associated object tuples (line

17).

88

5.4 Qualitative Hash Table Compressing of Qualitative Models

Algorithm 15: IndexConstruction QHTCM (QHTI tree T)

output : TM : aggregated the relations of T pointing to their object tuples

1 initialization: TM←NULL; HashList←NULL; SpatialRels←NULL;

Pairs←NULL; c←0; OP←NULL; SR←NULL;

2 for k← 1 to T.MaxLevel do

3 SpatialRels← T[k].GetRelations();

4 Pairs← T[k].GetObjPairs();

5 for u← 1 to |SpatialRels| do
6 SR← SpatialRels[u];

7 OP ← Pairs[u];

8 HashList←TM .Level(k).SpRel.GetHashKeys(GetHash(SR));

9 if Get(HashList, SR) �=NULL) then

10 TM .Level(k).SpRel.SR.NR++;

11 TM .Level(k).OPairs.Add(SR.Id, OP);

12 else

13 TM .Level(k).SpRel.Hash&Insert(SR);

14 TM .Level(k).SpRel.SR.NR←1;

15 c++;

16 TM .Level(k).SpRel.SR.Id←c;

17 TM .Level(k).OPairs.Add(SR.Id, OP);

18 end

19 end

20 end

89

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

5.4.2 Search-QHTCM

QHTCM provides a hierarchical matching procedure which consists of two phases. In

the first phase, QHTCM attempts to match the relations of a spatial query GQ against

the relations of TM . Once a matching is found in the hash table, the second phase of

QHTCM commences by using the relations to retrieve all its related object tuples. Finally,

the retrieved object tuples of TM .OPairs are matched by the object tuples of GQ.

Algorithm 16 details the steps for matching GQ against the entries of TM . It first

stores the relations and object tuples of GQ in two variables SR and OP respectively

(lines 2 and 3). Afterwards, the hash value of SR is generated and used to fetch the

hash keys of TM .SpRel with the same hash value (line 4). Subsequently, the hash keys

are matched by SR through the Get() sub-procedure (line 5). If SR is found, then the

corresponding object tuples and their gId
′s (Id’s pointing to geometries) are retrieved

(lines 6 to 8).

Algorithm 16: Search QHTCM (QHTCM tree TM , Query GQ)

output :M: a set of matches that satisfy GQ

1 initialization: M←NULL; level← |GQ|; SR←NULL; MatchEntry←NULL;

OP←NULL; HashList←NULL;

2 SR←GQ.GetRelations();

3 OP←GQ.GetObjPairs();

4 HashList←TM (Level).SpRel.GetHashKeys(GetHash(SR));

5 MatchEntry ←Get(HashList, SR);

6 if MatchEntry �=NULL then

7 return M←TM .OPairs.Level(level).Search(MatchEntry.Id, OP);

8 end

5.4.3 Delete-QHTCM

To delete an object o from TM , all levels of TM need to be traversed. Meaning all

entries that match the label and Id of o are deleted within each level of TM . Algorithm

17, outlines the steps to delete o from TM . Firstly, the relations of TM are extracted

for each level of the tree, and stored in SR (lines 2 and 3). Secondly, we go through

each entry sr of SR, use its id to fetch related object tuples, and eventually store

them in MatchedPairs (lines 4 and 5). We similarly run through each entry mat of

90

5.4 Qualitative Hash Table Compressing of Qualitative Models

Algorithm 17: Delete QHTCM (QHTCM tree TM , Object o)

output : TM ’: TM without o

1 initialization: mat←NULL; SR←NULL; MatchedPairs←NULL;

2 for l← 1 to TM .MaxLevel do

3 SR←TM .Level(l).SpRe.GetRelations();

4 foreach sr ∈ SR do

5 MatchedPairs←TM .OPairs.Level(l).GetObjPairs(sr.Id);

6 foreach mat ∈ MatchedPairs do

7 if mat.Id==o.Id then

8 if (mat.NR)≤1 then

9 TM .Level(l).SpRel.LinearHash.Delete(sr);

10 TM .Level(l).OPairs.Delete(mat.Id);

11 else

12 TM .Level(l).SpRel.sr.NR← NR-1;

13 TM .Level(l).OPairs.Delete(mat.Id);

14 end

15 end

16 end

17 end

18 end

MatchedPairs (line 6) to erase any entry with the same Id of o (line 7). When only one

MatchedPairs entry is detected, then the sr and mat entries are completely deleted

from TM (lines 8 to 10). Otherwise, the NR of sr is decremented and the mat entry is

removed from TM (lines 11 to 14).

5.4.4 Discussion

In this section, we have described QHTCM as an extension to QHTC. We have particularly

pointed out that QHTCM determines labels of relations instead of the combined labels

of relations and object pairs as it is done by QHTC. This procedure might boost the

possibility of discovering recurrence sets. Nevertheless, QHTCM has a limitation as it

allows for only reduction of qualitative dimensions, whereas the labels of object pairs

are completely stored in the database. Moreover, QHTCM is based on a two-stage index

91

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

structure which means that the implementation of such an index structure is much more

complex than the index structure induced by QHTC.

5.5 Qualitative Hash Table Compressing of Object Pairs

Quite similar to QHTCM and with the same foundations and motivation, we propose

a Qualitative Hash Table Compressing of Object Pairs (QHTCP) as a variant of QHTC.

QHTCP is a two-levels index structure, in which the recurrent sets of the labels of object

pairs tuples are aggregated and then used to index the related labels of relations. QHTCP

offers three operations: Index Construction-QHTCP , Search-QHTCP , and Delete-QHTCP .

5.5.1 Index Construction-QHTCP

The Index Construction (IC) of QHTCP is built based on T, the output of QHTI. Very

similar to QHTCM the IC of QHTCP stores object pairs and the relations in each level of

tree. Generally speaking, IC aggregates the repeated sets of the labels of object pairs

which are used to index their relations labels. The IC steps of QHTCP are detailed in

Algorithm 18. The algorithm iterates each level of T, extracts spatial relations and

object pairs, and stores them in two array variables SpatialRels and Pairs respectively

(lines 2 to 4). Afterwards, hash value is computed from each entry of Pairs and then

mapped into a related bucket in the hash table TP .OPairs (lines 5 to 8). If only the

entry exists with same hash value and key, then its NR value is incremented and its

Id′s and gId
′s (Id’s pointing to geometries) are added into spatial relations database

table (TP .SpRel) (lines 9 to 12). Otherwise, the entry is inserted into the hash table

(line 15), its NR value is initialized by 1 (line 16), its Id is initialized by a new unique

identifier (line 17), and eventually pointers are added to its associated spatial relations

tuples in TP .SpRel (lines 18 and 19).

5.5.2 Search-QHTCP

A two-stage hierarchal matching is performed by QHTCP to answer a spatial query GQ

(Algorithm 19). Initially, the level of TP is determined by the size of GQ and then the

object pairs and the relations are obtained from GQ (lines 1 to 3). Subsequently, the

labels of object pairs of GQ are matched against the entries of the hash table TP .OPairs

(lines 4 and 5). In case a match exists (line 6), then its Id and the relations of GQ are

92

5.5 Qualitative Hash Table Compressing of Object Pairs

Algorithm 18: IndexConstruction QHTCP (QHTI tree T)

output : TP : Aggregated object pairs of T pointing to their relations

1 initialization: TP←NULL; SpatialRels←NULL; Pairs←NULL; c←0;

PO←NULL; SR←NULL; HashList←NULL;

2 for k← 1 to T.MaxLevel do

3 SpatialRels← T[k].GetRelations();

4 Pairs← T[k].GetObjPairs();

5 for u← 1 to Pairs.Length do

6 SR← SpatialRels[u];

7 PO ← Pairs[u];

8 HashList←TP .Level(k).OPairs.GetHashKeys(GetHash(PO));

9 if Get(HashList, PO) �= NULL) then

10 TP .Level(k).OPairs.PO.NR++;

11 TP .Level(k).SpRel.Add(PO.Id, SR);

12 TP .Level(k).SpRel.Add(PO.Geoms.Id, SR);

13 else

14 c++;

15 TP .Level(k).OPairs.Hash&Insert(OP);

16 TP .Level(k).OPairs.OP .NR←1;

17 TP .Level(k).OPairs.OP.Id←c;

18 TP .Level(k).SpRel.Add(PO.Id, SR);

19 TP .Level(k).SpRel.Add(PO.Geoms.Id, SR);

20 end

21 end

22 end

93

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

matched against the Id′s and the relations of TP .SpRel entries (line 7). Finally, the

matches and their geometric Id′s are retrieved (line 7).

Algorithm 19: Search QHTCP (QHTCP tree TP , Query GQ)

output :M: a set of matches that satisfy GQ

1 initialization: M←NULL; level← |GQ|; SR←NULL; PO←NULL;

HashList←NULL; MatchEntry←NULL;

2 SR←GQ.GetRelations();

3 OP←GQ.GetObjPairs();

4 HashList←TP (Level).OPairs.GetHashKeys(GetHash(OP));

5 MatchEntry←Get(HashList, OP);

6 if MatchEntry �=NULL then

7 return M←TP .SpRel.Level(level).Search(MatchEntry.Id, SR);

8 end

5.5.3 Delete-QHTCP

In QHTCP , deleting an object o from TP is done by removing the entries which have the

same Id and label of o in each level of TP (Algorithm 20). For each level of TP , QHTCP

starts by finding object tuples that contain the object label of o (lines 2 and 3). Next,

it iterates over each entry of the found object tuples and deletes the entries containing

o.Id (lines 4 to 18).

94

5.6 Summary

Algorithm 20: Delete- QHTCP (QHTCP tree TP , Object o)

output : QHTCP ’: QHTCP without o

1 initialization: mat←NULL; PO←NULL; MatchedRels←NULL;

2 for l← 1 to TP .MaxLevel do

3 PO←TP .Level(l).OPairs.GetObjPairs(o);

4 foreach po ∈ PO do

5 MatchedRels←TP .SpRe.Level(l).GetRelations(po.Id);

6 foreach mat ∈ MatchedRels do

7 if mat.Geoms.Id==o.Id then

8 if (mat.NR)≤1 then

9 TP .Level(l).SpRel.LinearHash.Delete(mat.Id);

10 TP .Level(l).OPairs.Delete(po);

11 else

12 TP .Level(l).OPairs.sr.NR← NR-1;

13 TP .Level(l).SpRel.Delete(mat.Id);

14 end

15 end

16 end

17 end

18 end

5.6 Summary

In this chapter we have presented five optimization indexing approaches to enhance

the space and time scalability of the spatial query processing. The properties and

capabilities vary from one approach to the next. We therefore summarize in Table 5.1

these properties and capabilities for the proposed approaches. Table 5.1 conveys that

all the approaches are dynamic, in the sense that they allow for updating (e.g., delete)

the database. In particular, HITBT has an ability and flexibility to answer the queries

that have variant number of binary relations. For example, a query may contain a

single relation (e.g., disjoint) between one object pair and two relations (e.g., inside

and north) between another object pair. In fact such approach might be suitable and

applicable to deal with the queries that come in the form of verbal descriptions.

95

5. OPTIMIZING INDEXING APPROACHES FOR SPATIAL
DATABASES

Table 5.1: Comparison between the five indexing approaches.

Dynamic Relations

Flexible

Dimensions

Reduc.

Provide

Reduc.

MBR

Approx.

Indexing

HITBT yes yes no no no B+-trees

QHTI yes no yes no no Linear Hashing

QHTC yes no yes yes yes Linear Hashing

and B+-trees

QHTCM yes no partially partially no Linear Hashing

and B+-trees

QHTCP yes no partially partially no Linear Hashing

and B+-trees

In turn, QHTI includes dimensions reduction property. QHTC offers dimensions and

qualitative data reduction as well as an MBR approximation for the queries. Finally

QHTCM and QHTCP partially provide dimensions and qualitative data reductions.

QHTI, QHTC, QHTCM , and QHTCM are only able to answer the queries that have the

same number of relations between object pairs. Hence, these methods might be useful to

cope with the queries that come in the form of visual descriptions (e.g., query-by-sketch).

96

Chapter 6
Implementation and Applications

In this chapter, we present the components of our system that we call QualEnabler

and depict in Figure 6.1. QualEnabler consists of six components: (1) PostGIS (see

Section 6.1), (2) A Qualitative Spatial Layer (see Section 6.2), (3) Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) Clustering (see Section 6.3), (4)

Indexing Approaches (see Section 6.4), (5) Client-Side Interfaces (see Section 6.5), and

(6) System Evaluation (see Section 6.6). Some of the system components have been

implemented in Java1 or PL/pgSQL2 or a combination of them. We select Java as

it is open source and platform independent. Furthermore, it offers several ready-to-

use libraries that provide a rich set of data-structures (e.g., hash tables) and built-in

functions. In turn, we select PL/pgSQL, since it supports functions and data-structures

that are optimized to PostgreSQL. Finally, the client-side interfaces are developed using

PHP3, XHTML4, and Java, since they are efficient application development languages.

6.1 PostGIS: A Spatial Layer

In order to store, manage, and query spatial data we have used PostgreSQLv9.05, an

open source and powerful Spatial Data-Base Management System (SDBMS).

1Java: http://www.oracle.com/us/technologies/java/overview/index.html
2PL/pgSQL: http://www.postgresql.org/docs/9.0/static/plpgsql.html
3PHP: http://www.php.net/
4XHTML: http://www.w3schools.com/html/default.asp
5PostgreSQL: http://www.postgresql.org/ftp/source/v9.0.0/

97

6. IMPLEMENTATION AND APPLICATIONS

Server side

PostgreSQL

PostGIS

Qualitative Spatial Layer

DistanceTopology Direction

Indexing methods DBSCAN clustering Query input

SQL

Translate

View on a map

Client side

1

2

34

5

Q
u

e
ry

 E
n

g
in

e

Submit

Retrieve result

System Evaluation

6

Figure 6.1: An overview of system architecture.

PostGIS 2.01 has been installed as spatial extension of PostgreSQL to deal with

the spatial data (e.g., geometries). In particular, PostGIS is developed based on the

Geometry Object Model (GOM) that has been described in Section 4.3. Therefore,

PostGIS offers the predicates described in Section 3.1.1 and provided by the GOM as well

as many extra powerful predicates to deal with spatial data.

In Table 6.1, we outline some of these predicates with their descriptions that are

essential to develop our qualitative models and approaches.

6.1.1 Integrating Qualitative Spatial Models into PostGIS

As we mentioned in Section 4.3, the GOM only supports the Dimensionally Extended

9-Intersection Model (DE-9IM) through the topological predicates. Thus, we integrate

the directional and distance models into PostGIS to allow the qualitative usage of the

directional and distance aspects. We first integrate two kinds of direction models: (1)

cone-based direction and (2) Cardinal Direction Model (CDM) for extended objects.

We particularly use the ST Azimuth function (see Table 6.1) to integrate the cone-based

direction model. We call the function that abstracts the cone-based directional relations

1PostGIS: http://postgis.net/docs/manual-2.0/

98

6.1 PostGIS: A Spatial Layer

Table 6.1: The predicates and their descriptions from http://postgis.net/docs/

manual-2.0/.

Predict Description

ST XMax Returns X maxima of a bounding box 2d or 3d or a geometry.

ST YMax Returns Y maxima of a bounding box 2d or 3d or a geometry.

ST XMin Returns X minima of a bounding box 2d or 3d or a geometry.

ST YMin Returns Y minima of a bounding box 2d or 3d or a geometry.

ST MaxDistance Returns the 2-dimensional largest distance between two geometries

in projected units.

ST ConcaveHull The concave hull of a geometry represents a possibly concave

geometry that encloses all geometries within the set.

ST ConvexHull The convex hull of a geometry represents the minimum closed

geometry that encloses all geometries within the set.

ST Azimuth Returns the angle in radians from the horizontal of the vector

defined by point A and point B. Angle is computed clockwise

from down-to-up: on the clock: 12=0; 3=PI/2; 6=PI; 9=3PI/2.

ST Envelope Returns a valid geometry (POINT, LINESTRING or POLYGON)

representing the bounding box of the geometry.

as Dir Cones Abstracter(). Afterwards, we integrate the CDC into PostGIS, based

on two sets of functions: (1) the Envelope that computes the axis-aligned Minimum

Bounding Rectangle (MBR) of a reference object (A) and a primary object (B) and (2)

ST XMax, ST YMax, ST XMin, and ST YMin that return the two (min and max)

endpoints of the MBR major diagonals. Based on the aforementioned function, a single

and/or a multi-tile directional relations can be computed. For example, object B

is north east of object A if B.XMin > A.XMin and B.YMin > A.YMin. We call the

function that abstracts the direction relations for extended objects as CDM Abstracter().

