4,890 research outputs found

    Predictability of Wlan Mobility and Its Effects on Bandwidth Provisioning

    Get PDF
    Wireless local area networks (WLANs) are emerging as a popular technology for access to the Internet and enterprise networks. In the long term, the success of WLANs depends on services that support mobile network clients. \par Although other researchers have explored mobility prediction in hypothetical scenarios, evaluating their predictors analytically or with synthetic data, few studies have been able to evaluate their predictors with real user mobility data. As a first step towards filling this fundamental gap, we work with a large data set collected from the Dartmouth College campus-wide wireless network that hosts more than 500 access points and 6,000 users. Extending our earlier work that focuses on predicting the next-visited access point (i.e., location), in this work we explore the predictability of the time of user mobility. Indeed, our contributions are two-fold. First, we evaluate a series of predictors that reflect possible dependencies across time and space while benefiting from either individual or group mobility behaviors. Second, as a case study we examine voice applications and the use of handoff prediction for advance bandwidth reservation. Using application-specific performance metrics such as call drop and call block rates, we provide a picture of the potential gains of prediction. \par Our results indicate that it is difficult to predict handoff time accurately, when applied to real campus WLAN data. However, the findings of our case study also suggest that application performance can be improved significantly even with predictors that are only moderately accurate. The gains depend on the applications\u27 ability to use predictions and tolerate inaccurate predictions. In the case study, we combine the real mobility data with synthesized traffic data. The results show that intelligent prediction can lead to significant reductions in the rate at which active calls are dropped due to handoffs with marginal increments in the rate at which new calls are blocked

    Mobility modeling and management for next generation wireless networks

    Get PDF
    Mobility modeling and management in wireless networks are the set of tasks performed in order to model motion patterns, predict trajectories, get information on mobiles\u27 whereabouts and to make use of this information in handoff, routing, location management, resource allocation and other functions. In the literature, the speed of mobile is often and misleadingly referred to as the level of mobility, such as high or low mobility. This dissertation presents an information theoretic approach to mobility modeling and management, in which mobility is considered as a measure of uncertainty in mobile\u27s trajectory, that is, the mobility is low if the trajectory of a mobile is highly predictable even if the mobile is moving with high speed. On the other hand, the mobility is high if the trajectory of the mobile is highly erratic. Based on this mobility modeling concept, we classify mobiles into predictable and non-predictable mobility classes and optimize network operations for each mobility class. The dynamic mobility classification technique is applied to various mobility related issues of the next generation wireless networks such as location management, location-based services, and energy efficient routing in multihop cellular networks

    A Survey of Anticipatory Mobile Networking: Context-Based Classification, Prediction Methodologies, and Optimization Techniques

    Get PDF
    A growing trend for information technology is to not just react to changes, but anticipate them as much as possible. This paradigm made modern solutions, such as recommendation systems, a ubiquitous presence in today's digital transactions. Anticipatory networking extends the idea to communication technologies by studying patterns and periodicity in human behavior and network dynamics to optimize network performance. This survey collects and analyzes recent papers leveraging context information to forecast the evolution of network conditions and, in turn, to improve network performance. In particular, we identify the main prediction and optimization tools adopted in this body of work and link them with objectives and constraints of the typical applications and scenarios. Finally, we consider open challenges and research directions to make anticipatory networking part of next generation networks

    Mobility prediction and resource reservation in cellular networks with distributed Markov chains

    Get PDF
    Abstract-In recent years, mobile hosts desire to benefit a good level of satisfaction for the received services in wireless networks, with adequate quality of service guarantees. In this work the attention is focused on wireless services in cellular networks, where the hand-over effects need to be mitigated, through an appropriate reservation policy. Passive resources are used to ensure service continuity when mobile hosts are moving among different coverage cells. The system is modeled through a distributed set of Hidden Markov Chains and the related theory is used to design a mobility predictor (in terms of future probably visited cells), as the main component of the proposed idea, that does not depend on the considered transmission technology (GSM, UMTS, WLAN, etc.), mobility model or vehicular scenario (urban, suburban, etc.). MRSVP has been used in order to realize the active/passive bandwidth reservation in the considered network topology and a severe simulation campaign has been led-out in order to appreciate the robustness of the reservation scheme

    A deep stochastical and predictive analysis of users mobility based on Auto-Regressive processes and pairing functions

    Get PDF
    With the proliferation of connected vehicles, new coverage technologies and colossal bandwidth availability, the quality of service and experience in mobile computing play an important role for user satisfaction (in terms of comfort, security and overall performance). Unfortunately, in mobile environments, signal degradations very often affect the perceived service quality, and predictive approaches become necessary or helpful, to handle, for example, future node locations, future network topology or future system performance. In this paper, our attention is focused on an in-depth stochastic micro-mobility analysis in terms of nodes coordinates. Many existing works focused on different approaches for realizing accurate mobility predictions. Still, none of them analyzed the way mobility should be collected and/or observed, how the granularity of mobility samples collection should be set and/or how to interpret the collected samples to derive some stochastic properties based on the mobility type (pedestrian, vehicular, etc.). The main work has been carried out by observing the characteristics of vehicular mobility, from real traces. At the same time, other environments have also been considered to compare the changes in the collected statistics. Several analyses and simulation campaigns have been carried out and proposed, verifying the effectiveness of the introduced concepts

    Predicting Temporal Aspects of Movement for Predictive Replication in Fog Environments

    Full text link
    To fully exploit the benefits of the fog environment, efficient management of data locality is crucial. Blind or reactive data replication falls short in harnessing the potential of fog computing, necessitating more advanced techniques for predicting where and when clients will connect. While spatial prediction has received considerable attention, temporal prediction remains understudied. Our paper addresses this gap by examining the advantages of incorporating temporal prediction into existing spatial prediction models. We also provide a comprehensive analysis of spatio-temporal prediction models, such as Deep Neural Networks and Markov models, in the context of predictive replication. We propose a novel model using Holt-Winter's Exponential Smoothing for temporal prediction, leveraging sequential and periodical user movement patterns. In a fog network simulation with real user trajectories our model achieves a 15% reduction in excess data with a marginal 1% decrease in data availability

    Behavior-Based Mobility Prediction for Seamless Handoffs in Mobile Wireless Networks

    Get PDF
    The field of wireless networking has received unprecedented attention from the research community during the last decade due to its great potential to create new horizons for communicating beyond the Internet. Wireless LANs (WLANs) based on the IEEE 802.11 standard have become prevalent in public as well as residential areas, and their importance as an enabling technology will continue to grow for future pervasive computing applications. However, as their scale and complexity continue to grow, reducing handoff latency is particularly important. This paper presents the Behavior-based Mobility Prediction scheme to eliminate the scanning overhead incurred in IEEE 802.11 networks. This is achieved by considering not only location information but also group, time-of-day, and duration characteristics of mobile users. This captures short-term and periodic behavior of mobile users to provide accurate next-cell predictions. Our simulation study of a campus network and a municipal wireless network shows that the proposed method improves the next-cell prediction accuracy by 23~43% compared to location-only based schemes and reduces the average handoff delay down to 24~25 ms
    corecore