Regarding the absolute distance model, we develop four distance predicates (ZeroDist,

near, medium, and far) to compute the distance relations between any two objects (e.g.,

A and B) in 2D space. These predicates are encapsulated in a distance function that we

call Abs Dist Abstracter().

99

6. IMPLEMENTATION AND APPLICATIONS

Figure 6.2: Qualitative spatial layer database schema design.

6.2 A Qualitative Spatial Layer

We abstract a qualitative spatial layer that covers three aspects: topology, direction, and

distance using the Qualitative Rels Abstracter() function. The function applies

Algorithm 1 presented in Section 4.3.

We have implemented the Qualitative Rels Abstracter() in PL/pgSQL. The

function employs the topological predicates of PostGIS and the Dir Cones Abstracter(),

CDM Abstracter(), and Abs Dist Abstracter() to abstract the relations. In addition,

Qualitative Rels Abstracter() inserts the abstracted spatial relations as well as

their object pairs into Abstracted Rels database table that is illustrated in Figure 6.2.

6.3 DBSCAN Clustering Implementation

In this section we report about the implementation of Density-Based Spatial Clustering

of Applications with Noise (DBSCAN). DBSCAN has been described in Section 3.2

and 4.4. The implementation of DBSCAN consists of two parts: (1) The DBSCAN

analyzer and (2) The DBSCAN spatial relations abstracter. We have implemented

100

6.3 DBSCAN Clustering Implementation

Figure 6.3: A snapshot of DBSCAN analyzer; the user needs to specify two parameters:

(1) the minimum number of points (MinPts) within a cluster and (2) the radius of a cluster

(Eps).

the DBSCAN analyzer by using Java that we have connected with PostgreSQL. The

DBSCAN analyzer allows for directly update the database table in PostgreSQL by

assigning the generated cluster id′s to the corresponding objects in a database. The

DBSCAN analyzer aims at clustering the database objects, visualizing them1, and

analyzing them. A snapshot of the DBSCAN analyzer is depicted in Figure 6.3, in

which the user can fill out the two parameters of DBSCAN: (1) the minimum number of

points (MinPts) within a cluster and (2) the radius of a cluster (Eps). Next the user

can press on “Compute Clusters” button and see the output of clustering. We have

implemented the DBSCAN spatial relations abstracter in PL/pgSQL.

1Visualization is done via JFreeChart library http://www.jfree.org/jfreechart/

101

6. IMPLEMENTATION AND APPLICATIONS

The DBSCAN spatial relations abstracter consists of three functions:

1. The Clusters Enclosurer(),

2. The Clusters Decisive Rels Abstracter(),

3. The Clusters Rels Abstracter().

Clusters Enclosurer() generates the Minimum Bounding Rectangle (MBR), the

Convex Hull (CH), and the ConCave Hull (CCH) for a set of points of a cluster. In

particular, the MBR is generated by the ST Envelope, the CH by ST ConvexHull, and

the CCH by ST ConcaveHull (see Table 6.1). Moreover, we store the MBR, the CH,

and the CCH of clusters in the Clusterer Clusters database table that we depict in

Figure 6.4. In turn, the Clusters Decisive Rels Abstracter() uses the output of

the Clusters Enclosurer() as an input and computes the decisive and the inde-

cisive relations between the generated shapes (e.g., the relations between the MBRs

and the CCHs.) of clusters. We insert the spatial relations among clusters into the

Abstracted QSRE Among Clusters database table that we show in Figure 6.4.

Lastly, the Clusters Rels Abstracter() abstracts and stores the spatial relations

within the clusters and between the clusters that are in indecisive relations. We record

these spatial relations in Abstracted Rels IN Cluster table that we depict in Figure 6.4.

6.4 Indexing Approaches Implementation

We have used Java and PL/pgSQL to implement five indexing approaches that are

described in Chapter 5.

6.4.1 A Hybrid Interpretation Tree and B+-Tree

We have implemented a Hybrid Interpretation Tree and B+-Tree (HITBT) indexing as

the HITBT indexer() function in PL/pgSQL. The HITBT indexer() iterates over each

attribute of the database tables (Abstracted Rels and Spatial Objects database tables

in Figure 6.2) and constructs the B+-tree index on it. We create the B+-tree index

in PostgreSQL by calling the following Data Description Language (DDL) command:

CREATE INDEX name ON table USING btree (column).

102

6.4 Indexing Approaches Implementation

Figure 6.4: DBSCAN database schema design.

6.4.2 A Qualitative Hash Table Indexing

We have implemented a Qualitative Hash Table Indexing (QHTI) as the QHTI indexer()

function in PL/pgSQL. In particular, the QHTI indexer() goes through each tuple of

graph database (GD), concatenates its attributes, and applies a linear hashing.

We construct the linear hash index in PostgreSQL by calling the following DDL

command: CREATE INDEX name ON table USING hash (column). The database schema

of QHTI is depicted in Figure 6.5. We deploy the linear hash index on the Merged tuples

attribute of QHTI database table that is depicted in Figure 6.5.

It is worth mentioning that, the linear hash index is not well (or efficiently) im-

plemented1 in PostgreSQL v8.4 as well as the previous versions, which reduces the

performance of the index. Nevertheless, we use PostgreSQL v9.02 as it offers a stable

and well implemented linear hash index.

1According to http://www.postgresql.org/docs/8.4/static/release-8-4.html
2PostgreSQL: http://www.postgresql.org/ftp/source/v9.0.0/

103

6. IMPLEMENTATION AND APPLICATIONS

Figure 6.5: QHTI database schema design.

6.4.3 Qualitative Hash Table Compression

We have implemented a Qualitative Hash Table Compression (QHTC) as the QHTC indexer()

function in Java. Java is used due to the fact that QHTC requires complex data-structures

to track the number of recurrences of QHTI database table tuples and their MBRs. The

QHTC indexer() first uses HashMap1 data-structure offered by Java to track and rep-

resent recurring tuples uniquely and then to compute the MBRs of these recurrences.

Next, the QHTC indexer() stores the entities of HashMap in the QHTC database table

(see Figure 6.6). In addition, the QHTC indexer() stores the pointers of HashMap

entries that point to geometric objects in the corresponding database tables (see the

QHTC Pointers and Geom Pointers database tables in Figure 6.6). At this point, we

apply linear hashing on the tuples of the QHTC database table using the following DDL

command: CREATE INDEX name ON table USING hash (column).

Lastly, the QHTC indexer() constructs the B+-tree index on geometric pointers

stored in the Geom Pointers database table to accelerate the retrieval of geometric

objects.

6.4.4 The QHTC of Qualitative Models

Similar to QHTC, we have implemented the QHTC of Qualitative Models (QHTCM) as the

QHTCM indexer() function in Java. The QHTCM indexer() iterates over each tuple

of QHTI database table and aggregates the repeated spatial relations and stores them

1HashMap: http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html.

104

6.5 Client-Side Interfaces

Figure 6.6: QHTC database schema design.

in the corresponding database table (see QHTCM.SpRel database table in Figure 6.7).

In addition, it applies a linear hashing on the spatial relations (SR) attributes by the

calling the DDL command mentioned in Section 6.4.3. Afterwards it uses them to

index object pairs which are stored in a separate database table (see QHTCM.OPairs

database table in Figure 6.7). Similar to QHTC, the QHTCM indexer() constructs the

B+-tree index on geometric pointers (in the Geom Pointers) to speed-up the retrieval of

geometric objects.

6.4.5 The QHTC of Object Pairs

We have implemented the QHTC of Object Pairs (QHTCP) as QHTCP indexer() function

in Java. The implementation of QHTCP indexer() is very similar to the one of QHTCM ,

in the sense that the labels of object pairs that are used to index the spatial relations

are now aggregated. Figure 6.8 shows that the database schema design which in turn is

very similar to the one of QHTCM .

6.5 Client-Side Interfaces

In this section we present interfaces that we call Client-Side Interfaces (CSIs). CSIs aim

at enabling users to query the geo-spatial databases easily, intuitively, and qualitatively.

105

6. IMPLEMENTATION AND APPLICATIONS

Figure 6.7: QHTCM database schema design.

As a testbed we have used a geo-referenced dataset of Bremen inner city that we

have extracted from OpenStreetMap (OSM)1 and contains 8756 objects (polygons).

The CSIs fall into two classes: Web-Based Interfaces (see Section 6.5.1) and Android-

Based Interfaces (see Section 6.5.2).

6.5.1 Web-Based Interfaces

We have implemented the modules of Web-Based Interfaces (WBI) in HTML5, JavaScript,

Asynchronous JavaScript and XML (AJAX), and PHP5. The extracted dataset has

been stored in a PostgreSQL/PostGIS database, rendered by Osmarender, and viewed

by OpenLayers.

In (Al-Salman et al., 2013a), we have developed a web application that called

Qualitative Emergency Management System (QEMS). Similarly, here we instantiate a

web application the-so-called Qualitative Spatial Management System (QSMS) from

the WBI. Additionally, we supplement QSMS by the HITBT approach to speed-up the

retrieval of geo-spatial data.

Figure 6.9 shows an overview of the QSMS architecture. In the first step Bremen

dataset is rendered and projected by the Osmarender renderer. In the second step, the

data is stored in the PostgreSQL/PostGIS database. In steps 3 and 4, the three types

1OpenStreetMap (OSM): http://www.openstreetmap.org/, is an open source and a collaborative

project to create a free editable map of the world.

106

6.5 Client-Side Interfaces

Figure 6.8: QHTCP database schema design.

of qualitative spatial relations are abstracted and stored in the qualitative spatial layer

upon the PostgreSQL/PostGIS database. In step 5, the user sets the spatial query

configurations. These configurations are translated into Structured Query Language

(SQL) in step 6. Accordingly, the SQL is sent via AJAX to PHP at the server side in

step 7. In step 8, the matching function of HITBT (cf. Section 5.1.2) is applied. The

PostGIS repository functions are called by PHP to retrieve a set of possible matches. In

the last step, the results retrieved by the matching function are sent back via PHP to

AJAX and presented on a map by OpenLayers1. We show a snapshot of the graphical

user interface of QSMS in Figure 6.10. It illustrates that the output of such queries could

be helpful for tourists who want to visit Bremen. As an example, it shows the answer

to a query for a restaurant that is inside a park and near a riverbank. We marked

different spots in the figure from 1 to 5. In the input field denoted by 1, a primary

object (e.g., a restaurant) can be selected from a drop-down list. Directly below are

objects which are supposed to be the reference object(s). These objects as well as their

spatial relations can be added or deleted to/from the system (field 2). In connection to

this object a qualitative spatial model (e.g., distance) and a qualitative relation (e.g.,

“near”) need to be selected (field 3). The user of the system does not need to specify

any quantitative value for any qualitative spatial model. Next, an according query is

generated (field 4). Based on this query, QSMS retrieves a set of matches which are

displayed (as red markers) on a map (field 5). Red markers denote the result: a set of

1OpenLayers: http://openlayers.org/

107

6. IMPLEMENTATION AND APPLICATIONS

Bremen.OSM

dataset

Rendering and

projection

Abstract

distance direction topology

Store and apply HITBT

 Store

Configurations

setup

SQL-query

AJAXPHP

Matching

function

User

v
ie

w
 o

n
 a

 m
a

p

call

retrieve

translate

call / receive

call / receive

1

2

4

5

6

7

8

9

3

 PostgreSQL/PostGIS

Qualitative Spatial Layer

Figure 6.9: The system architecture of the Qualitative Spatial Management System.

108

6.5 Client-Side Interfaces

Figure 6.10: A snapshot of the graphical user interface of QSMS.

matches that satisfy the spatial constraints that hold among pairs of objects in the user

query.

6.5.2 Android-Based Interfaces

We have implemented the modules of Android-Based Interfaces (ABIs) in Java/Android.

ABIs aim to allow users to query the geo-spatial databases through Android smart

mobile devices qualitatively and intuitively.

As an instantiation of ABIs, we have developed Android Sketching and Querying

Tool (ASQT) that allows users to formulate their queries as sketch objects (e.g., lakes

and streets) in an intuitive manner by means of gesture recognition libraries for Android

smart-phones and tablets. Additionally, we apply Scalable Vector Graphic (SVG)

and OpenGL libraries to allow for simple and smooth drawing. Using Java, we have

implemented ASQT that runs on Android-based smart-phones and tablets. ASQT

supports three kinds of gestures; (1) Selection, (2) Multi-touch zooming, and (3) Multi-

touch rotation. It is worth mentioning that ASQT is based on the sketching and editing

109

6. IMPLEMENTATION AND APPLICATIONS

Figure 6.11: A snapshot of the Android Sketching and Querying Tool.

tool that we have proposed in (Al-Salman et al., 2013b).

The system architecture of ASQT is very similar to QSMS one, except that we

now use Java instead of PHP to call PostGIS functions. Additionally, we use the QHTC

matching approach presented in Section 5.3.2 in order to accelerate the query processing.

A snapshot of the graphical user interface of ASQT is depicted in Figure 6.11. A

user can select any drawn object by pressing it. With two or three finger gestures on

the Minimum Bounding Rectangle (MBR) (Figure 6.11(1)) objects can be rotated and

zoomed. Moreover, the user can delete the selected object easily by pressing on the x

button at the right corner of the MBR. In order to submit the queries, the user needs to

annotate the drawn objects and press “Send Query”. Next, the geometries of the query

are sent to a server that computes the spatial relations among them and matches them

against the spatial relations of the qualitative spatial layer.

Figure 6.11(2) shows the benefit of using QHTC, where the MBR approximation of the

matchings is retrieved in an early stage of the matching process. Lastly, the actual

centroids of matchings are retrieved and depicted on a map (Figure 6.11(3)).

6.6 System Evaluation

System evaluation is done by recording the execution time and the number of retrieved

results of queries. Two kinds of queries can be processed: (1) user-defined queries and

110

6.6 System Evaluation

Figure 6.12: System evaluation database schema design.

(2) system-defined queries. The former is naturally provided by users of a system. The

latter is essential for evaluation purposes and operated by Auto Queries Generator().

We have implemented the Auto Queries Generator() in PL/pgSQL and it is able

to randomly generate spatial queries. Finally, we record the queries, their execution

time, and their matching approaches in the corresponding database tables that we

show in Figure 6.12. Algorithm 21 shows the steps for generating queries by the

Auto Queries Generator(). The algorithm first iterates over each tuple of GD and

uses it to fetch the corresponding entry from the TC using the Search QHTC() described

in Section 5.3.2 (lines 2 and 3). The main goal of specifically fetching the entry of TC

of QHTC is to detect the number of recurrences (NR), i.e., the number of matches to

the generated query. This demonstrates another benefit of using the QHTC approach.

When NR is between Min and Max values, then the Unq value is checked (lines 4

and 5). Now, if the generated queries are specified to be unique (line 5), then the

repository of queries (Test Queries database table in Figure 6.12) is checked to make

sure that the query does not exist in the repository (line 6). When a query is unique,

then the corresponding queries (e.g., queries of HITBT and QHTI) are generated based

on this query and stored in Test Queries (line 7). On the other side, the queries are

directly generated and stored without checking the Test Queries repository when they

are allowed to be non-unique or repeated (lines 10 to 13). Finally, the procedure stops

constructing queries when the number of the generated queries exceeds nq (lines 15

to 17). We note that the Auto Queries Generator() only generates queries without

executing them. We will execute the queries and record their execution time in the next

chapter for evaluation purposes.

111

6. IMPLEMENTATION AND APPLICATIONS

Algorithm 21: Auto Queries Generator(GD, T
C , Min, Max, Unq, nq)

output : Test Queries: a number of generated queries stored in the database table

1 initialization: Match←NULL; c←0; � ← |GD|;
2 for k ← 1 to � do

3 Match←Search QHTC(TC , GD[k]);

4 if Match.NR >Min ∧ Match.NR <Max then

5 if Unq==TRUE then

6 if Test Queries does not contain GD[k] then

7 Test Queries.Insert(c, GenerateQueries(GD[k]));

8 c←c++;

9 end

10 else

11 Test Queries.Insert(c, GenerateQueries(GD[k]));

12 c←c++;

13 end

14 end

15 if c ≥ nq then

16 EXIT ;

17 end

18 end

6.7 Summary

In this chapter we have described the components of our system that we have called

QualEnabler. In each component, we have explained the corresponding database design

schema.

In Section 6.1, we have explained the functions that have been implemented and

used to integrate the directional and distance models into PostGIS.

Next, in Section 6.2 we have described the functions that have been used to abstract

the qualitative spatial layer into PostgreSQL.

Section 6.3 has elaborated on the requirements and functions that have been needed

to implement the DBSCAN approach. We have integrated the DBSCAN analyzer and

abstracter into PostgreSQL. Thus, it is possible directly to visualize the point clusters of

databases and abstract the spatial relations within and among the clusters of databases.

112

6.7 Summary

Afterwards, we have described the data-structures, functions, and commands that were

essential to implement our indexing approaches (Section 6.4). Accordingly, we have

integrated the indexing approaches into PostgreSQL.

In turn, Section 6.5.1 has demonstrated the client-side applications that have been

implemented based on the aforementioned components.

Lastly, Section 6.6 has explained the evaluation and testing unit of QualEnabler. It

has presented an important function that has been called the Auto Queries Generator()

and will be used in the next chapter to evaluate our approaches.

113

6. IMPLEMENTATION AND APPLICATIONS

114

Chapter 7
Empirical Evaluation

In this chapter, we report about experiments on real-world and synthetic datasets to

evaluate our work. We have carefully selected the datasets to cover as many cases

as possible. We carried out experiments on real-world dataset to evaluate two major

aspects: (1) the space reduction of the qualitative data and (2) the processing time of

the proposed matching approaches.

In the first aspect, we evaluate the ability of the density-based spatial clustering

of applications with noise approach introduced in Chapter 4 to reduce the qualitative

data (see Section 7.1). Next, we examine the possibility of reducing qualitative data by

the three approaches proposed in Chapter 5: (1) Qualitative Hash Table Compression

(QHTC), (2) QHTC of Qualitative Models (QHTCM), and (3) QHTC of Object Pairs (QHTCP)

(see Section 7.2.2). In the second aspect, we evaluate the performance and scalability of

the seven matching approaches presented in Chapter 4 and 5 (see Section 7.2).

For the same reasons and motivation, we perform the aforementioned evaluations

on a synthetic dataset (see Section 7.3).

7.1 Clustering Experiments

In this section, we present experiments and evaluate the ability of Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) to reduce the spatial relations of the

graph database (GD). The reduction process occurs in two stages: Filtering Clustering

Candidates (see Section 7.1.2) and Selecting Clustering Candidate (see Section 7.1.3).

115

7. EMPIRICAL EVALUATION

Figure 7.1: A snapshot of the real dataset of Bremen inner city.

We start by giving the experimental settings and present the experimental results

and findings afterwards.

7.1.1 The Experimental Settings of Clustering

In our experiments, we have used the OpenStreetMap (OSM)1 geo-referenced real

dataset of Bremen inner city that has been stored in the PostgreSQL/PostGIS database

and contained 8756 objects. Originally, we have extracted 9000 objects from OSM.

However, not all the extracted objects are annotated by volunteers. Hence we apply a

preprocessing step to eliminate the non-annotated objects. Consequently, 244 objects

are eliminated and 8756 objects are left. Figure 7.1 exhibits a snapshot of the inner

city of Bremen constructed based on the objects of our OSM dataset and viewed by

Quantum-GIS2.

We selected Bremen dataset for three reasons: (1) most of its objects are annotated

by volunteers, (2) it has a high quality in terms of annotated objects (as most urbanized

and populated cities in Germany) (Ludwig et al., 2011; Zielstra and Zipf, 2010), and

1OpenStreetMap (QSM): http://www.openstreetmap.org.
2Quantum-GIS (QGIS): http://www.qgis.org/en/site/.

116

7.1 Clustering Experiments

Table 7.1: DBSCAN Parameter settings.

parameter setting

The minimum points within a cluster (MinPts) 2, 3, 4, ..., 11

The radius of a cluster (Eps) measured by meters 50, 60, 70, ..., 490

(3) it covers various densities (sparse/dense) and distributions (normal/non-normal) of

areas and object types (Zielstra and Zipf, 2010).

DBSCAN uses two parameters: (1) the minimum number of points (MinPts) within

a cluster and (2) the radius of a cluster (Eps). We accordingly use them to examine the

performance of DBSCAN, as Table 7.1 shows the parameters with their possible values.

In each experiment, we vary the MinPts parameter, then for each MinPts value, we

iterate over the Eps values.

7.1.2 Filtering Clustering Candidates

As with any data mining process, selecting the values for the MinPts and the Eps is a

critical and non-trivial process. Our goal of clustering is to save the spatial relations of

GD as much as possible, which can be arguably achieved by the following two procedures:

1. minimizing the number of outliers (by maximizing the number of clustered objects),

2. generating equal-sized clusters so that each cluster contains the same (or nearly

the same) number of objects as the other clusters.

Therefore, we define two criteria to select the cluster candidates: (1) the number of

outliers and (2) the maximum cluster size that gives the good indications about the

balancing of the size of clusters.

We start by setting the MinPts=2 and then we iterate over all the Eps values from

50 to 490 incremented by 10.

DBSCAN terminates the clustering process when two conditions are satisfied: (1)

≥50% of the database objects are clustered and (2) a large merge occurs between two

(or possibly more) clusters. A large merge is indicated when we target a merge among

clusters that lead to (more than) double the maximum size cluster and an imbalance

in the number of objects in the clusters compared to others. For simplicity, we may

denote the clustering by DBSCAN using its parameters as DBSCAN(MinPts, Eps).

117

7. EMPIRICAL EVALUATION

Testing all the possible values for the MinPts and the Eps is an expensive process.

Other possibilities include hierarchical approach for selecting the Eps values for each

MinPts. For example, if we know that the maximum size cluster is (more than)

doubled for Eps values between 250 and 350, then we only need to search Eps values

<350, whereas the Eps values >350 can be safely neglected. Nevertheless, developing

optimization approaches to detect the peak situations is beyond the scope of this

dissertation.

Figure 7.2 depicts the peaking situations for the maximum cluster size for the

MinPts=2 to 11. For instance, Figure 7.2(a) shows that the maximum size of clusters

peaks when Eps > 300. In more detail and clarifications, Figure 7.3 illustrates several

snapshots of the DBSCAN clustering, in which the MinPts is fixed at 2 and several Eps

values are tested. Figure 7.3(a) particularly exhibits that only few points are clustered

when the Eps=50. The number of clustered objects is increased with the Eps (Figure

7.3(b), 7.3(c), and 7.3(d)). A large merge happens when the Eps becomes more than

300 (directly at 310). This indicates that the clustering should be terminated at this

point (Figure 7.3(e)). In fact, the maximum cluster size jumps from 2307 to 4565 (its

size is almost doubled compared to its predecessor) when the Eps = 310. Eventually,

most of the objects are included in a single cluster when the Eps value reaches 490

(Figure 7.3(f)). We perform the same process by using the MinPts values from 3 to

11 (Figure 7.2(b) to 7.2(j)) in order to select the remaining clustering candidates. As

exhibited in Figure 7.2(b) to 7.2(j), increasing the MinPts requires either increasing or

keeping the same Eps of its predecessor in order to peak the maximum size of clusters.

In Table 7.3, we select and list the values for the pairs (MinPts, Eps) that act as

the 10 clustering candidates. Moreover, we calculate the clustering execution time, the

number of clusters, the maximum cluster size, and the number of outliers. In all the

experiments, DBSCAN took between 12 and 15 seconds to cluster the objects.

In order to measure the strength and significance of the relationship between pairs of

variables (e.g., (MinPts, the number of clusters)), we use Pearson correlation coefficient

(r) and p-value respectively (Stigler, 1989). The formula of r is defined as follows:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(7.1)

118

7.1 Clustering Experiments

radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

50 110 180 250 320 390 460
0

2000

4000

6000

8000

(a) DBSCAN(2, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

50 100 160 220 280 340 400 460

0

2000

4000

6000

8000

(b) DBSCAN(3, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

50 100 160 220 280 340 400 460

0

2000

4000

6000

8000

(c) DBSCAN(4, Eps=v)

radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

50 100 160 220 280 340 400 460

0

2000

4000

6000

8000

(d) DBSCAN(5, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

50 110 180 250 320 390 460
0

2000

4000

6000

8000

(e) DBSCAN(6, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

50 100 160 220 280 340 400 460

0

2000

4000

6000

8000

(f) DBSCAN(7, Eps=v)

radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

50 100 160 220 280 340 400 460

0

2000

4000

6000

(g) DBSCAN(8, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

50 100 160 220 280 340 400 460

0

2000

4000

6000

(h) DBSCAN(9, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

50 100 160 220 280 340 400 460

0

1000

2000

3000

4000

5000

6000

7000

(i) DBSCAN(10, Eps=v)

radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

50 100 160 220 280 340 400 460

0

1000

2000

3000

4000

5000

6000

7000

(j) DBSCAN(11, Eps=v)

Figure 7.2: Snapshots of DBSCAN(MinPts, Eps=v), v: the radius of clusters varied

from 50 to 490 meters incremented by 10 meters.

119

7. EMPIRICAL EVALUATION

(a) DBSCAN(MinPts=2, Eps=50) (b) DBSCAN(MinPts=2, Eps=100)

(c) DBSCAN(MinPts=2, Eps=290) (d) DBSCAN(MinPts=2, Eps=300)

(e) DBSCAN(MinPts=2, Eps=310) (f) DBSCAN(MinPts=2, Eps=490)

Figure 7.3: Snapshots of DBSCAN(2, Eps): Eps ∈ {50, 100, 290, 300, 310, 490}.

120

7.1 Clustering Experiments

where n is the number of observations, xi and yi are individual observations and x̄

and ȳ are the means for variables x and y respectively. Given −1< r <+1, r conveys

the correlation of pairs of variables, so the larger the correlation (the closer to 1), the

stronger the relationship.

In turn, we obtain p-value based on the t-distribution of r (see Equation 7.2) and

based on Fisher’s r-to-z transformation (Stigler, 1989).

t =
r√

1− r2

n− 2

(7.2)

Given a t-distribution with k degrees of freedom for a test statistic. We compute

the p-value for a two-tailed test as:

p− value = 2 ∗ P (tk > |tstat|) (7.3)

where P is the probability of null hypothesis that the coefficient is 0 and |tstat| is
the absolute value of the calculated test statistic. In contrast to r, given 0 < p < +1,

the lower p-value indicates that the relationship of pairs of variables is statistically

more significant than the higher one. The main goal of using p-value is to support the

correlation that can be obtained from r. According to (Manktelow and Chung, 2004),

the strength of the correlation between any two variables can be verbally described for

a value of r1 as follows:

• 0.00 “no correlation ”

• 0.00 to ± 0.19 “very weak”

• ± 0.20 to ± 0.39 “weak”

• ± 0.40 to ± 0.59 “moderate”

• ± 0.60 to ± 0.79 “strong”

• ± 0.80 to ± 1.0 “very strong”

• ± 1.0 “perfect”

1A value of r is always ranged between two values that have the same sign as r.

121

7. EMPIRICAL EVALUATION

Table 7.2: r and p-value for MinPts with other variables.

Measure Eps # of clusters # of outliers

r MinPts 0.953 -0.852 0.984

p-value MinPts 0.00002 0.0018 0.0000004

Table 7.3: The clustering candidates of DBSCAN experiments.

MinPts Eps Exec. time[sec] # of clusters Maximum cluster size # of outliers

2 300 12 90 2307 258

3 300 12 81 2293 301

4 320 12 61 2301 410

5 330 12 52 2284 489

6 340 14 52 2283 537

7 340 13 48 2273 689

8 340 15 47 2272 785

9 340 12 50 2271 849

10 360 12 47 2273 832

11 370 12 43 2273 890

Regarding p-value, the relationship between two variable is significant if p-value ≤
0.05 (Manktelow and Chung, 2004).

As pairs of variables of interest, Table 7.2 shows the correlation coefficient r and

p-value between the MinPts and other variables. It conveys that the correlation coeffi-

cient between the two pairs (MinPts, Eps) and (MinPts, the number of outliers) is

significant, positive, “very strong”, and linear. The correlation coefficient between the

(MinPts, the number of clusters) is significant, negative, “very strong”, and linear.

Discussion:

In the filtering phase, we selected the clustering candidates that have the minimum

number of outliers as well as the semi equal-sized clusters. In particular, reducing the

number of outliers (see Figure 7.3) is achieved by increasing the Eps value as much as

possible for a given MinPts. By increasing the Eps value, it allows the inclusion of

more objects in clusters that results in decreasing the number of outliers. On the other

side, generating the semi equal-sized clusters are done by preventing the possibility of

larger clusters being merged. This is due to the fact that merging clusters leads to an

imbalance in the number of objects in the clusters compared to other clusters.

122

7.1 Clustering Experiments

The large merge is detected based on the maximum cluster size compared to its

predecessor. For a given MinPts=2 (see Figure 7.3(e)), at least a large merge occurs

between two clusters when the Eps is varied to 310. This merge is detected since the

maximum cluster size is almost doubled compared to its predecessor (see Figure 7.3(d)).

The merge situations for the MinPts =3 to 11 (Figure 7.2(b) to 7.2(j)) can be

validated as well. Except the eighth and ninth clustering candidates (DBSCAN(9, 340)

and DBSCAN(10, 360)), the number of outliers of the selected candidates (see Table

7.3) increased with the number of the MinPts. On the contrary, the number of clusters

either decreased or stayed the same with a decrease in the number of the MinPts. By

increasing the MinPts restricts including the objects in the clusters, that implies a

smaller number of clusters and a higher number of outliers.

Regarding the clustering by DBSCAN(9, 340) that can be considered as an exception,

since the number of clusters is increased to exceed its two predecessors. The Eps value

is equal to its two successors. Additionally, the number of outliers has increased more

than its successor (MinPts=10).

We determined that when MinPts=9 and Eps=340 are used by DBSCAN, it may

prevent some clusters from being created when their MinPts < 9. Consequently, their

objects become available for other clusters that most likely need few objects to complete

their number of objects (MinPts≥9).

7.1.3 Selecting Clustering Candidate

In the previous section, we generated the clustering candidates based on their maximum

cluster size and their numbers of outliers. Here, we take one step further by selecting

the clustering candidate based on their ability to reduce the spatial relations.

In Chapter 4, we indicated that the Minimum Bounding Rectangles (MBRs) should be

adequately used to compute the distance and directional relations, whereas the ConCave

Hulls (CCHs) should be used to compute the topological relations. Therefore, we use the

MBRs and the CCHs representations to compute the spatial relations within and among

clusters. We also pointed out that the CCH takes a parameter (α) that allows a polygon

(cluster) to shrink with a certain amount of its original size. We decrease and vary the

α value from 1 to 0.4 with 0.1 step for all the candidates, where 1 denotes the convex

hull (0% i.e., shrinking is not allowed) and 0.4 denotes that 60 % percent of the original

123

7. EMPIRICAL EVALUATION

Table 7.4: Generating the CCHs of clusters using α.

MinPts Eps Exec.

Time[sec]

Non-

disjoint

CCH Rel.

Non-

disjoint

CH Rel.

Non-

disjoint

MBR Rel.

of Relations α

2 300 9.9 18 60 130 8010 0.9

3 300 20.2 6 46 108 6162 0.8

4 320 8.7 6 30 104 3660 0.9

5 330 7.8 4 26 74 2652 0.9

6 340 10.1 10 24 60 2652 0.9

7 340 10.7 6 14 46 2256 0.9

8 340 9.8 6 18 46 2162 0.9

9 340 11.8 6 20 44 2450 0.9

10 360 12.4 4 14 44 2162 0.9

11 370 11.5 6 18 48 1806 0.9

size of the polygon can be shrunk. Afterwards, we select the α value that leads to the

least number of the non-disjoint topological relations (e.g., inside and covers).

By using CCH(α), we denote the process of enclosing a cluster using α parameter.

The selection of the CCHs over the MBRs and the CHs to compute the topological relations

is validated by the results depicted in Table 7.4, where the CCHs produce less number of

non-disjoint relations than others. It indicates that the most appropriate α values of

CCH are 0.8 for DBSCAN (3, 300) and 0.9 for the other candidates. It also shows that

computing the CCH(0.8) requires almost double time as compared to CCH(0.9).

Note that we still did not select the clustering candidate. In order to select the

clustering candidate, we compare the candidates with respect to the space reduction

rates of the qualitative spatial relations. Based on the definition of the decisive relation

described in Section 4.4.1, we calculate the number of spatial relations per qualitative

aspect that can be saved by each clustering candidate. In other words, we calculate

the number of spatial relations that do not need to be stored in GD (or qualitative

spatial layer). In particular, calculating the decisive relations involves both the outliers

and clusters. At this point, the outliers are treated as clusters as well. We compute

the number of decisive relations between the clusters themselves as well as between

the outliers and the clusters. Table 7.5 exhibits the reduction rates of topological,

directional, and distance relations as well as their average reduction. In particular,

the first candidate DBSCAN(2, 300) saves up to 79.28 %, 28.60 %, and 7.76 % of

124

7.1 Clustering Experiments

(a) DBSCAN(2, 300) (b) DBSCAN(3, 300)

Figure 7.4: A snapshot of the CCHs: DBSCAN(2, 300) v.s. DBSCAN(3, 300).

the topological, directional, and distance relations, respectively. The next candidate

DBSCAN(3, 300) raises the reduction rates to be 85.66 %, 33.80 %, and 8.89 % of

topological, directional, and distance relations, respectively. Nevertheless, there is no

perfectly positive or negative relationship between the reduction rates and the MinPts

or Eps. For example, increasing the MinPts does not necessarily lead to an increase in

the reduction rates (e.g., the topological reduction rates of DBSCAN(4, 320), which are

less than the ones of DBSCAN(3, 300)).

There appears to be a positive correlation between the MinPts and the average

reduction rate. In particular, the correlation coefficient r and p-value between the

MinPts and the average reduction rate are 0.889 and 0.0005, respectively. The r value

indicates that they are “very strongly”, and linearly correlated, while p-value gives an

evidence that the relationship is statistically significant.

Next, we select the clustering candidate that will give the highest reduction rates.

Regarding the topological relations, DBSCAN(3, 300) can be considered as the can-

didate that offers the highest reduction. In turn, DBSCAN(11, 370) can be viewed

as the candidate that provides the highest reduction rate for the distance and the

directional relations. Finally, DBSCAN(11, 370) is the candidate that finds the highest

125

7. EMPIRICAL EVALUATION

(a) DBSCAN(2, 300) (b) DBSCAN(3, 300)

Figure 7.5: A snapshot of the MBRs: DBSCAN(2, 300) v.s. DBSCAN(3, 300).

Table 7.5: The reduction rates for the topological, directional, and distance relations as

well as their average reduction.

MinPts Eps Topology Red. Direction Red. Distance Red. Avg Red.

2 300 79.28 % 28.60 % 7.76 % 38.55 %

3 300 85.66 % 33.80 % 8.89 % 42.78 %

4 320 84.24 % 27.09 % 9.45 % 40.26 %

5 330 84.07 % 27.58 % 7.94 % 39.86 %

6 340 85.01 % 37.38 % 12.82 % 45.07 %

7 340 85.41 % 38.44 % 12.98 % 45.61 %

8 340 85.54 % 39.09 % 13.96 % 46.20 %

9 340 85.60 % 40.01 % 15.06 % 46.89 %

10 360 85.62 % 39.93 % 14.58 % 46.71 %

11 370 85.47 % 40.60 % 16.23 % 47.43 %

126

7.1 Clustering Experiments

average reduction rate. After gathering this information, we decide to select a clustering

candidate that has the highest average reduction rate, since none of the candidates

provided the highest reduction rate to all kinds of spatial relations. Accordingly, we

select DBSCAN(11, 370) to abstract the decisive relations. Next, we abstract the spatial

relations between the all the object pairs of all pairwise disjoint clusters that are in

indecisive relations.

Discussion:

In the selection phase, we evaluated the ability of all clustering candidates to reduce

the three types of spatial relations and to select the clustering candidate. We used the

MBRs to abstract the distance and directional relations, and the CCH to abstract the

topological relations. As shown in Table 7.4, computing the topological relations using

the CCH of clusters leads to a smaller number of the non-disjoint relations than the MBRs

and CHs. This occurs because the enclosure of the points cluster using CCH is usually

more tighter than the MBRs and CHs. It also shows that computing the CCH(0.8) requires

almost double the time as compared to the CCH(0.9). The is due to the fact that the

CCH(0.8) takes more time to shrink 20 % of the polygons (clusters) sizes, whereas the

CCH(0.9) only needs to shrink 10 % of the polygons sizes.

The reduction rate of qualitative relations differs from one to another clustering

candidate. Consider DBSCAN(2, 300) and DBSCAN(3, 300) (see Table 7.5) as examples.

Regarding the topological relations, DBSCAN(3, 300) has a reduction rate greater than

DBSCAN(2, 300) for two reasons.

First, DBSCAN(3, 300) generates smaller CCHs than those produced by DBSCAN(2,

300) that leads to increase the number of disjoint relations among the clusters. This

can be more justified by the regions of interest of the clusters depicted in Figure 7.4

that shows the topological relations among the CCHs. In particular, it conveys that

the CCHs generated by DBSCAN(2, 300) are large enough to include other CCHs, which

implies less decisive relations and thus a smaller reduction rate. On the other hand,

DBSCAN(3, 300) produces smaller CCHs than those produced by DBSCAN(2, 300).

Thus, a smaller number of the CCHs are included (see Figure 7.4) in others which implies

more decisive relations and thus a higher reduction rate.

Second, DBSCAN(3, 300) is able to enclose its clusters using the CCHs more tightly

than DBSCAN(2, 300) as well as other candidates. This explains why DBSCAN(3,

127

7. EMPIRICAL EVALUATION

300) has the highest reduction rate for the topological relations in comparison to other

candidates.

Similarly, the reduction rates of the directional and the distance relations can be

validated. Figure 7.5 illustrates the regions of interest of the MBRs that are used to

compute the directional and distance decisive relations. In particular it shows that the

MBRs produced by DBSCAN(3, 300) are smaller than the ones produced by DBSCAN(2,

300). In fact, this may give an evidence that the smaller MBRs lead to produce a high

number of directional and distance decisive relations. Again, this can be validated by

the examples appeared in Figure 7.5, in which the MBRs of DBSCAN(2, 300) include

more MBRs than the MBRs created by DBSCAN(3, 300).

It is also worth mentioning that DBSCAN(11, 370) has the highest reduction rates

for the directional and distance relations compared to the other clustering candidates.

This is due to the fact that DBSCAN(11, 370) produces smaller and less CCHs than

other candidates. However, its reduction rate for the topological relations is slightly

less than other candidates (e.g., DBSCAN(3, 300)) since its CCHs enclosure is not as

tight as some other candidates.

7.2 Indexing Approaches Experiments

In this section, we first present experiments to evaluate the ability of QHTC, QHTCM , and

QHTCP to reduce the size of graph database (GD) (see Section 7.2.2).

Next, we present experiments and evaluate the efficiency and performance of the

seven matching approaches: (1) Qualitative Layer Matcher (QLM), (2) DBSCAN Matcher

(DM), (3) Hybrid Interpretation Tree and B+-Tree (HITBT), (4) Qualitative Hash Table

Indexing (QHTI), (5) Qualitative Hash Table Compression (QHTC), (6) QHTC of Qualitative

Models (QHTCM), and (7) QHTC of Object Pairs (QHTCP) (see Section 7.2.3, 7.2.4, and

7.2.5). We begin by giving the experimental settings and presenting the experimental

results and findings afterwards.

7.2.1 The Experimental Settings of Indexing Approaches

Similar to Section 7.1 and with the same motivation, we used Bremen OSM dataset

that contains 8756 labelled objects to evaluate our approaches.

128

7.2 Indexing Approaches Experiments

Based on the dataset, three kinds of graph databases have been constructed. The

first graph database is GD and has been constructed by computing ((76.66 ∗ 106)− 8756)

tuples ((8756∗8756)−8756). Each tuple represents the pairs of objects and their spatial

relations that are held among them. In our experiments, three types of qualitative

spatial relations have been abstracted: topology, direction, and distance. To abstract

the topological relations, we used the Dimensionally Extended 9-Intersection Model

(DE-9IM) (Clementini et al., 1993) that distinguishes eight topological relations: equal,

disjoint, meets, overlaps, contains, covers, inside, and coveredBy. We applied the

Cardinal Direction Model (Skiadopoulos and Koubarakis, 2004) for extended objects

to abstract the (single and multi-tile) directional relations: South, SouthW est, W est,

N orthW est, N orth, N orthEast, East, SouthEast, and Equal. We abstracted the

aspect of distance to qualitative spatial relations using the partition scheme proposed in

Section 4.2 to assign one of the four-distance relations: ZeroDist, near, medium, or far

to each pair of objects. Constructing GD took 5 hours and 48 minutes. GD represents

the graph database of QLM. Additionally, GD must also be used by QHTI, QHTC, QHTCM ,

and QHTCP to construct their database trees and indices that are required to evaluate

these approaches. Table 7.6 lists the constructed trees of the corresponding approaches

as well as their index construction time. From the table, it is apparent that HITBT takes

less time than other approaches to construct the index. The other approaches needed

to sequentially traverse all the tuples of GD and perform merge operation on the related

attributes of the tuples.

The second and third graph databases are the CR and GC
D (cf. Section 4.4.1.3)

respectively that are essential to evaluate DM. Based on the DBSCAN(11, 370) results

obtained from Section 7.1, the CR is constructed by computing the decisive and the

indecisive relations between the cluster pairs. In addition, the GC
D was constructed

by abstracting the spatial relations within the clusters and between the cluster pairs

that have the indecisive relations. Moreover, three types of spatial relations (topology,

direction, and distance) were involved in the abstraction process of the CR and GC
D.

Table 7.7 outlines the number of abstracted relations of the CR and GC
D. In turn,

constructing the CR and GC
D took 3 hours and 32 minutes which is 27.7% less time

needed to construct GD. This occurs since constructing CR and GC
D requires computing

less spatial relations than the computed spatial relations of GD.

129

7. EMPIRICAL EVALUATION

Table 7.6: The first level of the constructed trees and their index construction time.

Approach Constructed Tree(s) Index Construction [second]

HITBT TB 2157

QHTCP TP .SpRel, TP .OPairs 7539

QHTCM TM .SpRel, TM .OPairs 7677

QHTI T 8215

QHTC TC 8939

Table 7.7: The number of abstracted relations of the CR and GC
D.

Topology Direction Distance

CR 80698 68110 61646

GC
D 11141640 45533878 64216032

Total 11222338 45601988 64277678

The experiments were performed on a Windows7 platform, 2.1 GHz processor with

4 GB of RAM. Based on the response time of the queries, we examined the performance

of our proposed approaches under various parameters.

In each experiment, we varied one parameter, whereas other parameters were kept

at their default values. The average response time for answering spatial queries was

employed as a major performance measure. In all experiments, we ran the spatial queries

five times and we took the average execution time afterwards. Table 7.8 illustrates

parameters and their default values. In particular, it shows that the first parameter

represents varying the number of queries from 1 to 100 by an increment of 1. In

particular, the 100 non-empty results queries were randomly generated by using the

Auto Queries Generator(GD, T
C , 100, 10000, True, 100) function presented in Section

6.7. The function generates the 100 unique (parameters 5 and 6) queries that retrieve

the number of results between 100 and 10000 (parameters 3 and 4). The generation of

the random queries aims to examine as many different cases as possible. Furthermore,

each query exactly contains a single object pair and three types of spatial relations. For

example, Figure 7.6 shows an SQL query which contains three types of spatial relations

and one pair of objects. In the second parameter, we similarly varied the number of

object pairs in the queries. We extracted the first 10 queries out of the original 100

single pair queries. Afterwards, we iterated over each query and extended it by a new

single pair query. Consequently, 10 double object pairs queries were randomly generated,

130

7.2 Indexing Approaches Experiments

Table 7.8: Parameter settings.

parameter setting Default

Number of spatial queries #q 1, 2, 3, ..., 100 1

Number of object pairs #p 1, 2 1

Number of objects #o (Cardinality) 1000, 3000, 5000, 8756 8756

SELECT *

FROM A

WHERE Reference_Obj=‘Building‘ AND Primary_Obj=‘School‘

AND Distance=‘Near‘ AND Topology=‘Disjoint ‘ AND Direction=‘NorthEast‘

Figure 7.6: SQL code: a single pair query with its three spatial relations.

where each pair had three kinds of spatial relations. In the last parameter, we varied

the number of objects of the database (the cardinality). We started with 1000 objects.

Next, we extended the 1000 objects to 3000 objects, then to 5000 objects, and eventually

to 8756 objects.

7.2.2 Qualitative Data Reduction

We evaluate the reduction qualitative data capability of the QHTC, QHTCM , and QHTCP

compared to the original size of the graph database (GD). Simplified, we denote the size

of GD by |GD|.
Figure 7.7 conveys that all three indexing approaches reduce considerably the tuples

of object pairs , the spatial relations, and a combination of them compared to |GD|.

number of tuples [x 1000000]

nu
m

be
r o

f u
ni

qu
e

tu
pl

es

0 5 10 16 22 28 34 40 46 52 58 64 70 76

10000

20000

30000

40000

50000

60000

(a) Reduction by QHTC.

number of tuples [x 1000000]

nu
m

be
r o

f u
ni

qu
e

tu
pl

es

0 5 10 16 22 28 34 40 46 52 58 64 70 76

1000

2000

3000

4000

5000

6000

(b) Reduction by QHTCP .

number of tuples [x 1000000]

nu
m

be
r o

f u
ni

qu
e

tu
pl

es

0 5 10 16 22 28 34 40 46 52 58 64 70 76

100

150

200

250

300

350

400

(c) Reduction by QHTCM .

Figure 7.7: The space reduction rates of GD by QHTC, QHTCM , and QHTCP .

131

7. EMPIRICAL EVALUATION

Figure 7.7(a) illustrates that the QHTC reduces the size of GD to TC that acts as 58024

unique tuples instead of 76.66 ∗ 106 tuples. This indicates that the size of TC of QHTC

is approximately 75.6 ∗ 10−3 % compared to |GD|. The reduction rate of the tuples of

the Object Pairs (OP) of GD is shown in Figure 7.7(b), in which QHTCP reduces the

recurrences of OP tuples to be TP .OPairs that represents 5603 unique tuples instead

of 76.66 ∗ 106 tuples. Accordingly, the size of TP .OPairs is approximately 73.1 ∗ 10−4

% compared to the size of OP . Finally, Figure 7.7(c) depicts that QHTCM significantly

reduces the number tuples of the Spatial Relations (SR) with respect to |GD|. In

particular, QHTCM reduces the repeated SR tuples of GD to TM .SpRel that contains

397 unique tuples instead of 76.66 ∗ 106 tuples. The size of TM .SpRel is therefore

approximately 51.8 ∗ 10−5 % compared to the size of SR of GD.

Discussion:

The previously mentioned approaches showed a high capability of reducing the data

of GD. Nevertheless, the reduction rates are variant with respect to the number of

tuples of GD. For example, in a case of the TC of QHTC (Figure 7.7(a)) 26448 unique

tuples are detected (reduced to 26448 tuples) in the first 10 million tuples, while 10582

unique tuples are found in the next 10 millions tuples. This occurs because the number

of repeated tuples of GD is not equally distributed with the number of tuples of GD.

The reduction rates by QHTCP and QHTCM are variant with the number of GD tuples as

well. Similar to QHTC, these variants of reduction rates can be justified. However, the

reduction rates by QHTCP and QHTCM are very high, since the number of labels of spatial

relations or object pairs is limited. For example, regarding QHTCM the 9-intersection

model contains only eight spatial relations and therefore eight labels.

7.2.3 Varying the Number of Queries

Here we evaluate the scalability of the matching approaches by varying the number of

queries (#q) on the complete database (#o = 8756). We accumulate the execution time

from a single query to the maximum of 100 queries, i.e. the execution for n ≥ 1 queries

is the average execution time of the nth query plus the aggregated execution time of the

previous n− 1 queries.

To begin, the naive approach presented in Section 4.3 does not scale at all. For

example, the average execution time of each query (single object pair) is approximately

132

7.2 Indexing Approaches Experiments

The number of queries

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

0 10 20 30 40 50 60 70 80 90 100

0

1000

2000

3000

4000

5000

6000

7000 QLM
DM
HITBT
QHTI
QHTC
QHTCM

QHTCP

Figure 7.8: Varying the number of single pair queries.

16867 seconds (approx. 4 hours and 41 minutes), which is in fact greater than the

execution time of the 50 queries of the rest approaches together. Therefore, we focus

our attention on comparing other approaches than the naive approach. We depict the

results in Figure 7.8 and Table 7.9. Whereas processing time for the first query for QHTI

is ≈ 1.3 seconds, 1.05 seconds for QHTC respectively, QHTCM needs ≈ 8.91 seconds, and

QHTCP ≈ 8.45 seconds. Eventually, QLM needs ≈ 242.51 seconds, DM ≈ 144.33 seconds,

and HITBT ≈ 87.71 seconds.

The overall response time for 100 queries for QHTI and QHTC is not that much

different: ≈ 331.08 seconds for QHTI and ≈ 292.83 seconds for QHTC. In turn, QHTCP

and QHTCM require ≈ 2898 and 3165 seconds respectively to process all queries. To

process all the queries, QLM needs ≈ 12072 seconds, DM ≈ 7346 seconds, and HITBT ≈
5791 seconds. Therefore, QHTC performs best on average for a single query with ≈ 2.93

seconds (σ = 4.62), followed by QHTI with ≈ 3.31 seconds (σ = 5.41).

QHTCP and QHTCM run approximately 10 and 11 times slower than QHTC respectively,

QLM, DM, and HITBT 40, 25, and 19 times slower than QHTC respectively. Additionally,

QHTI and QHTC progress in a very similar manner with little differences only, i.e., similar

133

7. EMPIRICAL EVALUATION

Table 7.9: The minimum, maximum, average, and standard deviation (σ) execution time

measured by seconds for the spatial queries.

Approach Minimum Exec. Time Maximum Exec. Time Average Exec. Time σ

QLM 81.14 237.31 120.73 20.66

DM 41.10 130.99 73.46 11.25

HITBT 5.63 101.16 57.97 24.41

QHTCM 1.42 85.25 31.65 27.24

QHTCP 1.27 77.17 28.98 25.17

QHTI 0.25 32.55 3.31 5.41

QHTC 0.22 26.67 2.93 4.62

min, max, and average values. Also standard deviation (σ) in processing time is low in

both cases.

The results of Table 7.9 support and agree with the results presented previously.

The performance and scalability of our approaches stay relatively the same in terms

of the minimum, maximum, and average values of the queries. For example, QHTI and

QHTC have the lowest min, max, and average values. Oppositely, QLM and DM have the

highest min, max, and average values.

Discussion:

Based on the results described above, QHTI and QHTC clearly outperform the other

approaches, when 100 unique queries are processed. Figure 7.8 also exhibits that QHTCM

and QHTCP surpass QLM and HITBT respectively. In turn, HITBT outperforms QLM and

DM which in turn exceeds QLM.

QHTI and QHTC scaled very similar when compared to the other approaches. That is,

in contrast to other approaches, QHTI and QHTC need to visit GD only one time, since

the attributes of GD are merged (cf. Section 5.2 and 5.3). However, QHTC scales slightly

better than QHTI since QHTI needs to traverse the tuples (usually many and repeated

tuples) with same hash values of the queries (cf. Section 5.2).

The next two best approaches are QHTCP and QHTCM respectively. They perform

particularly well due to the fact that the matching of queries is done by using the

two-stage hierarchy. The two-stage hierarchical approach uses the labels of spatial

relations (in QHTCM) or object pairs (in QHTCP) to range the matches, then the ranged

ones are searched (cf. Section 5.4 and 5.5).

134

7.2 Indexing Approaches Experiments

QHTCP answers the queries faster than QHTCM . This gives an indication that the

labels of object pairs (TP .OPairs) range the matchings more efficient than the spatial

relations labels (TM .SpRel) of QHTCM . The performance of QHTCM and QHTCP depends

on the tuple recurrences and the distribution of these recurrences. In other words,

QHTCM might even surpass QHTCP in some other cases.

In order to answer the queries, HITBT exhibits a better performance than DM. HITBT

takes advantage of the B+-tree index that accelerates the search process (cf. Section

5.1). On the contrary, DM is required to perform a self join to obtain the objects of

clusters that are in a decisive relation (cf. Section 4.4.1.4). In addition, DM needs to

apply another join to retrieve the results of the clusters.

DM scales better than QLM due to the fact that it needs to visit a smaller number of

tuples than QLM.

QLM does not scale well compared to other approaches for two reasons: (1) it needs

to visit the attributes of GD several times and to perform joins and (2) no-indexing is

provided which implies an arbitrary and exhaustive search.

In turn, the naive approach does not scale at all, since the spatial relations need

to be computed at run time which is a very expensive process. Additionally, joins must

be done twice, one for computing the spatial relations, and another one for matching

the queries.

Finally, we note that the response times of our approaches are greatly increased to

process the queries from 10 to 100. This is due to the fact that the queries may cover

high density zones (wrt. objects) and they retrieve many results from databases.

7.2.4 Varying the Number of Pairs

In this sub-section we vary the number of pairs (#p) to examine the performance of the

proposed approaches (#p ∈ {1, 2}). As depicted in Figure 7.10 varying #p from 1 to 2

has a significant impact on the response time to process the 10 spatial queries by our

approaches.

In general, Figure 7.10 illustrates that processing the two object pair queries (#p=2)

requires more time than the single object pairs ones (#p=1). Figure 7.10(a) conveys

that QLM is able to answer the all queries in less than 1209 seconds when #p = 1 and in

less than 3466 seconds if #p = 2. Compared to the spatial queries when #p = 1, QLM

requires approximately triple response time when #p = 2.

135

7. EMPIRICAL EVALUATION

The number of queries

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

2000

2500

3000 QLM
DM
HITBT
QHTI
QHTC
QHTCM

QHTCP

Figure 7.9: Varying the number of double pairs queries.

DM and HITBT answer the spatial queries when #p = 1 in less than 734 and 547

seconds receptively, and in less than 2023 and 1057 seconds respectively when #p = 2

(Figure 7.10(b) and 7.10(c)). On average and compared to spatial queries when #p = 1,

DM and HITBT have a little less than triple and double response time respectively, for

processing spatial queries when #p = 2.

In order to process all spatial queries with #p = 2, QHTCP takes 546 seconds

while QHTCM takes 919 seconds (Figure 7.10(e) and 7.10(d)). Thus, when #p = 2 the

response time of all the queries processed by QHTCM and QHTCP increases by a factor of

approximately 9 and 5 respectively in comparison to when #p = 1.

Finally, QHTI and QHTC are able to answer the spatial queries in less than approx-

imately 251 and 206 seconds respectively (Figure 7.10(f) and 7.10(g)) when #p = 2.

Furthermore, compared to the spatial queries with #p = 1, the processing time of all

the spatial queries processed by QHTI and QHTC with #p = 2 is increased by a factor

of approximately 24 and 20 on average respectively. Despite the significant difference

between the response time for spatial queries when #p = 1 and when #p = 2, the

performance and scalability of our approaches stay relatively the same as those presented

136

7.2 Indexing Approaches Experiments

The number of queries

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

2000

2500

3000

3500 QLM_2
QLM_1

(a) Comparing QLM

The number of queries

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1 2 3 4 5 6 7 8 9 10

0

500

1000

1500

2000
DM_2
DM_1

(b) Comparing DM

The number of queries

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

1000
HITBT_2
HITBT_1

(c) Comparing HITBT

The number of queries

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

QHTCM_2
QHTCM_1

(d) Comparing QHTCM

The number of queries

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1 2 3 4 5 6 7 8 9 10

0

100

200

300

400

500

QHTCP_2
QHTCP_1

(e) Comparing QHTCP

The number of queries

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250
QHTI_2
QHTI_1

(f) Comparing QHTI

The number of queries

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200
QHTC_2
QHTC_1

(g) Comparing QHTC

Figure 7.10: Comparing our approaches by varying the number of object pairs.

137

7. EMPIRICAL EVALUATION

in Section 7.2.3 (see Figure 7.9). Figure 7.9 shows that QHTI and QHTC are more scalable

than the other approaches. In contrast, QLM and the DM do not scale well in comparison

to the other approaches.

Discussion:

To begin, varying the number of pairs (#p) has a large increase in the response time by

our approaches to process the spatial queries. In particular, the response time of QLM,

DM, and HITBT rose up when #p = 2. By increasing the number of pairs, it is required

to increase the number of (self) join operations as well.

Comparatively, peaking the response time of QHTCM and QHTCP when #p = 2 can

be justified. However, the response time of QHTC and QHTI is dramatically increased

when #p = 2 due to two reasons. First, many of the tuples need to be processed by

QHTC and QHTI in order to answer the queries. Second, the number of the retrieved

results is considerably higher than the ones when #p = 1.

7.2.5 Varying the Number of Objects

In this sub-section, we consider a single query (#q = 1) regarding different sizes of the

underlying database (#o = 1000, . . . , 8756). Based on the processing time behavior we

extracted four main classes of queries (cf. Figure 7.11). We gave a prototypical query

for each class and according results in Table 7.10. Although, most other cases behave

very similar to one of these cases, some queries may be considered as mixed cases of

these four.

From Figure 7.11, it is apparent that QHTI and QHTC surpass the other approaches

when processing the four queries. Oppositely, QLM has the worst performance to process

the queries. In particular, Figure 7.11(a) shows the result of the first query, in which

QHTCM and QHTCP outperform HITBT. Furthermore, HITBT surpasses DM and QLM. It also

indicates that the response times of all the approaches rose sharply when the number

of objects #o >5000. In fact, according to the Table 7.10 the number of retrieved

results increases sharply when #o >5000. In addition, QHTCM and QHTCP take similar

processing time as HITBT when #o ≤5000. Figure 7.11(b) and 7.11(c) illustrate the

results of the second and third query, which are very similar to the results of the first

query. In these queries, HITBT clearly exceeds DM when #o is varied from 1000 to 8756.

138

7.2 Indexing Approaches Experiments

Table 7.10: Four spatial queries and their cardinalities as well as their numbers of the

retrieved results.

Query: Primary Obj. {Spatial Rels} Reference Obj. Card. (N) # of retrieved

results

Building {Medium-Disjoint-East} Park

N=1000 11

N=3000 93

N=5000 728

N=8756 1768

Building {Near-Disjoint-East} Park

N=1000 9

N=3000 501

N=5000 591

N=8756 920

Pitch {Near-Disjoint-NorthWest:West} Building

N=1000 50

N=3000 751

N=5000 756

N=8756 1738

Building {Near-Disjoint-NorthEast} School

N=1000 3

N=3000 1044

N=5000 1065

N=8756 1289

The results of the fourth query can be seen in Figure 7.11(d). Interestingly, QHTCM

outperforms QHTCP when #o <5000 and DM surpasses HITBT when #o≤5000.

Discussion:

Broadly speaking, changing the number of objects (cardinalities) has a considerable

impact on the performance and the behavior of the presented approaches in order to

process the four queries.

QLM does not scale well due to the fact that the database tuples must be searched

arbitrarily without any order. Furthermore, the joins are required to retrieve the

corresponding results. Conversely, no joins are needed in the case of QHTI and QHTC

which justifies their ability to scale better than the other approaches.

The response time of our approaches when #o < 5000, are significantly less than

the ones when #o > 5000. This is most likely due to the fact that they only need to

139

7. EMPIRICAL EVALUATION

Number of object

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1000 3000 5000 8756

0

50

100

150

200

QLM
DM
HITBT
QHTI
QHTC
QHTCM

QHTCP

(a) The first query

Number of object

E
xe

cu
tio

n
tim

e
[s

ec
on

d]
1000 3000 5000 8756

0

20

40

60

80

100

120

140
QLM
DM
HITBT
QHTI
QHTC
QHTCM

QHTCP

(b) The second query

Number of object

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1000 3000 5000 8756

0

20

40

60

80

100

120

140
QLM
DM
HITBT
QHTI
QHTC
QHTCM

QHTCP

(c) The third query

Number of object

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

1000 3000 5000 8756

0

20

40

60

80

100

120
QLM
DM
HITBT
QHTI
QHTC
QHTCM

QHTCP

(d) The fourth query

Figure 7.11: Comparison: varying the number of objects of the database (cardinality).

retrieve a small number of objects if #o < 5000 (see Table 7.10) compared to other

cardinalities (#o > 5000).

Regarding the first, second, and third queries, the performance of our approaches

can be generally validated similarly to the descriptions and justifications mentioned

in Section 7.2.3 and 7.2.4. Nevertheless, Figure 7.11(a) represents interesting results

for the first query, in which HITBT, QHTCM , and QHTCP perform and scale similarly

when #o <= 5000. That is, the ranging strategies used by QHTCM and QHTCP were not

efficient enough to range either the spatial relations or the object pairs.

Figure 7.11(d) also shows interesting results for the fourth query. In the sense that

DM surpasses HITBT when #o <= 5000 and QHTCM outperforms QHTCP when #o = 5000.

140

7.3 Synthetic Data Evaluation

Regarding DM and HITBT, our explanation is that the latter has to partially perform

an exhaustive search, due to the fact that the dataset with #o = 5000 may contain

most of the labels of spatial relations and object pairs. In other words, HITBT may

have to traverse many branches of the levels of B+-tree index (for all or some database

attributes) to extract the nodes with same labels of the query. This argument can be

complementarily supported by the results shown in the Table 7.10 that conveys that

the most results are retrieved from database when #o = 5000.

Finally, it is noticeable that the response time varies from query to another, since

the queries may cover various density zones (wrt. objects) which may make the response

times of the queries vary as well.

7.3 Synthetic Data Evaluation

In this section we evaluate our approaches by using a synthetic data to examine their

performance. Firstly, we report about the reduction rates achieved by the DBSCAN

approach (see Section 7.3.1). Afterwards, we evaluate the capability of qualitative

data reduction by QHTC, QHTCM , and QHTCP (see Section 7.3.2.1). In Section 7.3.2.2,

we examine the scalability of our matching approaches based on the execution time of

spatial queries.

7.3.1 Clustering Experiments on a Synthetic Data

In our experiments, we have used a synthetic dataset that has been stored in the Post-

greSQL/PostGIS database and contained 1000 polygons. The 1000 polygons have been

randomly generated and uniformly distributed in D×D= 500 × 500 fixed-size workspace.

Furthermore, each polygon is randomly assigned a label (e.g., park). Moreover, all

dataset objects have the same two-dimension extents. Figure 7.12 demonstrates a snap-

shot the randomly generated polygons of the synthetic dataset. We justify the choice

of data distributions in terms of our synthetic dataset. In contrast to the real-world

dataset we have used in Section 7.1 and 7.2, we here use uniform distributed dataset

for two reasons: (1) to show that our approaches are scalable and efficient even when

we use a different dataset and (2) regarding querying and clustering, the objects in

real-world datasets seem to be more efficient to handle than the objects in uniform

distributed dataset.

141

7. EMPIRICAL EVALUATION

Figure 7.12: A snapshot of a synthetic dataset.

Now, the reduction process by DBSCAN happens in two stages: (1) Filtering Clus-

tering Candidates and (2) Selecting Clustering Candidate.

(1) Filtering Clustering Candidates:

In order to select clustering candidates, we vary the MinPts and the Eps values of

DBSCAN. DBSCAN terminates the clustering process when ≥50% of the database

objects are clustered and the maximum size cluster is at least doubled.

We start by setting the MinPts=2 and we iterate over all the Eps values from

1 to 30 incremented by 1. Similarly, we iterate over all the MinPts values from 3

to 9 increased by 1 (see Figure 7.13). From Figure 7.13, it is apparent that peaking

situations occur when Eps ≥ 15. Based on the experiments appeared in Figure 7.13, we

select the eight clustering candidates. Table 7.12 illustrates their MinPts, Eps, their

number of clusters, their maximum cluster size, and their number of outliers. In all the

experiments, DBSCAN took between 3 and 7.5 seconds to cluster the objects.

Similar to Section 7.1.2, we compute Pearson correlation coefficient (r) and p-value

to measure the strength and significance of the relationship between pairs of variables.

As pairs of variables of interest, Table 7.11 shows the values of r and p-value between

142

7.3 Synthetic Data Evaluation

radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

1 4 7 10 13 16 19 22 25 28
0

200

400

600

800

1000

(a) DBSCAN(2, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

1 4 7 10 13 16 19 22 25 28
0

200

400

600

800

1000

(b) DBSCAN(3, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

1 4 7 10 13 16 19 22 25 28
0

200

400

600

800

1000

(c) DBSCAN(4, Eps=v)

radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

1 4 7 10 13 16 19 22 25 28
0

200

400

600

800

1000

(d) DBSCAN(5, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

1 4 7 10 13 16 19 22 25 28
0

200

400

600

800

1000

(e) DBSCAN(6, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

1 4 7 10 13 16 19 22 25 28
0

200

400

600

800

1000

(f) DBSCAN(7, Eps=v)

radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

1 4 7 10 13 16 19 22 25 28
0

200

400

600

800

(g) DBSCAN(8, Eps=v)
radius of cluster

cl
us

te
r w

ith
 m

ax
im

um
 s

iz
e

1 4 7 10 13 16 19 22 25 28
0

200

400

600

800

(h) DBSCAN(9, Eps=v)

Figure 7.13: Snapshots of DBSCAN(MinPts, Eps=v), v: the radius of clusters varied

from 1 to 30 degrees incremented by 1.

143

7. EMPIRICAL EVALUATION

Table 7.11: r and p-value for MinPts with other variables.

Measure Eps # of clusters # of outliers

r MinPts 0.877 -0.979 0.612

p-value MinPts 0.004 0.0000991 0.106

Table 7.12: The clustering candidates of DBSCAN experiments.

MinPts Eps # of clusters Maximum cluster size # of outliers

2 15 87 46 113

3 15 73 34 241

4 16 57 36 327

5 18 45 57 276

6 19 40 58 309

7 22 27 106 211

8 21 26 59 423

9 21 17 133 301

the MinPts and other variables.

The correlation coefficient between the MinPts and the Eps is significant (p-value

<0.05), positive, “very strong”, and linear. The correlation between the MinPts and

the number of clusters is significant, negative, and “very strong”. Lastly, the correlation

between the MinPts and the number of outliers is not significant (p-value >0.05),

positive, and “strong”.

(2) Selecting Clustering Candidate:

In order to select a clustering candidate, we compare the candidates by calculating the

number of spatial relations per qualitative aspect that can be saved by each clustering

candidate. The reduction rates of the topological, directional, and distance relations as

well as their average reduction are reported in Table 7.13.

Discussion:

Among the other candidates, the first candidate DBSCAN(2, 15) offers the highest

directional, distance, and average reduction rates with 79.71 %, 89.60 %, and 86.83 %

respectively. That is, the DBSCAN(2, 15) candidate generates smaller CCHs and MBRs

than those produced by others and has the lowest number of outliers.

144

7.3 Synthetic Data Evaluation

Table 7.13: The reduction rates for the topological, directional, and distance relations as

well as their average reduction.

MinPts Eps Topology Red. Direction Red. Distance Red. Avg Red.

2 15 91.18 % 79.71 % 89.60 % 86.83 %

3 15 92.52 % 67.90 % 88.47 % 82.96 %

4 16 87.18 % 64.83 % 83.72 % 78.58 %

5 18 89.44 % 59.86 % 84.26 % 77.85 %

6 19 61.60 % 50.21 % 59.31 % 57.04 %

7 22 90.58 % 41.69 % 77.33 % 69.87 %

8 21 78.350 % 51.13 % 73.97 % 67.82 %

9 21 70.94 % 51.52 % 68.08 % 63.52 %

Accordingly, the number of the directional and distance decisive relations are

increased which leads to increase the reduction rate on average.

The next candidate DBSCAN(3, 15) provides the highest topological reduction rate

with 92.52 %. This topological reduction rate is achieved by the candidate, as the size

of some generated clusters are slightly increased in comparison to ones provided by

DBSCAN(2, 15) and no other clusters are included in the increased ones. In addition,

the shapes of clusters generated by DBSCAN(3, 15) are completely changed compared

to the ones generated by DBSCAN(2, 15). Consequently, the DBSCAN(3, 15) candidate

was able to enclose its clusters using the CCHs more tightly than DBSCAN(2, 15) which

leads to reduce the number of the non-disjoint relations and thus increase the reduction

rate. However, the penalty of such increase of the clusters size is that the number of

the directional and distance decisive relations are decreased (cf. Section 7.1.3). This

led to reduce the amounts of the directional and distance reduction rates.

7.3.2 Indexing Approaches Experiments on a Synthetic Data

In this sub-section, we present two kinds of experiments: (1) evaluating the ability of

QHTC, QHTCM , and QHTCP to reduce the size of GD (Section 7.3.2.1) and (2) evaluating

the scalability of our approaches (Section 7.3.2.2).

Similar to Section 7.3.1, we have used the synthetic dataset that contains 1000

labelled polygons to evaluate our approaches. Based on the dataset, three kinds of

graph databases have been constructed. The first graph database is GD and has been

constructed by computing 999000 tuples ((1000*1000)-1000). Each tuple represents the

145

7. EMPIRICAL EVALUATION

Table 7.14: The first level of the constructed trees and their index construction time.

Approach Constructed Tree(s) Index Construction [second]

HITBT TB 34

QHTCP TP .SpRel, TP .OPairs 391

QHTCM TM .SpRel, TM .OPairs 417

QHTI T 440

QHTC TC 501

pairs of objects and their spatial relations that are held among them. In our experiments,

three types of qualitative relations have been abstracted: topology, direction, and

distance. Constructing GD took 229 seconds. GD represents the graph database of QLM.

Additionally, GD must also be used by QHTI, QHTC, QHTCM , and QHTCP to construct

their database trees and indices that are essential to evaluate these approaches. Table

7.14 lists the constructed trees of the corresponding approaches as well as their index

construction time.

The second and third graph databases are the CR and GC
D, respectively. They are

required to evaluate the DM approach. Constructing the CR and GC
D took 36 seconds.

The CR is constructed using the DBSCAN(2, 15) results gathered from Section 7.3.1.

The experiments were performed on a Windows7 platform, 2.1 GHz processor with

4 GB of RAM. The average response time for answering spatial queries is employed

as a major performance measure. In the experiments, we ran the spatial queries five

times and we took the average execution time afterwards. In particular, we varied the

number of queries from 1 to 50 incremented by 1. The 50 non-empty results queries

were randomly generated by using the Auto Queries Generator(GD, T
C , 100, 10000,

True, 50) function presented in Section 6.7. The function generated the 50 unique

(parameters 5 and 6) queries that retrieved the number of results between 100 and 10000

(parameters 3 and 4). Furthermore, each query contained exactly a single object pair

and three types of spatial relations.

7.3.2.1 Qualitative Data Reduction

We evaluate the reduction qualitative data capability of the QHTC, QHTCM , and QHTCP

compared to the original size of the graph database (GD). The size of GD is 999000 and

denoted by |GD|.

146

7.3 Synthetic Data Evaluation

Table 7.15: The number of detected unique tuples of QHTC, QHTCM , and QHTCP as well as

their new and reduced graph size.

Approach Number of unique tuples Reduced graph size %

QHTC TC=9295 0.00931 %

QHTCM TM .SpRel=140 0.00014 %

QHTCP TP .OPairs=1662 0.001664 %

The reduction rates of the QHTC, QHTCM , and QHTCP in comparison to |GD| are listed

in Table 7.15. For example, QHTC reduces the recurrences of GD tuples to be 9295 unique

tuples, which is approximately 0.00931 % (9295/999000) in comparison to |GD|. The
reduction rates of the aforementioned approaches given in Table 7.15 can be validated

by using the justifications given in Section 7.2.2.

7.3.2.2 Varying the Number of Queries

This sub-section presents a comparison between the approaches by varying the number

of queries (#q) in order to evaluate their scalability.

Similar to Section 7.2.3, the naive approach does not scale at all, since the spatial

relations need to be computed at run time. Accordingly, we concentrate on the other

approaches than the naive approach.

The response time of 50 accumulative spatial queries are illustrated in Figure 7.14.

In turn, processing time for the all spatial queries for QHTI is ≈ 2.2 seconds, 1.9 seconds

for QHTC respectively, QHTCM needs ≈ 4.7 seconds and QHTCP ≈ 5.1 seconds. Eventually,

QLM needs ≈ 21.1 seconds, DM ≈ 11 seconds, and HITBT ≈ 16.91 seconds. The overall

response time for 50 queries for QHTI and QHTC is not that much different. The latter

observation holds for QHTCP and QHTCM as well. QHTCP and QHTCM run approximately

2.5 and 2.7 times slower than QHTC respectively. In turn, HITBT, DM, and QLM run

approximately 9, 6, and 12 times slower than QHTC respectively.

Discussion:

The previous experiment showed that QHTC exceeds QHTI that outperforms the other

approaches. In contrast to others, QHTI and QHTC need to visit GD only once as the

attributes of GD are merged (cf. Section 5.2 and 5.3). Figure 7.14 conveys that QHTCM

surpasses QHTCP that exceeds HITBT, DM, and QLM. In turn, DM outperforms HITBT that

147

7. EMPIRICAL EVALUATION

The number of queries

E
xe

cu
tio

n
tim

e
[s

ec
on

d]

0 3 6 9 13 17 21 25 29 33 37 41 45 49

0

5

10

15

20

QLM
DM
HITBT
QHTI
QHTC
QHTCM

QHTCP

Figure 7.14: Varying the number of single pair queries.

surpasses QLM. Unlike the results mentioned in Section 7.2.3, here QHTCM scales better

than QHTCP . That means that the labels of the relations of QHTCM tree range the match-

ings more efficient than the labels of object pairs of QHTCP tree. Another difference

in comparison to the results explained in Section 7.2.3 is that DM answers the queries

faster than HITBT. Even though DM needed to apply joins to retrieve the results of the

clusters, it needed to visit drastically smaller number of tuples than QLM (cf. Section

7.3.1). Moreover, the joins are applied on a small number of objects (1000 objects),

which does not make a big influence on the DM performance. The last difference is that

the processing time by all the approaches is considerably reduced. Furthermore, some

approaches such as QLM showed a good scalability. This may indicate that the QLM might

be applicable to cope with small datasets rather than large ones.

148

7.4 Summary

7.4 Summary

This chapter demonstrated an empirical evaluation. We analyzed and evaluated the

ability of the approaches presented in Chapter 4 and 5 to reduce space and time

complexity that are related to process spatial queries on the spatial databases.

First, we have carried out two kinds of experiments on a real-world dataset to

evaluate performance of our approaches: (1) the space reduction of the graph databases

and (2) the execution time of the spatial queries. In Section 7.1 we developed a novel

methodology to parametrize DBSCAN. By using the appropriate values for Eps and

MinPts, DBSCAN showed a good ability to reduce the size of the graph database (GD)

with approximately 47.43 % average reduction rate. Next, in Section 7.2.2 we have

evaluated the efficiency of QHTC, QHTCM , and QHTCP to reduce the size of the GD. In

particular, the approaches were able to considerably reduce the size of GD by aggregating

the exact labels of spatial relations, the pairs of objects, or a combination of them,

since there were many recurrences of those labels. In Section 7.2, we examined the

efficiency of our approaches to process random spatial queries. In order to examine

our approaches, several spatial queries were randomly generated as follows: (i) 100

non-empty results queries for the experiment of varying number of queries, (ii) 10

non-empty results queries for the experiment of varying number of pairs, and (iii) 4

non-empty results queries for the experiment of varying number of objects. The spatial

queries were randomly generated to cover as many cases as possible. Regarding the

execution time of the spatial queries, in all experiments the scalability of the approaches

can be given in the following descending order:

QHTI>QHTC>QHTCP>QHTCM>DM>QLM>the naive approache.

The hash-based approaches showed better scalability than others, due to the fact that

the attributes of database table were totally or partially merged. That means that the

hash-based approaches needed to visit the database table fewer times than the other

approaches.

Similarly in Section 7.3 we have run the aforementioned experiments on a synthetic

dataset to examine the behaviour of our approaches as well as their space and time

scalability. Regarding the qualitative data reduction, DBSCAN has demonstrated a

strong ability to reduce the size of GD with approximately 86.83 % average reduction

149

7. EMPIRICAL EVALUATION

rate. This reduction rate when DBSCAN has been applied to the synthetic dataset was

extremely higher than the one achieved when it was applied to the real-world dataset.

Next, we have tested the reduction capability of QHTC, QHTCM , and QHTCP to reduce

the size of GD, where the approaches have shown an ability to drastically reduce GD

size.

Lastly, we have evaluated the response time of spatial queries processed by our

approaches. Our experiments suggested that the hash-based approaches were able to

answer the queries faster than the other approaches for the reasons mentioned above.

150

Chapter 8
Conclusions

This chapter concludes the dissertation by summarizing our contributions and discussing

directions for future work.

8.1 Summary

We started this work with observing that most work on geo-spatial databases has been

focused on developing novel and powerful techniques to process quantitative spatial

queries but not qualitative ones.

However, as we argued that it is more natural and intuitive for humans to query

geo-spatial databases by means of qualitative terms than by quantitative values. This

type of queries are called Qualitative Spatial Queries (QSQs). Therefore, we have

integrated the appropriate qualitative spatial representations into Spatial Data-Base

Management Systems (SDBMSs) to allow the qualitative and intuitive formalism of

queries in GISs. We have integrated three kinds of qualitative models into the SDBMSs:

(1) topology, (2) direction, and (3) distance.

Next, we have used the qualitative models to abstract the three aforementioned

kinds of spatial relations and to store them in a Qualitative Spatial Layer (QSL) of

spatial databases. This has led to avoid the additional cost of the abstraction process

when answering every single QSQ.

As abstracting the QSL has resulted in a high space complexity in terms of qualita-

tive representations, we have applied two data reduction strategies: (1) reduction by

clustering and (2) reduction by a converse operation of qualitative models.

151

8. CONCLUSIONS

In the first strategy, we have applied Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) to group the database objects that are near to each other into

clusters and then to identify the decisive relations among clusters. Accordingly, we

were able to avoid computing and storing the spatial relations for all pairwise objects of

cluster pairs that were in decisive relation.

In the second strategy, we have applied a converse operation to reduce the size of

the QSL. By applying the converse operation of a qualitative model, we have exploited

symmetry in the QSL and thus we were able save up to half of the size of the QSL.

We have also observed that most spatial indexing approaches have been applied to

spatial databases to only handle single aspects of space such as topology or direction.

Furthermore, they were required to compute the spatial relations among the geometric

objects of spatial databases at run time.

These observations have led to the development of five novel indexing approaches: (1)

A Hybrid Interpretation Tree and B+-Tree (HITBT), (2) Qualitative Hash Table Indexing

(QHTI), (3) Qualitative Hash Table Compression (QHTC), (4) QHTC of Qualitative Models

(QHTCM), and (5) QHTC of Object Pairs (QHTCP). In these indexing approaches, we have

employed hashing and B+-tree indexing to speed-up answering QSQs.

1. HITBT: has combined interpretation tree with B+-trees to reduce the time com-

plexity of processing QSQs.

2. QHTI: has been developed to concatenate the pairs of objects with their qualitative

spatial relations and then to store them in a hash table.

3. QHTC: has been developed as an extension of QHTI to process QSQs even quicker

than QHTI and at the same time to save space by aggregating the multiple

recurrences of data sets in QHTI.

4. QHTCM : has been developed as a variant of QHTC to allow for pruning the search

space based on the labels of qualitative models.

5. QHTCP : has been developed as a variant of QHTC to allow for pruning the search

space based on the labels of object pairs.

Afterwards, we have developed a practical system that we have called QualEnabler.

QualEnabler has been aimed to combine the aforementioned components of our work

152

8.1 Summary

such as clustering, indexing, etc. In addition, we have shown the applicability of

QualEnabler by implementing two prototypical query systems. These systems allowed

for querying qualitative information from a spatial database by means of qualitative

terms and sketch objects.

In the end, we have conducted two types of evaluations on real-world and synthetic

datasets to evaluate space and time scalability of our approaches. We have first examined

the ability of DBSCAN to reduce the qualitative data of QSL. Our results suggested

that DBSCAN was able to reduce the amounts of spatial relations in comparison to

the original size of QSL significantly. As QHTC, QHTCM , and QHTCP were designed to

reduce qualitative data stored in the QSL, we have tested their reduction ability as well.

Our experiments have shown that the approaches had a strong capability to reduce the

spatial relations, objects pairs, or a combination of them, which have been stored in the

QSL.

Lastly, we have evaluated the efficiency and performance of the seven matching

approaches: (1) the Qualitative Layer Matcher (QLM), (2) the DBSCAN Matcher (DM),

(3) HITBT, (4) QHTI, (5) QHTC, (6) QHTCM , and (7) QHTCP . Regarding the response time

to spatial queries using real-world and synthetic datasets, hash-based approaches showed

better scalability than others. This is due to the fact that the attributes of a database

table were totally or partially merged. That means that the hash-based approaches

needed to visit the database table fewer times than the other approaches, which led to

decrease the query processing time.

153

8. CONCLUSIONS

8.2 Future Directions

The contributions and findings of this dissertation do not sign the end of the research

presented in this dissertation. Our findings and results point to several promising future

work directions which we list below.

8.2.1 Qualitative Spatial Clustering Reasoning

Currently three kinds of clustering are used to reduce the amounts of qualitative data

of the spatial databases: (i) density-based, (ii) grid-based, and (iii) hierarchical and

partition. In Section 3.2, we pointed out that there are eight types of clustering.

Thus, there is a great opportunity to apply many other clustering methods to analyze

qualitative data and then to reduce the amounts of this data. Hence, we will exploit

the qualitative data reduction capability of these clustering methods. Furthermore,

we will compare the clustering methods against each other based on their clustering

features such as their qualitative reduction rates and their execution time. Aside from

the qualitative data reduction, clustering methods will be used to develop innovative

and useful applications. In particular, the applications will be based on the computed

spatial relations among clusters. Additionally, the composition and converse operations

of qualitative spatial reasoning will be applied to infer (possibly new and beneficial)

knowledge. For example, clustering can be applied to find the crime areas of a city,

so each cluster represents a dense crime area. Such applications will allow us to pose

queries such as “find crime areas that near to each other” or “find crime areas that

overlap each other”.

8.2.2 Conceptually Neighboring Qualitative Spatial Queries

In this dissertation, we only consider the exact matching of Qualitative Spatial Queries

(QSQs) against spatial databases. However, processing QSQs may retrieve empty-results

due to two reasons: (i) no exact match found and (ii) QSQs could be inconsistent. In

order to deal with this issue, the Conceptually Neighboring QSQs (CN-QSQs) can be

considered. Recall Sections 2.4 and 2.5, the Conceptual Neighbourhood Graphs (CNGs)

of QSQs and the relaxation function can be used to generate the CN-QSQs. So far,

most of the approaches cope with the issue by finding the CN-QSQs for a single aspect

of space. For example, Egenhofer (2010) focuses on finding the topological CN-QSQs.

154

8.2 Future Directions

As we pointed out in Section 4.3.1, QSQs can be represented by a multi-qualitative

constraint networks (QCND) and may contain more than one kind of spatial relation

(e.g., topology and direction). In the future work, we will thusly develop a sophisticated

approach to generate the CN-QSQs from QCND to process them on spatial databases.

8.2.3 Approximate Qualitative Spatial Query Matching

Processing Qualitative Spatial Queries (QSQs) is very complex in space and time. One

way to deal with these issues is by finding the approximate matches instated of finding

the exact matches for QSQs. A-start (Wallgrün et al., 2010), genetic (Papadias et al.,

1999), and hill-climbing (Papadias, 2000) heuristic search methods have been applied

to retrieve the approximate matches for QSQs. Although the Artificial Ant-Colony

(AAC) (Dorigo, 1992) and Artificial Bee Colony (ABC) methods (Karaboga, 2005;

Karaboga and Akay, 2009) seem to be promising, they are still not applied to find the

approximate solutions for QSQs. Accordingly, we will use the AAC and ABC to retrieve

the approximate solutions for QSQs as fast as possible. Moreover, the conceptual

neighbourhood graphs of spatial relations (e.g., the topological (Egenhofer, 2010)) will

be used by AAC and ABC as background knowledge which may lead to prune the

search space of spatial databases efficiently.

8.2.4 Indexing for Qualitative, Spatial, and Keywords Queries

In this dissertation, we have proposed indexing approaches for answering Qualitative

Spatial Queries (QSQs). Aside from object pairs and their spatial relations, the user

queries may contain keywords (e.g., nice, restaurant, and flowers) as well. Such queries

usually return a massive amounts of results and need to be efficiently managed and

appropriately presented to users (Chen et al., 2013; Jensen, 2013). We will develop a

hybrid indexing approach that will combine our indexing approaches with keywords-

based indexing approach presented in (Chen et al., 2013). Moreover, we will evaluate

the approach by using real-world and synthetic datasets.

8.2.5 Supporting Individuals of Qualitative Spatial Queries

As we pointed out in Chapter 4 that Qualitative Spatial Queries (QSQs) are limited

to querying categories of objects such as rivers, rather than specific instances such as,

155

8. CONCLUSIONS

the “Weser” river. However, it is natural for people to mix abstract categories with

concrete instances, which means that dealing with queries containing categories and/or

specific instances is an interesting and important research problem. Accordingly, in the

future work, we will propose a method that allows for matching and pruning search

space of such queries efficiently. The method will be based on the refinement procedure

using concrete instances. For example, we will use concrete instances to identify all the

possible objects, which will be connected with these instances, whereas other objects

can be safely pruned.

8.2.6 Parallelism of Hash-Based Indexing Approaches

The hash-based indexing approaches proposed in Chapter 5 can be paralyzed on several

machines (or on a cloud) to speed-up their operations: (1) index construction, (2) search,

and (3) delete. The approaches represented the data of qualitative spatial layer as keys-

values which allow for directly applying parallel computing and programming techniques.

For example, MapReduce (Jahani et al., 2011), a popular programming paradigm in

cloud that can be used to paralyze such operations. We will apply MapReduce to the

operations of our approaches and then conduct an empirical evaluation to examine the

efficiency of MapReduce.

156

References

Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan. Automatic subspace

clustering of high dimensional data for data mining applications. In Proceedings of the 1998 ACM

SIGMOD international conference on Management of data, SIGMOD ’98, pages 94–105, New York,

NY, USA, 1998. ACM. (page 37)

Rami Al-Salman and Frank Dylla. QHTI: An approach for answering qualitative spatial queries in large

databases using a hash table data structure. In 16th AGILE Conference on Geographic Information

Science. AGILE, 2013. (page 77)

Rami Al-Salman, Frank Dylla, and Paolo Fogliaroni. Matching geospatial information by qualitative spa-

tial relations. In First ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered

Geographic Information, GeoCrowd ’12. ACM, 2012. (page 54)

Rami Al-Salman, Frank Dylla, and Lutz Frommberger. An approach to qualitative emergency manage-

ment. In Sisi Zlatanova, Rob Peters, Arta Dilo, and Hans Scholten, editors, Intelligent Systems for

Crisis Management, Lecture Notes in Geoinformation and Cartography, pages 43–50. Springer Berlin

Heidelberg, 2013a. (page 6, 106)

Rami Al-Salman, Mohammad Fraiwan, Malumbo Chipofya, Frank Dylla, Falko Schmid, and Hosam

Ersheda. ASET: An intuitive data acquisition-sketching tool for disaster management systems. In

16th AGILE Conference on Geographic Information Science. AGILE, 2013b. (page 110)

James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832–843,

November 1983. (page 19)

Alex M. Andrew. Object recognition by computer : the role of geometric constraints. Cambridge, Mass.

MIT Press, 1990. (page 54)

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. OPTICS: ordering points to

identify the clustering structure. In Proceedings of the 1999 ACM SIGMOD international conference

on Management of data, SIGMOD ’99, pages 49–60, New York, NY, USA, 1999. ACM. (page 37, 38)

WalidG. Aref and Hanan Samet. Extending a dbms with spatial operations. In Oliver Gnther and

Hans-Jrg Schek, editors, Advances in Spatial Databases, volume 525 of Lecture Notes in Computer

Science, pages 297–318. Springer Berlin Heidelberg, 1991. (page 26)

157

REFERENCES

G. Phanendra Babu and M. Narasimha Murty. A near-optimal initial seed value selection in k-means

algorithm using a genetic algorithm. Pattern Recogn. Lett., 14(10):763–769, October 1993. (page 37)

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-tree: an efficient

and robust access method for points and rectangles. SIGMOD Rec., 19(2):322–331, May 1990.

(page 32)

Alberto Belussi, Elisa Bertino, and Barbara Catania. Using spatial data access structures for filtering

nearest neighbor queries. Data Knowl. Eng., 40(1):1–31, January 2002. (page 34)

Andreas D. Blaser and Max. J. Egenhofer. A visual tool for querying geographic databases. In

Proceedings of the working conference on Advanced visual interfaces, AVI ’00, pages 211–216, New

York, NY, USA, 2000. ACM. (page 41, 49)

Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In Mathematical Foundations of

Computer Science 1997, volume 1295 of Lecture Notes in Computer Science, pages 19–36. Springer

Berlin Heidelberg, 1997. (page 73, 74)

Christian Böhm, Stefan Berchtold, Hans-Peter Kriegel, and Urs Michel. Multidimensional index

structures in relational databases. J. Intell. Inf. Syst., 15(1):51–70, 2000. (page 5)

Tom Bruns and Max J. Egenhofer. Similarity of spatial scenes. 7th Symposium on Spatial Data Handling,

pages 31–42, 2000. (page 41, 49)

Aileen R. Buckley. Minimum Bounding Rectangle, page 287. SAGE Publications, Inc., 0 edition, 2008.

(page 60)

David Caduff and Max J. Egenhofer. Geo-mobile queries: Sketch-based queries in mobile GIS-

environments. In W2GIS’05, pages 143–154, 2005. (page 41)

Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions.

Discrete & Computational Geometry, 16:361–368, 1996. (page 60, 61)

Ning-San Chang and King-Sun Fu. Query-by-pictorial-example. IEEE Trans. Softw. Eng., 6(6):519–524,

November 1980. (page 26)

Danny Z. Chen and Jinhui Xu. Shortest path queries in planar graphs. In Proceedings of the Thirty-

second Annual ACM Symposium on Theory of Computing, STOC ’00, pages 469–478, New York, NY,

USA, 2000. ACM. (page 1)

Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. Spatial keyword query processing: an

experimental evaluation. In Proceedings of the 39th international conference on Very Large Data

Bases, PVLDB’13, pages 217–228. VLDB Endowment, 2013. (page 155)

Tsz S. Cheng and Shashi K. Gadia. A pattern matching language for spatio-temporal databases. In

Proceedings of the Third International Conference on Information and Knowledge Management,

CIKM ’94, pages 288–295, New York, NY, USA, 1994. ACM. (page 23)

Malumbo Chipofya. Multi-sketch alignment in the context of volunteered geographic information. In

14th AGILE International Conference on Geographic Information Science, pages 1–9, 2011. (page 41)

158

REFERENCES

Eliseo Clementini and Roland Billen. Modeling and computing ternary projective relations between

regions. IEEE Transactions on Knowledge and Data Engineering, 18(6):799–814, 2006. (page 49)

Eliseo Clementini and Paolino Di Felice. An object calculus for geographic databases. In Proceedings of

the 1993 ACM/SIGAPP Symposium on Applied Computing: States of the Art and Practice, SAC ’93,

pages 302–308, New York, NY, USA, 1993. ACM. (page 23)

Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. A small set of formal topological

relationships suitable for end-user interaction. In Proceedings of the Third International Symposium

on Advances in Spatial Databases, SSD ’93, pages 277–295, London, UK, UK, 1993. Springer-Verlag.

(page 13, 24, 129)

Anthony Cohn and Jochen Renz. Qualitative Spatial Representation and Reasoning. Number 551-596.

Elsevier, 2008. (page 9, 10)

Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts. Qualitative spatial

representation and reasoning with the region connection calculus. Geoinformatica, 1(3):275–316,

October 1997. (page 10, 13)

Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137, June 1979. (page 27)

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. (page 54)

Giorgio De Felice, Paolo Fogliaroni, and Jan Oliver Wallgrün. A hybrid geometric-qualitative spatial

reasoning system and its application in GIS. In Proceedings of the 10th international conference

on Spatial information theory, COSIT’11, pages 188–209, Berlin, Heidelberg, 2011. Springer-Verlag.

(page 42)

Marco Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Dipartimento di Elettronica,

Politecnico di Milano, Milan, Italy, 1992. (page 155)

Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient generation of simple polygons

for characterizing the shape of a set of points in the plane. Pattern Recognition, 41(10):3224 – 3236,

2008. (page 60, 61)

Frank Dylla and Reinhard Moratz. Empirical complexity issues of practical qualitative spatial reasoning

about relative position. In In Workshop on Spatial and Temporal Reasoning at ECAI, 2004. (page 16)

Frank Dylla and Jan Oliver Wallgrün. Qualitative spatial reasoning with conceptual neighborhoods for

agent control. Journal of Intelligent and Robotic Systems, 48:55–78, 2007. (page 19, 20)

Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On the shape of a set of points in the

plane. IEEE Transactions on Information Theory, 29(4):551–559, July 1983. (page 61)

Max J. Egenhofer. Whats special about spatial?: Database requirements for vehicle navigation in

geographic space. In Proceedings of the 1993 ACM SIGMOD International Conference on Management

of Data, SIGMOD 93, pages 398–402, New York, NY, USA, 1993. ACM. (page 1)

159

REFERENCES

Max J. Egenhofer. Pre-processing queries with spatial constraints. Photogrammetric engineering and

remote sensing, 60(6):783–790, 1994a. (page xv, 20, 70)

Max J. Egenhofer. Spatial SQL: A query and presentation language. IEEE Transactions on Knowledge

and Data Engineering, 6:86–95, 1994b. (page 26, 40)

Max J. Egenhofer. Query processing in Spatial-Query-by-Sketch. Journal of Visual Languages and

Computing, 8(4):403 – 424, 1997. (page 2, 40, 48, 49)

Max J. Egenhofer. The family of conceptual neighborhood graphs for region-region relations. In

Proceedings of the 6th International Conference on Geographic Information Science, GIScience’10,

pages 42–55, Berlin, Heidelberg, 2010. Springer-Verlag. (page 154, 155)

Max J. Egenhofer and Robert D. Franzosa. Point-set topological spatial relations. International journal

of geographical information systems, 5(2):161–174, 1991. (page 23, 62)

Max J. Egenhofer and Robert D. Franzosa. On the equivalence of topological relations. International

journal of geographical information systems, 9(2):133–152, 1995. (page 10, 12, 23, 40, 41, 69, 78)

MaxJ. Egenhofer and David M. Mark. Naive geography. In AndrewU. Frank and Werner Kuhn, editors,

Spatial Information Theory A Theoretical Basis for GIS, volume 988 of Lecture Notes in Computer

Science, pages 1–15. Springer Berlin Heidelberg, 1995. (page 40)

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. In Second International Conference on

Knowledge Discovery and Data Mining, pages 226–231. AAAI Press, 1996. (page 37, 38, 58)

Zoe Falomir, Lled Museros, Luis Gonzalez-Abril, and Francisco Velasco. Measures of similarity between

qualitative descriptions of shape, colour and size applied to mosaic assembling. Journal of Visual

Communication and Image Representation, 24(3):388 – 396, 2013. (page 2)

Christos Faloutsos and Yi Rong. Dot: A spatial access method using fractals. In Proc. 7th IEEE

International Conference on Data Engineering, ICDE, pages 152–159. IEEE Computer Society, 1991.

(page 33)

Christos Faloutsos and Shari Roseman. Fractals for secondary key retrieval. In Proceedings of the Eighth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’89, pages

247–252, New York, NY, USA, 1989. ACM. (page 33, 42)

Paolo Fogliaroni. Qualitative Spatial Configuration Queries Towards Next Generation Access Methods

for GIS. The University of Bremen, 2012. (page 39, 57)

Paolo Fogliaroni, Giorgio De Felice, Falko Schmid, and Jan Oliver Wallgrün. Managing qualitative

spatial information to support Query-by-Sketch. In Understanding and Processing Sketch Maps

(COSIT’11), volume 42, pages 21 – 32. IOS Press, 2011. (page 36, 40, 51)

Andrew U Frank. Qualitative spatial reasoning about distances and directions in geographic space.

Journal of Visual Languages and Computing, 3(4):343 – 371, 1992. (page 15, 41)

160

REFERENCES

Nancy Franklin and Barbara Tversky. Searching imagined environments. Journal of Experimental

Psychology: General, 119:63–76, 1990. (page 48)

Nancy Franklin, Linda A. Henkel, and Thomas Zangas. Parsing surrounding space into regions. Memory

& Cognition, 23(4):397–407, 1995. (page 48)

John Freeman. The modelling of spatial relations. Computer Graphics and Image Processing, 4:156–171,

1975. (page xv, 12, 48)

Christian Freksa. Linguistic Pattern Characterization and Analysis. dissertation, University of California,

Berkeley, 1981. (page 5)

Christian Freksa. Conceptual neighborhood and its role in temporal and spatial reasoning. Decision

Support Systems and Qualitative Reasoning, pages 181–187, 1991. (page 19)

Christian Freksa. Temporal reasoning based on semi-intervals. Artif. Intell., 54(1-2):199–227, March

1992. (page 19)

Mark Gahegan. Proximity operators for qualitative spatial reasoning. In AndrewU. Frank and Werner

Kuhn, editors, Spatial Information Theory A Theoretical Basis for GIS, volume 988 of Lecture Notes

in Computer Science, pages 31–44. Springer Berlin Heidelberg, 1995. (page 17, 49)

Oliver Günther and W.-F. Riekert. The design of godot: An object-oriented geographic information

system. IEEE Data Engineering Bulletin, 16(3), 1993. (page 23)

Ralf Hartmut Güting. An introduction to spatial database systems. The VLDB Journal, 3(4):357–399,

October 1994. (page 22, 27)

RalfHartmut Güting. Geo-relational algebra: A model and query language for geometric database

systems (extended abstract). In Proceedings on International Workshop on Computational Geometry

on Computational Geometry and Its Applications, pages 90–96, New York, NY, USA, 1988. Springer-

Verlag New York, Inc. (page 23)

RalfHartmut Güting and Markus Schneider. Realm-based spatial data types: The rose algebra. The

VLDB Journal, 4(2):243–286, 1995. (page 23)

Antonin Guttman. R-trees : a dynamic index structure for spatial searching. Electronics Research

Laboratory College of Engineering University of California, Berkeley, 1983. (page 31, 34, 37)

Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2005. (page 35, 36, 38)

Daniel Hernández, Eliseo Clementini, and Paolino Di Felice. Qualitative distances. In COSIT, pages

45–57, 1995. (page xi, 17, 18)

Janellen Huttenlocher, Larry V. Hedges, and Susan Duncan. Categories and particulars: Prototype

effects in estimating spatial location. Psychological Review, 98:352–376, 1991. (page 48)

ISO/IEC. SQL multimedia and application packages (SQL/MM) part 3: Spatial. m. ashworth (ed.).

2002. (page 23)

161

REFERENCES

Eaman Jahani, Michael J. Cafarella, and Christopher Ré. Automatic optimization for mapreduce

programs. Proc. VLDB Endow., 4(6):385–396, March 2011. (page 156)

Hung-Chin Jang, Yao-Nan Lien, and Tzu-Chieh Tsai. Rescue information system for earthquake

disasters based on manet emergency communication platform. In Proceedings of the 2009 International

Conference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly,

IWCMC ’09, pages 623–627, New York, NY, USA, 2009. ACM. (page 6)

Christian S. Jensen. Spatial keyword querying of geo-tagged web content. In Proceedings of the 7th

International Workshop on Ranking in Databases, DBRank ’13, pages 1:1–1:4, New York, NY, USA,

2013. ACM. (page 155)

Christian S. Jensen, Augustas Kligys, Torben Bach Pedersen, and Igor Timko. Multidimensional data

modeling for location-based services. The VLDB Journal, 13(1):1–21, January 2004a. (page 1)

Christian S. Jensen, Dan Lin, and Beng Chin Ooi. Query and update efficient b+-tree based indexing of

moving objects. In Proceedings of the Thirtieth International Conference on Very Large Data Bases -

Volume 30, VLDB ’04, pages 768–779. VLDB Endowment, 2004b. (page 33)

K. Johnston and Calif. Redlands. ArcGIS 9: Using ArcGIS Geostatistical Analyst. GIS by ESRI. Esri

Press, 2004. (page 22)

Dervis Karaboga. An idea based on honey bee swarm for numerical optimization. Technical report,

Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005.

(page 155)

Dervis Karaboga and Bahriye Akay. A survey: Algorithms simulating bee swarm intelligence. Artif.

Intell. Rev., 31(1-4):61–85, June 2009. (page 155)

Matthias Kopczynski. Efficient spatial queries with sketches. In ISPRS Technical Commission II

Symposium, Vienna, 2006. ISPRS. (page 41)

Scott T. Leutenegger, Jeffrey M. Edgington, and Mario A. Lopez. Str: A simple and efficient algorithm

for r-tree packing. Technical report, 1997. (page 40)

Stephen C. Levinson. Frames of reference and Molyneux’s question: Crosslinguistic evidence. In Paul

Bloom, Mary A. Peterson, Lynn Nadel, and Merrill F. Garrett, editors, Language and Space, pages

109–169. MIT Press, 1996. (page 14)

Witold Litwin. Linear hashing: a new tool for file and table addressing. In Proceedings of the sixth

international conference on Very Large Data Bases - Volume 6, VLDB ’80, pages 212–223. VLDB

Endowment, 1980. (page 79)

Bing Liu, Yiyuan Xia, and Philip S. Yu. Clustering through decision tree construction. In Proceedings

of the ninth international conference on Information and knowledge management, CIKM ’00, pages

20–29, New York, NY, USA, 2000. ACM. (page 37)

Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-joins. SIGMOD Rec., 25(2):247–258, June 1996.

(page 34)

162

REFERENCES

Ina Ludwig, Angi Voss, and Maike Krause-Traudes. A comparison of the street networks of navteq and

osm in germany. In Advancing Geoinformation Science for a Changing World, pages 65–84. Springer,

2011. (page 116)

Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99 – 118, 1977.

(page 19)

Nikos Mamoulis and Dimitris Papadias. Slot index spatial join. IEEE Trans. on Knowl. and Data Eng.,

15(1):211–231, January 2003. (page 34)

Ken Manktelow and Man Chung. Psychology of reasoning : theoretical & historical perspectives.

Psychology Press, 2004. (page 121, 122)

Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopoulos, and Yannis Theodoridis.

R-Tree Have Grown Everywhere. ACM Computing Surveys, 5:1–07, 2003. (page 36, 39)

Yannis Manolopoulos, Apostolos N. Papadopoulos, and Michael Gr. Vassilakopoulos. Spatial Databases:

Technologies, Techniques and Trends. Idea Group Pub., 2005. (page 22, 47)

David M. Mark, Christian Freksa, Stephen C. Hirtle, Robert Lloyd, and Barbara Tversky. Cognitive

models of geographical space. International Journal of Geographical Information Science, 13(8):

747–774, 1999. (page 1)

Jǐŕı Matoušek and Robin Thomas. Algorithms finding tree-decompositions of graphs. Journal of

Algorithms, 12(1):1 – 22, 1991. (page 73)

Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions / Geoffrey J.

McLachlan, Thriyambakam Krishnan. Wiley, New York, 1997. (page 37)

Reinhard Moratz and Marco Ragni. Qualitative spatial reasoning about relative point position. Journal

of Visual Languages and Computing, 19(1):75 – 98, 2008. (page 16)

Reinhard Moratz, Bernhard Nebel, and Christian Freksa. Spatial cognition iii. chapter Qualitative

spatial reasoning about relative position: the trade off between strong formal properties and successful

reasoning about route graphs, pages 385–400. Springer-Verlag, Berlin, Heidelberg, 2003. (page 18)

Open Geospatial Consortium (OGC) Inc. OpenGIS implementation standard for geographic information

- simple feature access - part 2: Sql option. available at http://www.opengeospatial.org/. 2010.

(page 27)

Open Geospatial Consortium (OGC) Inc. OpenGIS implementation standard for geographic information

- simple feature access - part 1: Common architecture. available at http://www.opengeospatial.org/.

2011. (page xi, xv, 23, 24, 25)

Dipali Pal and Praveen R. Rao. A tool for fast indexing and querying of graphs. In Proceedings of the

20th international conference companion on World wide web, WWW ’11, pages 241–244, New York,

NY, USA, 2011. ACM. (page 35)

163

REFERENCES

Dimitris Papadias. Hill climbing algorithms for content-based retrieval of similar configurations. In

Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, SIGIR ’00, pages 240–247, New York, NY, USA, 2000. ACM. (page 155)

Dimitris Papadias and Yannis Manolopoulos. Spatial relations, minimum bounding rectangles, and

spatial data structures. International Journal of Geographical Information Science, 11(2):111–138,

1997. (page 39)

Dimitris Papadias, Yannis Theodoridis, and Timos Sellis. The retrieval of direction relations using

r-trees. In Dimitris Karagiannis, editor, Database and Expert Systems Applications, volume 856 of

Lecture Notes in Computer Science, pages 173–182. Springer Berlin Heidelberg, 1994. (page 34)

Dimitris Papadias, Timos Sellis, Yannis Theodoridis, and Max J. Egenhofer. Topological relations in

the world of minimum bounding rectangles: A study with r-trees. SIGMOD Rec., 24(2):92–103, 1995.

(page 34)

Dimitris Papadias, Marios Mantzourogiannis, Panos Kalnis, Nikos Mamoulis, and Ishfaq Ahmad.

Content-based retrieval using heuristic search. In Proceedings of the 22Nd Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’99, pages 168–175,

New York, NY, USA, 1999. ACM. (page 155)

Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining outliers from

large data sets. SIGMOD Rec., 29(2):427–438, May 2000. (page 64)

Philippe Rigaux, Michel Scholl, and Agnés Voisard. Spatial Databases with Application to GIS. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2002. (page 27)

Neil Robertson and P.D Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal of

Algorithms, 7(3):309 – 322, 1986. (page 73)

Nick Roussopoulos and Daniel Leifker. Direct spatial search on pictorial databases using packed r-trees.

SIGMOD Rec., 14(4):17–31, May 1985. (page 26)

Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor queries. SIGMOD Rec., 24

(2):71–79, May 1995. (page 64)

Hanan Samet and Walid G. Aref. Modern database systems. chapter Spatial Data Models and Query

Processing, pages 338–360. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995.

(page 26)

Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+ -tree: A dynamic index for multidi-

mensional objects. In Proc. 13th VLDB Conf, pages 507–518, 1987. (page 32)

Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang. WaveCluster: a wavelet-based

clustering approach for spatial data in very large databases. The VLDB Journal, 8(3-4):289–304,

February 2000. (page 37, 38)

Spiros Skiadopoulos and Manolis Koubarakis. Composing cardinal direction relations. Artif. Intell., 152

(2):143–171, February 2004. ISSN 0004-3702. (page 15, 49, 129)

164

REFERENCES

Spiros Skiadopoulos, Nikos Sarkas, Timos Sellis, and Manolis Koubarakis. A family of directional

relation models for extended objects. Knowledge and Data Engineering, IEEE Transactions on, 19

(8):1116–1130, Aug 2007. (page 49)

Stephen M. Stigler. Francis Galtonś Account of the Invention of Correlation. Statistical Science, 4:

73–79, 1989. (page 118, 121)

Waldo R. Tobler. A computer movie simulating urban growth in the detroit region. Economic Geography,

46(2):234–240, 1970. (page 56)

C. Dana Tomlin. Geographic Information Systems and Cartographic Modeling. Prentice Hall College

Div, 2012. (page 22)

Peter van Beek. Reasoning about qualitative temporal information. Artif. Intell., 58(1-3):297–326,

December 1992. (page 20)

Jan Oliver Wallgrün, Diedrich Wolter, and Kai-Florian Richter. Qualitative matching of spatial

information. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in

Geographic Information Systems, GIS ’10, pages 300–309, New York, NY, USA, 2010. ACM. (page 5,

20, 41, 155)

Jia Wang and Angela Schwering. The accuracy of sketched spatial relations: How cognitive errors

influence sketch representation. In Proceedings of the International Workshop Presenting Spatial

Information: Granularity, Relevance, and Integration, held in conjunction with the Conference on

Spatial Information Theory, pages 40–47. SFB/TR8 and University of Melbourne, 2009. (page 48)

Wei Wang, Jiong Yang, and Richard R. Muntz. STING: A statistical information grid approach to

spatial data mining. In Proceedings of the 23rd International Conference on Very Large Data Bases,

VLDB ’97, pages 186–195, 1997. (page 38)

C.S. Warnekar and G. Krishna. A heuristic clustering algorithm using union of overlapping pattern-cells.

Pattern Recognition, 11(2):85–93, 1979. (page 36, 37)

Thomas Wasow, Amy Perfors, and David Beaver. The puzzle of ambiguity. In Morphology and the Web

of Grammar: Essays in Memory of Steven G. Lapointe, 2005. (page 5)

David W. Williams, Jun Huan, and Wei Wang. Graph database indexing using structured graph

decomposition. In ICDE, pages 976–985, 2007. (page 35)

Diedrich Wolter and Jan Oliver Wallgrün. Qualitative spatial reasoning for applications: New challenges

and the SparQ toolbox. In Shyamanta M. Hazarika, editor, Qualitative Spatio-Temporal Representation

and Reasoning: Trends and Future Directions, pages 336–362. IGI Global, 2012. (page 9)

Michael Worboys and Matt Duckham. GIS: A computing perspective (2nd edition). CRC Press, Inc.,

2004. (page 1, 21)

Man Lung Yiu, Yufei Tao, and Nikos Mamoulis. The bdual-tree: Indexing moving objects by space

filling curves in the dual space. The VLDB Journal, 17(3):379–400, May 2008. (page 33)

165

REFERENCES

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: an efficient data clustering method for

very large databases. SIGMOD Rec., 25(2):103–114, June 1996. (page 37)

Dennis Zielstra and Alexander Zipf. A comparative study of proprietary geodata and volunteered geo-

graphic information for germany. In 13th AGILE international conference on geographic information

science, 2010. (page 116, 117)

Kai Zimmermann and Christian Freksa. Qualitative spatial reasoning using orientation, distance, and

path knowledge. Appl. Intell., 6(1):49–58, 1996. (page 12)

Moshe Zloof. Query-by-example: A data base language. IBM Syst. J., 16(4):324–343, December 1977.

(page 26)

Lei Zou, Lei Chen, Jeffrey Xu Yu, and Yansheng Lu. A novel spectral coding in a large graph database.

In Proceedings of the 11th international conference on Extending database technology: Advances in

database technology, EDBT ’08, pages 181–192, New York, NY, USA, 2008. ACM. (page 35)

166

Appendix A
Own Publications

A.1 Within the Scope of this Dissertation

(1) Rami Al-Salman and Frank Dylla. QHTI: An approach for answering qualitative

spatial queries in large databases using a hash table data structure. In 16th AGILE

Conference on Geographic Information Science, 2013.

My contribution: In this paper, I presented a method that allowed computing and

storing the huge amount of spatial relations among pairs of objects in spatial databases

using a hash table data-structure that was called Qualitative Hash Table Indexing

(QHTI).

(2) Rami Al-Salman, Frank Dylla, and Paolo Fogliaroni. Matching geospatial in-

formation by qualitative spatial relations. In First ACM SIGSPATIAL International

Workshop on Crowd-sourced and Volunteered Geographic Information, GeoCrowd ’12.

ACM, 2012.

My contribution: was proposing a matching framework that enabled users to formu-

late configurations in a spatial query in an intuitive and qualitative manner. Spatial

queries were translated into the formal query language Structured Query Language

(SQL) which was used to query and retrieve results from spatial databases. In order

to demonstrate the applicability of our approach I developed the Bremen Tourists

Advisor with the matching framework as prominent component. Finally, I conducted

experiments in the BTA context which exhibited the efficiency of our framework.

(3) Rami Al-Salman, Frank Dylla, and Lutz Frommberger. An approach to qualitative

167

A. OWN PUBLICATIONS

emergency management. In Sisi Zlatanova, Rob Peters, Arta Dilo, and Hans Scholten,

editors, Intelligent Systems for Crisis Management, Lecture Notes in Geoinformation

and Cartography, pages 43-50. Springer Berlin Heidelberg, 2013.

My contribution: In this paper, my main contribution was to propose an approach

to qualitative emergency management. This empowered emergency managers to query

spatial databases using qualitative terms used in spoken language, such as near or north

of. By providing a qualitative DBMS layer that covers the three qualitative aspects

topology, distance, and direction, the system was able to handle qualitative spatial

queries.

(4) Rami Al-Salman, Mohammad Fraiwan, Chipofya Malumbo, Frank Dylla, Falko

Schmid, and Hosam Ershedat. ASET: An intuitive data acquisition-sketching tool for

disaster management systems. In 16th AGILE International Conference on Geographic

Information Science, 2013.

My contribution: In this paper, I proposed a system that allowed users to contribute

and query disaster information via their mobile devices. The system, called Android

Sketching and Editing Tool (ASET), is intuitive with an easy-to-use interface that

allowed users to interact graphically and to perform sketch queries.

(5) Rami Al-Salman and Frank Dylla. Acceleration of Qualitative Spatial Query

Processing Using Hash-Based Indexing. in preparation.

My contribution: In this paper I present two methods based on hash-table data

structures, that allow for processing qualitative spatial queries for binary relations: (a)

Qualitative Hash Table Indexing (QHTI) and (b) Qualitative Hash Table Compression

(QHTC). I compare them to two join-based methods: B+-tree Multi Join (BMJ) and

R∗-tree Multi Join (RMJ). Within the experimental setting the results show that QHTI

and QHTC outperform the join-based methods significantly.

168

A.2 Out of the Scope of this Dissertation

A.2 Out of the Scope of this Dissertation

(6) Ahmed Loai Ali, Falko Schmid, Rami Al-Salman, Tomi Kauppinen. Ambiguity

and Plausibility: Managing Classification Quality in Volunteered Geographic Informa-

tion.ACMGIS 2014, accepted.

My contribution: Aside from co-writing and discussions, my main contribution was

involving the topological relations as features into the learning process. These features

helped our classifier to accurately identify entities with inappropriate classification in

geo-spatial databases.

169

